C4graphGraph forms for C4 [ 288, 222 ] = BGCG({4,4}_12,0;K1;{17,24})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 222 ] = BGCG({4,4}_12,0;K1;{17,24}).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {133, 149}, {134, 149}, {134, 146}, {143, 146}, {140, 168}, {134, 163}, {136, 173}, {143, 168}, {144, 183}, {128, 168}, {128, 170}, {138, 160}, {137, 163}, {135, 173}, {131, 168}, {139, 160}, {132, 181}, {131, 181}, {141, 183}, {129, 186}, {139, 176}, {135, 187}, {140, 176}, {134, 187}, {132, 186}, {142, 205}, {139, 205}, {128, 202}, {129, 202}, {131, 206}, {136, 216}, {133, 212}, {135, 214}, {131, 215}, {130, 215}, {130, 212}, {137, 208}, {138, 208}, {142, 212}, {138, 214}, {133, 216}, {141, 211}, {140, 211}, {132, 229}, {143, 234}, {136, 238}, {137, 238}, {129, 245}, {130, 245}, {128, 249}, {137, 243}, {144, 234}, {140, 243}, {38, 166}, {103, 231}, {70, 198}, {39, 166}, {64, 193}, {55, 182}, {84, 213}, {37, 167}, {63, 189}, {50, 177}, {64, 195}, {62, 189}, {100, 231}, {31, 155}, {59, 191}, {48, 180}, {72, 204}, {79, 203}, {58, 191}, {119, 242}, {104, 237}, {103, 226}, {67, 198}, {116, 242}, {127, 249}, {28, 155}, {73, 193}, {106, 226}, {101, 237}, {48, 185}, {69, 204}, {79, 198}, {59, 177}, {100, 238}, {101, 238}, {25, 149}, {58, 182}, {35, 175}, {72, 196}, {85, 217}, {34, 175}, {76, 193}, {92, 210}, {114, 252}, {26, 149}, {115, 252}, {40, 167}, {86, 217}, {93, 210}, {2, 146}, {36, 180}, {32, 176}, {95, 207}, {61, 172}, {15, 157}, {108, 254}, {14, 157}, {52, 167}, {39, 180}, {82, 198}, {115, 231}, {47, 185}, {58, 172}, {49, 167}, {38, 177}, {112, 231}, {105, 254}, {87, 192}, {46, 182}, {67, 219}, {84, 204}, {11, 146}, {107, 242}, {86, 207}, {83, 201}, {104, 242}, {90, 192}, {4, 159}, {64, 219}, {80, 203}, {82, 201}, {3, 159}, {121, 229}, {50, 174}, {32, 188}, {73, 213}, {43, 182}, {51, 174}, {49, 172}, {71, 218}, {81, 204}, {47, 177}, {125, 227}, {68, 218}, {96, 254}, {124, 227}, {60, 156}, {121, 217}, {110, 206}, {76, 236}, {99, 195}, {29, 188}, {48, 145}, {16, 178}, {115, 209}, {91, 249}, {79, 236}, {122, 217}, {93, 254}, {99, 192}, {102, 197}, {2, 166}, {107, 207}, {61, 153}, {3, 166}, {116, 209}, {51, 150}, {74, 239}, {92, 249}, {27, 189}, {120, 222}, {102, 192}, {26, 189}, {62, 153}, {100, 195}, {20, 188}, {57, 145}, {71, 239}, {93, 245}, {63, 150}, {73, 224}, {60, 150}, {25, 178}, {63, 148}, {94, 245}, {105, 197}, {6, 171}, {121, 212}, {120, 213}, {60, 145}, {49, 156}, {17, 188}, {98, 207}, {5, 171}, {28, 178}, {27, 180}, {31, 176}, {43, 155}, {117, 197}, {109, 221}, {91, 235}, {28, 173}, {111, 222}, {90, 235}, {92, 237}, {12, 190}, {108, 222}, {78, 252}, {82, 224}, {40, 155}, {110, 221}, {79, 252}, {80, 228}, {122, 206}, {88, 236}, {89, 237}, {11, 190}, {45, 152}, {85, 