[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 288, 223 ] =
BGCG({4,4}_12,0;K1;{23,26}).
(I) Following is a form readable by MAGMA:
g:=Graph<288|{ {139, 153}, {138, 153}, {143, 155}, {131, 148}, {138, 145}, {143,
148}, {134, 154}, {138, 151}, {132, 165}, {134, 164}, {130, 166}, {131, 166},
{131, 165}, {132, 162}, {128, 168}, {129, 168}, {141, 163}, {142, 160}, {129,
174}, {143, 160}, {139, 186}, {140, 191}, {137, 189}, {137, 188}, {133, 179},
{128, 183}, {138, 189}, {128, 191}, {144, 208}, {134, 194}, {135, 194}, {137,
204}, {131, 203}, {132, 206}, {135, 213}, {139, 217}, {136, 220}, {142, 218},
{133, 208}, {140, 217}, {141, 218}, {128, 216}, {136, 213}, {139, 235}, {134,
231}, {135, 230}, {133, 231}, {143, 237}, {129, 226}, {141, 233}, {140, 233},
{144, 246}, {142, 228}, {135, 232}, {141, 226}, {129, 241}, {137, 249}, {136,
249}, {130, 241}, {130, 244}, {142, 244}, {130, 254}, {144, 237}, {25, 153},
{112, 240}, {103, 231}, {62, 188}, {119, 245}, {80, 210}, {95, 221}, {29, 158},
{118, 245}, {108, 239}, {87, 212}, {94, 221}, {23, 147}, {53, 177}, {42, 174},
{29, 152}, {119, 242}, {40, 173}, {30, 152}, {44, 170}, {45, 170}, {107, 236},
{52, 179}, {68, 204}, {118, 254}, {101, 237}, {94, 215}, {106, 227}, {53, 191},
{102, 237}, {32, 172}, {124, 240}, {112, 252}, {109, 225}, {59, 183}, {77, 195},
{92, 210}, {76, 195}, {114, 253}, {110, 225}, {96, 239}, {104, 231}, {11, 155},
{61, 172}, {84, 197}, {88, 201}, {62, 172}, {67, 209}, {76, 223}, {123, 232},
{111, 252}, {84, 199}, {53, 161}, {127, 235}, {75, 223}, {83, 199}, {68, 209},
{118, 227}, {90, 207}, {3, 149}, {34, 180}, {6, 145}, {54, 161}, {2, 154}, {54,
174}, {47, 183}, {41, 177}, {92, 196}, {52, 173}, {107, 242}, {15, 149}, {46,
180}, {82, 200}, {37, 190}, {83, 200}, {97, 250}, {102, 253}, {45, 176}, {125,
224}, {46, 176}, {126, 224}, {87, 201}, {101, 251}, {59, 164}, {75, 212}, {91,
196}, {83, 243}, {125, 221}, {124, 220}, {124, 221}, {11, 169}, {111, 205}, {89,
251}, {22, 178}, {51, 151}, {101, 193}, {96, 197}, {50, 148}, {81, 247}, {17,
182}, {127, 216}, {31, 184}, {25, 190}, {21, 178}, {80, 247}, {63, 151}, {102,
207}, {118, 223}, {9, 163}, {117, 223}, {66, 232}, {62, 148}, {19, 185}, {72,
226}, {19, 184}, {120, 211}, {29, 182}, {3, 175}, {95, 243}, {2, 175}, {109,
192}, {70, 235}, {73, 228}, {81, 252}, {72, 230}, {79, 225}, {82, 252}, {85,
250}, {105, 198}, {11, 187}, {113, 193}, {35, 147}, {10, 187}, {125, 204}, {80,
225}, {84, 230}, {3, 176}, {117, 198}, {31, 172}, {95, 236}, {4, 176}, {17,
165}, {30, 171}, {114, 199}, {110, 219}, {99, 214}, {113, 199}, {123, 205},
{120, 206}, {16, 167}, {67, 244}, {41, 158}, {18, 165}, {42, 146}, {86, 238},
{97, 217}, {5, 188}, {121, 192}, {111, 214}, {43, 146}, {36, 157}, {18, 171},