224}, {27, 173}, {66, 244}, {46, 152}, {33, 151}, {32, 151}, {114, 197}, {67, 244}, {83, 228}, {91, 236}, {92, 228}, {109, 213}, {73, 240}, {119, 206}, {91, 226}, {19, 169}, {105, 211}, {64, 250}, {74, 240}, {12, 183}, {104, 211}, {65, 250}, {18, 169}, {95, 228}, {45, 145}, {83, 239}, {94, 226}, {99, 222}, {9, 183}, {119, 201}, {65, 255}, {94, 224}, {13, 178}, {118, 201}, {23, 215}, {40, 232}, {22, 215}, {62, 255}, {41, 232}, {120, 186}, {52, 247}, {51, 247}, {57, 253}, {53, 241}, {103, 162}, {48, 246}, {120, 190}, {102, 160}, {10, 205}, {103, 160}, {58, 253}, {112, 184}, {35, 234}, {119, 190}, {113, 184}, {56, 241}, {81, 152}, {85, 156}, {7, 205}, {104, 162}, {53, 255}, {82, 152}, {42, 230}, {29, 208}, {50, 255}, {43, 230}, {9, 199}, {36, 234}, {30, 208}, {8, 199}, {117, 186}, {6, 214}, {14, 223}, {62, 239}, {19, 194}, {13, 223}, {69, 151}, {59, 233}, {37, 246}, {68, 151}, {96, 179}, {53, 225}, {3, 214}, {60, 233}, {37, 240}, {96, 181}, {7, 209}, {127, 169}, {66, 148}, {46, 248}, {38, 240}, {20, 194}, {10, 220}, {11, 220}, {126, 169}, {125, 170}, {54, 225}, {41, 241}, {66, 154}, {99, 187}, {1, 216}, {122, 163}, {114, 171}, {34, 251}, {8, 209}, {98, 187}, {34, 248}, {123, 161}, {113, 171}, {78, 148}, {65, 154}, {113, 170}, {1, 221}, {55, 235}, {4, 216}, {25, 196}, {124, 161}, {54, 235}, {44, 241}, {37, 248}, {20, 202}, {125, 163}, {116, 170}, {72, 150}, {2, 221}, {21, 202}, {75, 148}, {6, 230}, {126, 158}, {43, 203}, {36, 196}, {95, 191}, {7, 230}, {67, 162}, {59, 218}, {25, 248}, {94, 191}, {56, 218}, {31, 251}, {44, 200}, {87, 179}, {118, 147}, {123, 158}, {28, 250}, {123, 157}, {68, 162}, {16, 247}, {122, 157}, {47, 200}, {44, 203}, {29, 250}, {84, 179}, {13, 229}, {32, 200}, {21, 253}, {19, 251}, {71, 175}, {70, 175}, {77, 164}, {30, 244}, {70, 172}, {56, 210}, {45, 199}, {83, 185}, {95, 181}, {22, 253}, {57, 210}, {44, 199}, {35, 200}, {31, 244}, {78, 165}, {4, 232}, {114, 158}, {55, 219}, {5, 232}, {50, 223}, {22, 251}, {84, 185}, {49, 223}, {74, 164}, {52, 219}, {112, 159}, {17, 225}, {111, 159}, {24, 233}, {111, 158}, {17, 227}, {46, 220}, {86, 164}, {97, 147}, {16, 227}, {47, 220}, {18, 225}, {76, 184}, {81, 165}, {55, 194}, {77, 184}, {5, 243}, {87, 161}, {1, 246}, {15, 247}, {75, 179}, {86, 174}, {93, 165}, {97, 153}, {61, 196}, {106, 147}, {87, 174}, {88, 161}, {12, 246}, {56, 194}, {8, 243}, {98, 153}, {61, 193}, {63, 195}, {96, 156}, {102, 154}, {24, 229}, {89, 164}, {23, 233}, {109, 147}, {90, 165}, {101, 154}, {20, 277}, {17, 275}, {23, 277}, {9, 268}, {26, 284}, {15, 263}, {19, 283}, {6, 268}, {16, 283}, {23, 284}, {24, 278}, {22, 281}, {2, 275}, {24, 265}, {14, 284}, {10, 281}, {13, 281}, {3, 278}, {18, 263}, {5, 275}, {1, 281}, {9, 273}, {15, 278}, {30, 263}, {26, 259}, {21, 268}, {12, 278}, {10, 273}, {30, 261}, {7, 283}, {27, 263}, {21, 265}, {8, 277}, {14, 275}, {11, 277}, {29, 259}, {18, 268}, {4, 283}, {33, 261}, {38, 259}, {33, 265}, {45, 261}, {54, 287}, {41, 259}, {51, 287}, {36, 265}, {41, 260}, {42, 260}, {42, 261}, {40, 280}, {54, 262}, {52, 256}, {42, 287}, {53, 256}, {39, 287}, {34, 286}, {33, 286}, {57, 262}, {39, 280}, {35, 284}, {80, 274}, {69, 262}, {66, 262}, {77, 260}, {78, 260}, {69, 264}, {70, 264}, {71, 279}, {65, 274}, {75, 280}, {76, 280}, {116, 288}, {117, 288}, {68, 274}, {88, 270}, {88, 256}, {89, 257}, {89, 256}, {74, 272}, {75, 272}, {85, 270}, {90, 257}, {72, 279}, {77, 274}, {105, 264}, {110, 271}, {106, 264}, {127, 285}, {117, 273}, {109, 266}, {118, 273}, {100, 270}, {101, 271}, {118, 285}, {98, 271}, {115, 285}, {97, 270}, {80, 288}, {81, 288}, {121, 266}, {126, 267}, {108, 282}, {124, 266}, {123, 269}, {112, 266}, {97, 282}, {108, 279}, {107, 279}, {125, 257}, {127, 258}, {106, 276}, {124, 258}, {113, 271}, {110, 272}, {107, 276}, {126, 257}, {111, 272}, {138, 267}, {141, 267}, {132, 269}, {139, 258}, {129, 267}, {144, 282}, {136, 258}, {135, 269}, {142, 286}, {141, 286}, {142, 276}, {143, 276}, {144, 269}, {130, 285}, {133, 282} }>;

(II) A more general form is to represent the graph as the orbit of {133, 149} under the group generated by the following permutations:

a: (2, 133)(3, 121)(4, 109)(5, 97)(6, 85)(7, 73)(8, 61)(9, 49)(10, 37)(11, 25)(12, 13)(14, 144)(15, 132)(16, 120)(17, 108)(18, 96)(19, 84)(20, 72)(21, 60)(22, 48)(23, 36)(26, 143)(27, 131)(28, 119)(29, 107)(30, 95)(31, 83)(32, 71)(33, 59)(34, 47)(38, 142)(39, 130)(40, 118)(41, 106)(42, 94)(43, 82)(44, 70)(45, 58)(50, 141)(51, 129)(52, 117)(53, 105)(54, 93)(55, 81)(56, 69)(62, 140)(63, 128)(64, 116)(65, 104)(66, 92)(67, 80)(74, 139)(75, 127)(76, 115)(77, 103)(78, 91)(86, 138)(87, 126)(88, 114)(89, 102)(98, 137)(99, 125)(100, 113)(110, 136)(111, 124)(122, 135)(145, 253)(146, 149)(147, 232)(148, 249)(150, 202)(151, 218)(152, 182)(153, 243)(154, 237)(155, 201)(156, 268)(157, 269)(158, 161)(159, 266)(160, 164)(162, 274)(163, 187)(165, 235)(166, 212)(167, 273)(168, 189)(169, 179)(170, 195)(171, 270)(172, 199)(173, 206)(174, 267)(175, 200)(176, 239)(177, 286)(178, 190)(180, 215)(181, 263)(183, 223)(184, 231)(185, 251)(186, 247)(188, 279)(191, 261)(192, 257)(193, 209)(194, 204)(196, 277)(197, 256)(198, 203)(205, 240)(207, 208)(210, 262)(211, 255)(213, 283)(214, 217)(216, 221)(219, 288)(220, 248)(222, 227)(224, 230)(225, 254)(226, 260)(228, 244)(229, 278)(233, 265)(234, 284)(236, 252)(238, 271)(241, 264)(242, 250)(245, 287)(246, 281)(258, 272)(259, 276)(275, 282)(280, 285)