{98, 219}, {99, 218}, {28, 167}, {85, 238}, {98, 217}, {28, 160}, {119, 203},
{105, 213}, {7, 186}, {106, 215}, {36, 153}, {29, 160}, {75, 246}, {7, 185},
{35, 157}, {23, 169}, {100, 218}, {106, 213}, {108, 211}, {81, 145}, {103, 167},
{96, 161}, {8, 202}, {39, 229}, {105, 171}, {17, 210}, {116, 183}, {55, 244},
{85, 150}, {18, 212}, {84, 146}, {55, 240}, {115, 180}, {22, 222}, {55, 255},
{43, 227}, {30, 214}, {25, 209}, {23, 222}, {123, 178}, {63, 246}, {54, 255},
{113, 187}, {121, 179}, {26, 209}, {122, 177}, {112, 187}, {80, 155}, {9, 197},
{32, 236}, {7, 202}, {40, 229}, {25, 215}, {124, 178}, {112, 190}, {30, 208},
{31, 208}, {49, 254}, {90, 149}, {92, 147}, {21, 197}, {39, 247}, {72, 152},
{38, 247}, {108, 189}, {58, 235}, {41, 248}, {78, 159}, {6, 212}, {127, 173},
{56, 234}, {42, 248}, {77, 159}, {57, 234}, {103, 180}, {38, 242}, {69, 145},
{98, 182}, {13, 216}, {14, 216}, {107, 189}, {56, 238}, {5, 210}, {77, 154},
{34, 250}, {55, 238}, {61, 228}, {13, 215}, {117, 175}, {70, 156}, {39, 253},
{35, 249}, {21, 207}, {100, 190}, {34, 249}, {121, 162}, {117, 174}, {116, 175},
{71, 156}, {65, 154}, {43, 240}, {37, 254}, {73, 146}, {78, 149}, {65, 157},
{100, 184}, {54, 232}, {122, 164}, {115, 173}, {107, 181}, {60, 226}, {66, 157},
{110, 177}, {106, 181}, {71, 152}, {68, 155}, {15, 239}, {40, 200}, {74, 170},
{86, 182}, {88, 184}, {16, 241}, {66, 163}, {61, 220}, {41, 200}, {32, 193},
{26, 251}, {75, 170}, {32, 194}, {36, 198}, {33, 194}, {71, 164}, {74, 169},
{14, 234}, {3, 230}, {15, 234}, {27, 253}, {24, 255}, {120, 159}, {44, 203},
{94, 185}, {26, 242}, {126, 150}, {119, 159}, {39, 206}, {127, 150}, {126, 151},
{52, 222}, {116, 158}, {53, 222}, {82, 185}, {9, 229}, {47, 195}, {38, 202},
{22, 250}, {44, 193}, {49, 220}, {46, 195}, {78, 163}, {10, 228}, {46, 192},
{33, 207}, {10, 229}, {37, 202}, {5, 245}, {57, 201}, {2, 243}, {60, 205}, {4,
245}, {13, 255}, {33, 211}, {27, 233}, {11, 248}, {64, 179}, {58, 201}, {56,
203}, {26, 233}, {12, 248}, {65, 181}, {56, 204}, {47, 219}, {27, 239}, {14,
251}, {64, 181}, {49, 196}, {48, 198}, {50, 196}, {74, 188}, {76, 186}, {93,
171}, {96, 150}, {104, 158}, {23, 224}, {20, 236}, {35, 219}, {24, 224}, {90,
162}, {100, 156}, {91, 162}, {101, 156}, {12, 246}, {64, 186}, {58, 192}, {104,
147}, {31, 227}, {42, 214}, {91, 167}, {14, 243}, {51, 206}, {48, 205}, {15,
241}, {65, 191}, {45, 211}, {86, 168}, {88, 166}, {95, 161}, {86, 169}, {87,
168}, {89, 166}, {21, 277}, {4, 261}, {20, 277}, {20, 278}, {27, 281}, {2, 262},
{9, 269}, {8, 269}, {28, 281}, {19, 278}, {1, 263}, {1, 262}, {24, 273}, {10,
257}, {12, 256}, {20, 280}, {4, 265}, {5, 264}, {6, 264}, {16, 286}, {17, 286},