b: (2, 12)(3, 11)(4, 10)(5, 9)(6, 8)(13, 133)(14, 144)(15, 143)(16, 142)(17, 141)(18, 140)(19, 139)(20, 138)(21, 137)(22, 136)(23, 135)(24, 134)(25, 121)(26, 132)(27, 131)(28, 130)(29, 129)(30, 128)(31, 127)(32, 126)(33, 125)(34, 124)(35, 123)(36, 122)(37, 109)(38, 120)(39, 119)(40, 118)(41, 117)(42, 116)(43, 115)(44, 114)(45, 113)(46, 112)(47, 111)(48, 110)(49, 97)(50, 108)(51, 107)(52, 106)(53, 105)(54, 104)(55, 103)(56, 102)(57, 101)(58, 100)(59, 99)(60, 98)(61, 85)(62, 96)(63, 95)(64, 94)(65, 93)(66, 92)(67, 91)(68, 90)(69, 89)(70, 88)(71, 87)(72, 86)(74, 84)(75, 83)(76, 82)(77, 81)(78, 80)(145, 271)(146, 278)(147, 167)(148, 228)(149, 229)(150, 207)(151, 257)(152, 184)(153, 156)(154, 210)(155, 285)(157, 234)(158, 200)(159, 220)(160, 194)(161, 175)(162, 235)(163, 265)(164, 204)(165, 274)(166, 190)(168, 263)(169, 176)(170, 261)(171, 199)(172, 270)(173, 215)(174, 279)(177, 222)(178, 212)(179, 239)(180, 206)(181, 189)(182, 231)(183, 275)(185, 272)(186, 259)(187, 233)(188, 267)(191, 195)(192, 218)(193, 224)(196, 217)(197, 241)(198, 236)(201, 280)(202, 208)(203, 252)(205, 283)(209, 230)(211, 225)(213, 240)(214, 277)(216, 281)(219, 226)(221, 246)(223, 282)(227, 286)(232, 273)(237, 262)(238, 253)(242, 287)(243, 268)(244, 249)(245, 250)(247, 276)(248, 266)(251, 258)(254, 255)(256, 264)(260, 288)(269, 284)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)(13, 134, 15, 136, 17, 138, 19, 140, 21, 142, 23, 144)(14, 135, 16, 137, 18, 139, 20, 141, 22, 143, 24, 133)(25, 122, 27, 124, 29, 126, 31, 128, 33, 130, 35, 132)(26, 123, 28, 125, 30, 127, 32, 129, 34, 131, 36, 121)(37, 110, 39, 112, 41, 114, 43, 116, 45, 118, 47, 120)(38, 111, 40, 113, 42, 115, 44, 117, 46, 119, 48, 109)(49, 98, 51, 100, 53, 102, 55, 104, 57, 106, 59, 108)(50, 99, 52, 101, 54, 103, 56, 105, 58, 107, 60, 97)(61, 86, 63, 88, 65, 90, 67, 92, 69, 94, 71, 96)(62, 87, 64, 89, 66, 91, 68, 93, 70, 95, 72, 85)(73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84)(145, 147, 177, 222, 167, 271, 287, 231, 241, 197, 182, 242)(146, 278, 216, 275, 214, 283, 243, 268, 205, 277, 183, 281)(148, 236, 274, 165, 198, 228, 204, 224, 239, 179, 193, 164)(149, 157, 173, 227, 208, 169, 176, 202, 286, 215, 234, 229)(150, 270, 255, 192, 219, 237, 262, 226, 218, 254, 172, 207)(151, 245, 175, 181, 196, 217, 189, 161, 250, 257, 244, 249)(152, 201, 185, 213, 240, 272, 280, 184, 260, 252, 203, 288)(153, 174, 195, 256, 154, 235, 162, 210, 264, 191, 279, 156)(155, 170, 261, 285, 200, 186, 248, 206, 180, 266, 259, 158)(159, 232, 171, 230, 209, 199, 273, 220, 190, 246, 221, 166)(160, 194, 211, 253, 276, 233, 282, 223, 187, 247, 238, 225)(163, 263, 258, 188, 267, 251, 168, 265, 212, 284, 269, 178)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 222 ]
288
-1 221 246 281 216
-2 275 166 221 146
-3 166 278 159 214