{8, 280}, {6, 276}, {8, 282}, {7, 276}, {28, 271}, {12, 287}, {1, 279}, {22,
257}, {19, 267}, {24, 256}, {16, 265}, {18, 267}, {13, 279}, {59, 288}, {60,
288}, {1, 287}, {61, 285}, {57, 283}, {62, 284}, {63, 284}, {58, 286}, {38,
259}, {59, 286}, {51, 277}, {40, 271}, {50, 277}, {47, 264}, {37, 268}, {44,
262}, {43, 262}, {45, 258}, {63, 272}, {33, 272}, {50, 259}, {34, 272}, {36,
273}, {60, 267}, {48, 264}, {49, 267}, {52, 270}, {57, 258}, {48, 268}, {51,
270}, {73, 265}, {70, 263}, {89, 280}, {78, 268}, {79, 268}, {67, 261}, {87,
273}, {83, 282}, {79, 261}, {73, 260}, {68, 266}, {74, 260}, {79, 257}, {92,
274}, {69, 266}, {88, 279}, {93, 274}, {64, 272}, {67, 275}, {94, 270}, {66,
275}, {81, 256}, {93, 270}, {72, 285}, {77, 280}, {82, 263}, {91, 257}, {76,
279}, {69, 281}, {85, 265}, {71, 282}, {93, 256}, {69, 283}, {70, 281}, {109,
271}, {111, 269}, {110, 269}, {98, 266}, {122, 274}, {99, 266}, {123, 274},
{115, 287}, {122, 278}, {120, 276}, {114, 287}, {97, 271}, {121, 278}, {114,
258}, {116, 260}, {97, 275}, {113, 259}, {99, 273}, {104, 284}, {105, 284},
{115, 260}, {89, 288}, {109, 276}, {90, 288}, {103, 285}, {102, 285}, {126,
258}, {125, 259}, {108, 275}, {133, 263}, {144, 283}, {136, 261}, {140, 282},
{132, 283} }>;
(II) A more general form is to represent the graph as the orbit of {139, 153}
under the group generated by the following permutations:
a: (1, 2, 14, 13)(3, 26, 24, 133)(4, 38, 23, 121)(5, 50, 22, 109)(6, 62, 21,
97)(7, 74, 20, 85)(8, 86, 19, 73)(9, 98, 18, 61)(10, 110, 17, 49)(11, 122, 16,
37)(12, 134, 15, 25)(27, 36, 144, 135)(28, 48, 143, 123)(29, 60, 142, 111)(30,
72, 141, 99)(31, 84, 140, 87)(32, 96, 139, 75)(33, 108, 138, 63)(34, 120, 137,
51)(35, 132, 136, 39)(40, 47, 131, 124)(41, 59, 130, 112)(42, 71, 129, 100)(43,
83, 128, 88)(44, 95, 127, 76)(45, 107, 126, 64)(46, 119, 125, 52)(53, 58, 118,
113)(54, 70, 117, 101)(55, 82, 116, 89)(56, 94, 115, 77)(57, 106, 114, 65)(66,
69, 105, 102)(67, 81, 104, 90)(68, 93, 103, 78)(79, 80, 92, 91)(145, 284, 207,
275)(146, 282, 168, 184)(147, 162, 261, 247)(148, 178, 271, 264)(149, 209, 256,
231)(150, 186, 170, 236)(151, 272, 211, 189)(152, 226, 218, 214)(153, 246, 194,
239)(154, 234, 215, 287)(155, 274, 167, 268)(156, 174)(157, 283, 213, 253)(158,
288, 244, 252)(159, 204, 270, 180)(160, 205)(161, 235, 223, 193)(163, 266, 171,
285)(164, 241, 190, 248)(165, 220, 229, 219)(166, 240, 200, 183)(169, 278, 265,
202)(172, 197, 217, 212)(173, 195, 203, 221)(175, 251, 255, 263)(176, 242, 224,
179)(177, 286, 254, 187)(181, 258)(182, 267, 228, 269)(185, 260, 280, 238)(188,
277, 250, 276)(191, 201, 227, 199)(192, 245, 259, 222)(196, 257, 225, 210)(198,