-4 232 159 216 283
-5 275 232 243 171
-6 268 214 171 230
-7 209 205 283 230
-8 209 199 243 277
-9 199 268 183 273
-10 220 281 205 273
-11 220 277 146 190
-12 190 278 246 183
-13 178 223 281 229
-14 275 157 223 284
-15 157 278 247 263
-16 178 247 227 283
-17 275 188 225 227
-18 169 268 225 263
-19 169 194 283 251
-20 188 277 202 194
-21 253 265 202 268
-22 253 215 281 251
-23 233 277 215 284
-24 265 233 278 229
-25 178 149 248 196
-26 189 149 259 284
-27 189 180 173 263
-28 155 178 173 250
-29 188 259 250 208
-30 244 261 208 263
-31 176 155 244 251
-32 176 188 200 151
-33 286 265 151 261
-34 286 248 251 175
-35 200 234 284 175
-36 265 234 180 196
-37 167 246 248 240
-38 166 177 259 240
-39 166 287 180 280
-40 155 232 167 280
-41 232 259 260 241
-42 287 260 261 230
-43 155 203 182 230
-44 199 200 203 241
-45 199 145 261 152
-46 220 182 248 152
-47 220 177 200 185
-48 145 180 246 185
-49 156 167 223 172
-50 177 255 223 174
-51 287 247 150 174
-52 167 256 247 219
-53 255 256 225 241
-54 287 235 225 262
-55 235 182 194 219
-56 210 194 218 241
-57 253 210 145 262
-58 253 191 182 172
-59 177 233 191 218
-60 145 156 233 150
-61 193 172 196 153
-62 189 255 239 153
-63 189 148 150 195
-64 193 195 250 219
-65 154 255 250 274
-66 154 244 148 262
-67 198 244 162 219
-68 151 162 218 274
-69 264 204 151 262
-70 198 264 172 175
-71 279 239 218 175
-72 279 204 150 196
-73 213 224 193 240
-74 239 272 240 164
-75 179 148 280 272
-76 236 280 193 184
-77 260 184 164 274
-78 165 148 260 252
-79 198 203 236 252
-80 288 203 228 274
-81 165 288 204 152
-82 198 201 224 152
-83 201 228 239 185
-84 179 213 204 185
-85 156 224 270 217
-86 217 174 207 164
-87 179 192 161 174
-88 256 236 270 161
-89 256 257 237 164
-90 165 235 257 192
-91 235 236 226 249
-92 210 237 249 228
-93 165 210 254 245
-94 245 191 224 226
-95 191 181 228 207
-96 254 156 179 181
-97 147 270 282 153
-98 187 271 207 153
-99 187 222 192 195
-100 231 270 238 195
-101 154 237 238 271
-102 154 192 160 197
-103 231 160 226 162
-104 242 211 237 162
-105 264 254 211 197
-106 264 276 147 226
-107 242 276 279 207
-108 254 222 279 282
-109 221 266 147 213
-110 221 271 206 272
-111 222 158 159 272
-112 231 266 159 184
-113 170 171 271 184
-114 158 171 197 252
-115 209 231 252 285
-116 209 242 288 170
-117 288 273 186 197
-118 201 147 273 285
-119 242 190 201 206
-120 222 190 213 186
-121 266 212 217 229
-122 157 206 217 163
-123 157 158 269 161
-124 266 258 161 227
-125 257 170 227 163
-126 267 158 169 257
-127 169 258 249 285
-128 168 202 170 249
-129 245 267 202 186
-130 212 245 215 285
-131 168 181 215 206
-132 181 269 229 186
-133 212 149 216 282
-134 187 146 149 163
-135 187 214 269 173
-136 258 216 238 173
-137 243 238 163 208
-138 267 214 160 208