237, 232, 281)(206, 249)(208, 230, 233, 273)(216, 279, 262, 243) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 133)(3, 121)(4, 109)(5, 97)(6, 85)(7, 73)(8, 61)(9, 49)(10, 37)(11,
25)(12, 13)(14, 144)(15, 132)(16, 120)(17, 108)(18, 96)(19, 84)(20, 72)(21,
60)(22, 48)(23, 36)(26, 143)(27, 131)(28, 119)(29, 107)(30, 95)(31, 83)(32,
71)(33, 59)(34, 47)(38, 142)(39, 130)(40, 118)(41, 106)(42, 94)(43, 82)(44,
70)(45, 58)(50, 141)(51, 129)(52, 117)(53, 105)(54, 93)(55, 81)(56, 69)(62,
140)(63, 128)(64, 116)(65, 104)(66, 92)(67, 80)(74, 139)(75, 127)(76, 115)(77,
103)(78, 91)(86, 138)(87, 126)(88, 114)(89, 102)(98, 137)(99, 125)(100,
113)(110, 136)(111, 124)(122, 135)(145, 238)(146, 185)(147, 157)(148, 233)(149,
162)(150, 212)(151, 168)(152, 236)(153, 169)(154, 231)(155, 209)(156, 193)(158,
181)(159, 167)(160, 242)(161, 171)(163, 196)(164, 194)(165, 239)(166, 253)(170,
235)(172, 282)(173, 223)(174, 270)(175, 179)(176, 192)(177, 213)(178, 205)(180,
195)(182, 189)(183, 272)(184, 199)(186, 260)(187, 190)(188, 217)(191, 284)(197,
267)(198, 222)(200, 227)(201, 258)(202, 228)(203, 281)(204, 266)(206, 241)(207,
288)(208, 243)(210, 275)(211, 286)(214, 221)(215, 248)(216, 246)(218, 259)(219,
249)(220, 269)(224, 273)(225, 261)(226, 277)(229, 254)(230, 278)(232, 274)(234,
283)(237, 251)(240, 252)(244, 247)(245, 271)(250, 264)(255, 256)(257, 268)(262,
263)(265, 276)(279, 287)(280, 285)
c: (2, 13)(3, 25)(4, 37)(5, 49)(6, 61)(7, 73)(8, 85)(9, 97)(10, 109)(11,
121)(12, 133)(15, 26)(16, 38)(17, 50)(18, 62)(19, 74)(20, 86)(21, 98)(22,
110)(23, 122)(24, 134)(28, 39)(29, 51)(30, 63)(31, 75)(32, 87)(33, 99)(34,
111)(35, 123)(36, 135)(41, 52)(42, 64)(43, 76)(44, 88)(45, 100)(46, 112)(47,
124)(48, 136)(54, 65)(55, 77)(56, 89)(57, 101)(58, 113)(59, 125)(60, 137)(67,
78)(68, 90)(69, 102)(70, 114)(71, 126)(72, 138)(80, 91)(81, 103)(82, 115)(83,
127)(84, 139)(93, 104)(94, 116)(95, 128)(96, 140)(106, 117)(107, 129)(108,
141)(119, 130)(120, 142)(132, 143)(145, 285)(146, 186)(147, 274)(148, 165)(149,
209)(150, 282)(151, 152)(153, 230)(154, 255)(155, 162)(156, 258)(157, 232)(158,
270)(159, 244)(160, 206)(161, 191)(163, 275)(164, 224)(166, 203)(167, 247)(168,
236)(169, 278)(170, 184)(171, 284)(172, 212)(173, 200)(174, 181)(175, 215)(176,
190)(177, 222)(178, 219)(179, 248)(180, 252)(182, 277)(183, 221)(185, 260)(187,
192)(188, 267)(189, 226)(193, 201)(194, 273)(195, 240)(196, 210)(197, 217)(198,
213)(199, 235)(202, 265)(204, 288)(205, 249)(207, 266)(208, 246)(211, 218)(214,
272)(216, 243)(220, 264)(223, 227)(225, 257)(228, 276)(229, 271)(231, 256)(233,
239)(234, 251)(237, 283)(238, 280)(241, 242)(245, 254)(250, 269)(253, 281)(259,
286)(261, 268)(262, 279)(263, 287)
C4[ 288, 223 ]
288
-1 287 279 262 263
-2 154 243 262 175
-3 176 149 175 230
-4 176 265 245 261
-5 264 188 210 245
-6 264 276 145 212
-7 276 202 185 186
-8 202 269 280 282
-9 269 163 229 197
-10 187 257 228 229
-11 187 155 169 248
-12 287 256 246 248
-13 255 279 215 216
-14 243 234 216 251
-15 234 149 239 241
-16 286 265 167 241
-17 165 286 210 182
-18 165 212 267 171
-19 267 278 184 185
-20 277 278 236 280
-21 178 277 207 197
-22 178 222 257 250
-23 222 147 169 224
-24 255 256 224 273
-25 209 190 215 153
-26 209 242 233 251
-27 253 233 281 239
-28 167 160 281 271
-29 158 160 182 152
-30 214 171 152 208
-31 172 227 184 208
-32 236 193 172 194
-33 211 194 272 207
-34 180 249 250 272
-35 157 147 249 219
-36 198 157 273 153
-37 254 190 202 268
-38 242 202 247 259
-39 253 247 206 229
-40 200 271 173 229
-41 177 200 158 248
-42 146 214 248 174
-43 146 227 240 262
-44 170 203 193 262
-45 176 211 170 258
-46 176 180 192 195
-47 264 183 195 219
-48 198 264 268 205
-49 220 254 267 196
-50 277 148 259 196
-51 277 270 151 206
-52 222 179 270 173
-53 177 222 191 161
-54 232 255 161 174
-55 244 255 238 240
-56 234 203 204 238
-57 201 234 258 283
-58 286 201 235 192
-59 286 288 183 164
-60 288 267 226 205
-61 220 172 228 285
-62 188 148 172 284
-63 246 151 272 284
-64 179 181 272 186
-65 154 157 191 181
-66 275 232 157 163
-67 209 275 244 261
-68 209 155 266 204
-69 145 266 281 283
-70 156 235 281 263
-71 156 282 152 164
-72 226 152 230 285
-73 265 146 260 228
-74 188 169 170 260
-75 212 223 246 170
-76 223 279 195 186
-77 154 159 280 195
-78 268 159 149 163
-79 257 268 225 261
-80 155 210 225 247
-81 145 256 247 252
-82 200 185 252 263
-83 199 243 200 282
-84 199 146 197 230
-85 265 150 238 250
-86 168 169 182 238
-87 168 201 212 273
-88 166 201 279 184
-89 166 288 280 251
-90 288 149 162 207
-91 167 257 162 196
-92 210 147 196 274
-93 256 171 270 274
-94 221 215 270 185
-95 221 243 236 161
-96 150 161 239 197
-97 275 271 217 250
-98 266 182 217 219
-99 266 214 218 273
-100 156 190 184 218
-101 156 193 237 251
-102 253 237 207 285
-103 231 167 180 285
-104 231 147 158 284
-105 198 213 171 284
-106 213 181 215 227
-107 242 189 181 236
-108 275 189 211 239
-109 276 192 225 271
-110 177 225 269 219
-111 214 269 205 252
-112 187 190 240 252
-113 187 199 193 259
-114 253 199 287 258
-115 287 180 260 173
-116 158 183 260 175
-117 198 223 174 175
-118 254 223 245 227
-119 242 245 159 203
-120 276 211 159 206
-121 179 278 192 162
-122 177 278 164 274
-123 232 178 205 274
-124 220 221 178 240
-125 221 224 204 259
-126 224 258 150 151
-127 235 150 216 173
-128 168 191 183 216
-129 168 226 174 241
-130 166 254 244 241
-131 165 166 148 203
-132 165 162 206 283
-133 231 179 208 263
-134 154 231 194 164
-135 232 213 194 230
-136 220 213 249 261
-137 188 189 204 249
-138 145 189 151 153