-139 176 258 160 205
-140 176 243 211 168
-141 286 211 267 183
-142 286 276 212 205
-143 276 146 168 234
-144 234 269 183 282
-145 45 57 48 60
-146 11 143 2 134
-147 106 118 97 109
-148 66 78 63 75
-149 133 134 25 26
-150 60 72 51 63
-151 33 68 69 32
-152 45 46 81 82
-153 61 62 97 98
-154 66 101 102 65
-155 28 40 31 43
-156 49 60 85 96
-157 122 123 14 15
-158 111 123 114 126
-159 111 112 3 4
-160 102 103 138 139
-161 88 123 124 87
-162 67 68 103 104
-163 122 134 125 137
-164 77 89 74 86
-165 78 90 81 93
-166 2 3 38 39
-167 37 49 40 52
-168 143 128 140 131
-169 126 127 18 19
-170 113 125 116 128
-171 113 114 5 6
-172 58 70 49 61
-173 135 136 27 28
-174 50 51 86 87
-175 34 35 70 71
-176 139 140 31 32
-177 47 59 38 50
-178 13 25 16 28
-179 84 96 75 87
-180 36 48 27 39
-181 132 95 96 131
-182 55 46 58 43
-183 12 144 9 141
-184 77 112 113 76
-185 47 48 83 84
-186 132 117 129 120
-187 99 134 135 98
-188 17 29 20 32
-189 26 27 62 63
-190 11 12 119 120
-191 58 59 94 95
-192 99 90 102 87
-193 61 73 64 76
-194 55 56 19 20
-195 99 100 63 64
-196 25 36 61 72
-197 102 114 105 117
-198 67 79 70 82
-199 44 45 8 9
-200 44 35 47 32
-201 82 83 118 119
-202 128 129 20 21
-203 44 79 80 43
-204 69 81 72 84
-205 7 139 10 142
-206 110 122 119 131
-207 95 107 86 98
-208 137 138 29 30
-209 115 116 7 8
-210 56 57 92 93
-211 104 105 140 141
-212 121 133 130 142
-213 73 84 109 120
-214 3 135 6 138
-215 22 23 130 131
-216 1 133 4 136
-217 121 122 85 86
-218 56 68 59 71
-219 55 67 52 64
-220 11 46 47 10
-221 110 1 2 109
-222 99 111 108 120
-223 13 14 49 50
-224 82 94 73 85
-225 17 18 53 54
-226 91 103 94 106
-227 124 125 16 17
-228 80 92 83 95
-229 121 132 13 24
-230 6 7 42 43
-231 100 112 103 115
-232 4 5 40 41
-233 23 24 59 60
-234 143 144 35 36
-235 55 90 91 54
-236 88 79 91 76
-237 89 101 92 104
-238 100 101 136 137
-239 71 83 62 74
-240 37 38 73 74
-241 44 56 41 53
-242 104 116 107 119
-243 5 137 8 140
-244 66 67 30 31
-245 93 94 129 130
-246 1 12 37 48
-247 15 16 51 52
-248 34 46 25 37
-249 91 92 127 128
-250 28 29 64 65
-251 22 34 19 31
-252 78 79 114 115
-253 22 57 58 21
-254 93 105 96 108
-255 50 62 53 65
-256 88 89 52 53
-257 89 90 125 126
-258 124 136 127 139
-259 26 38 29 41
-260 77 78 41 42
-261 33 45 30 42
-262 66 57 69 54
-263 15 27 18 30
-264 69 70 105 106
-265 33 24 36 21
-266 121 112 124 109
-267 126 138 129 141
-268 6 18 9 21
-269 132 144 123 135
-270 88 100 85 97
-271 110 101 113 98
-272 110 111 74 75
-273 117 118 9 10
-274 77 68 80 65
-275 2 14 5 17
-276 143 106 107 142
-277 11 23 8 20
-278 12 24 3 15
-279 71 72 107 108
-280 39 40 75 76
-281 22 1 13 10
-282 133 144 97 108
-283 4 16 7 19
-284 23 35 14 26
-285 115 127 118 130
-286 33 34 141 142
-287 39 51 42 54
-288 80 81 116 117
0

**************