-139 235 217 153 186
-140 233 191 282 217
-141 233 226 163 218
-142 244 160 228 218
-143 155 148 160 237
-144 246 237 283 208
-145 69 81 6 138
-146 73 84 42 43
-147 23 35 92 104
-148 143 50 62 131
-149 78 90 3 15
-150 126 127 85 96
-151 126 138 51 63
-152 71 72 29 30
-153 25 36 138 139
-154 77 2 134 65
-155 11 143 68 80
-156 100 101 70 71
-157 66 35 36 65
-158 104 116 29 41
-159 77 78 119 120
-160 143 28 29 142
-161 95 96 53 54
-162 121 132 90 91
-163 66 78 9 141
-164 122 134 59 71
-165 132 17 18 131
-166 88 89 130 131
-167 91 103 16 28
-168 128 129 86 87
-169 11 23 74 86
-170 44 45 74 75
-171 93 105 18 30
-172 61 62 31 32
-173 115 127 40 52
-174 117 129 42 54
-175 2 3 116 117
-176 45 46 3 4
-177 110 122 41 53
-178 22 123 124 21
-179 121 133 52 64
-180 34 46 103 115
-181 106 107 64 65
-182 17 29 86 98
-183 47 59 116 128
-184 88 100 19 31
-185 82 94 7 19
-186 7 139 64 76
-187 11 112 113 10
-188 5 137 62 74
-189 137 138 107 108
-190 100 112 25 37
-191 128 140 53 65
-192 121 46 58 109
-193 44 101 113 32
-194 33 134 135 32
-195 77 46 47 76
-196 91 92 49 50
-197 84 96 9 21
-198 36 48 105 117
-199 113 114 83 84
-200 82 83 40 41
-201 88 57 58 87
-202 37 38 7 8
-203 44 56 119 131
-204 56 68 125 137
-205 111 123 48 60
-206 132 39 51 120
-207 33 90 102 21
-208 133 144 30 31
-209 67 68 25 26
-210 80 92 5 17
-211 33 45 108 120
-212 6 18 75 87
-213 135 136 105 106
-214 99 111 30 42
-215 13 25 94 106
-216 13 14 127 128
-217 139 140 97 98
-218 99 100 141 142
-219 110 35 47 98
-220 124 136 49 61
-221 124 125 94 95
-222 22 23 52 53
-223 117 118 75 76
-224 23 24 125 126
-225 110 79 80 109
-226 60 72 129 141
-227 106 118 31 43
-228 61 73 10 142
-229 39 40 9 10
-230 3 135 72 84
-231 133 134 103 104
-232 66 123 135 54
-233 26 27 140 141
-234 56 57 14 15
-235 58 70 127 139
-236 95 107 20 32
-237 143 144 101 102
-238 55 56 85 86
-239 15 27 96 108
-240 55 112 124 43
-241 15 16 129 130
-242 26 38 107 119
-243 2 14 83 95
-244 55 67 130 142
-245 4 5 118 119
-246 12 144 63 75
-247 80 81 38 39
-248 11 12 41 42
-249 34 35 136 137
-250 22 34 85 97
-251 89 101 14 26
-252 111 112 81 82
-253 102 114 27 39
-254 37 49 118 130
-255 55 13 24 54
-256 12 24 81 93
-257 22 79 91 10
-258 45 57 114 126
-259 113 125 38 50
-260 115 116 73 74
-261 67 79 4 136
-262 44 1 2 43
-263 1 133 70 82
-264 47 48 5 6
-265 4 16 73 85
-266 99 68 69 98
-267 49 60 18 19
-268 78 79 37 48
-269 110 111 8 9
-270 93 94 51 52
-271 28 40 97 109
-272 33 34 63 64
-273 99 24 36 87
-274 122 123 92 93
-275 66 67 97 108
-276 6 7 109 120
-277 50 51 20 21
-278 121 122 19 20
-279 88 1 13 76
-280 77 89 8 20
-281 69 70 27 28
-282 71 83 8 140
-283 132 144 57 69
-284 104 105 62 63
-285 102 103 61 72
-286 58 59 16 17
-287 1 12 114 115
-288 89 90 59 60
0