[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 288, 231 ] =
BGCG(AMC(16,3,[0.1:1.2]);K1;6).
(I) Following is a form readable by MAGMA:
g:=Graph<288|{ {129, 148}, {131, 148}, {140, 148}, {131, 159}, {130, 159}, {138,
148}, {144, 177}, {132, 162}, {136, 175}, {136, 162}, {140, 167}, {136, 167},
{141, 162}, {131, 178}, {130, 177}, {135, 177}, {133, 178}, {135, 189}, {139,
177}, {134, 189}, {139, 183}, {142, 178}, {138, 183}, {140, 178}, {144, 175},
{143, 223}, {128, 211}, {138, 223}, {129, 215}, {128, 215}, {129, 214}, {144,
242}, {134, 227}, {136, 227}, {143, 227}, {129, 240}, {128, 242}, {137, 251},
{133, 240}, {135, 242}, {141, 251}, {131, 249}, {138, 240}, {137, 242}, {132,
249}, {142, 243}, {141, 243}, {142, 240}, {25, 153}, {120, 248}, {33, 161}, {94,
222}, {89, 216}, {90, 216}, {123, 249}, {18, 145}, {122, 249}, {34, 161}, {67,
192}, {83, 208}, {71, 195}, {84, 208}, {97, 229}, {40, 174}, {126, 248}, {69,
195}, {99, 229}, {30, 153}, {93, 218}, {68, 204}, {72, 192}, {39, 174}, {43,
161}, {47, 165}, {70, 204}, {76, 198}, {42, 161}, {46, 165}, {21, 153}, {57,
181}, {92, 208}, {93, 208}, {117, 248}, {59, 181}, {73, 198}, {59, 171}, {61,
173}, {68, 212}, {3, 145}, {55, 165}, {38, 180}, {85, 198}, {57, 173}, {64,
212}, {82, 198}, {33, 180}, {60, 171}, {111, 248}, {9, 145}, {56, 160}, {51,
171}, {50, 171}, {77, 212}, {58, 160}, {127, 227}, {12, 145}, {56, 165}, {33,
188}, {73, 212}, {95, 194}, {42, 180}, {95, 193}, {93, 194}, {25, 185}, {124,
220}, {119, 215}, {118, 214}, {28, 188}, {84, 244}, {97, 193}, {18, 179}, {105,
200}, {5, 167}, {17, 179}, {26, 185}, {75, 232}, {24, 188}, {121, 221}, {119,
211}, {76, 232}, {102, 194}, {81, 244}, {118, 211}, {88, 253}, {96, 197}, {1,
167}, {110, 200}, {48, 150}, {9, 175}, {98, 197}, {17, 185}, {27, 179}, {16,
185}, {127, 214}, {104, 193}, {29, 180}, {26, 179}, {66, 232}, {118, 220}, {104,
194}, {86, 252}, {67, 232}, {118, 221}, {106, 193}, {105, 197}, {127, 211},
{101, 200}, {112, 221}, {1, 175}, {120, 214}, {107, 197}, {56, 150}, {90, 244},
{19, 188}, {120, 215}, {115, 220}, {57, 150}, {82, 253}, {83, 252}, {20, 164},
{109, 221}, {106, 218}, {30, 174}, {70, 246}, {31, 174}, {109, 220}, {77, 252},
{22, 164}, {108, 222}, {79, 253}, {4, 183}, {3, 183}, {73, 253}, {74, 252}, {65,
246}, {71, 255}, {29, 164}, {103, 222}, {47, 150}, {79, 246}, {98, 216}, {114,
200}, {31, 164}, {34, 153}, {97, 218}, {99, 216}, {74, 246}, {102, 218}, {88,
229}, {99, 222}, {64, 255}, {75, 244}, {90, 229}, {25, 217}, {125, 189}, {122,
186}, {106, 170}, {45, 237}, {16, 209}, {62, 255}, {45, 236}, {35, 226}, {19,
210}, {89, 152}, {92, 157}, {95, 158}, {98, 163}, {34, 224}, {114, 176}, {107,
169}, {41, 235}, {14, 205}, {126, 189}, {115, 176}, {39, 228}, {18, 209}, {80,
147}, {46, 234}, {110, 170}, {108, 168}, {39, 226}, {109, 168}, {41, 236}, {11,
205}, {38, 224}, {91, 157}, {13, 202}, {21, 210}, {100, 163}, {5, 205}, {107,
163}, {55, 255}, {37, 237}, {36, 236}, {25, 209}, {80, 152}, {86, 158}, {36,
237}, {113, 184}, {45, 228}, {87, 158}, {92, 149}, {27, 209}, {116, 190}, {88,
146}, {32, 235}, {113, 186}, {43, 224}, {89, 146}, {32, 236}, {80, 156}, {100,
168}, {7, 202}, {119, 186}, {117, 184}, {35, 238}, {4, 202}, {44, 226}, {37,
235}, {23, 217}, {83, 157}, {86, 152}, {103, 169}, {2, 205}, {82, 157}, {101,
170}, {54, 230}, {124, 172}, {104, 184}, {67, 147}, {22, 199}, {111, 190}, {54,
231}, {52, 230}, {54, 228}, {53, 231}, {57, 234}, {48, 228}, {110, 186}, {108,
184}, {71, 147}, {79, 155}, {77, 152}, {121, 172}, {107, 190}, {78, 155}, {96,
182}, {8, 223}, {75, 156}, {10, 210}, {63, 231}, {31, 199}, {102, 190}, {103,
191}, {62, 231}, {115, 170}, {112, 169}, {105, 176}, {63, 230}, {16, 202}, {106,
176}, {48, 234}, {36, 254}, {101, 191}, {61, 230}, {71, 156}, {3, 223}, {112,
172}, {27, 199}, {55, 234}, {127, 162}, {117, 168}, {116, 169}, {70, 155}, {12,
210}, {66, 156}, {69, 155}, {76, 147}, {115, 172}, {1, 225}, {41, 201}, {91,
187}, {14, 239}, {65, 160}, {46, 207}, {87, 182}, {94, 191}, {13, 239}, {23,
245}, {29, 254}, {40, 203}, {39, 196}, {36, 199}, {67, 160}, {85, 182}, {92,
191}, {13, 233}, {49, 213}, {43, 207}, {27, 254}, {122, 159}, {46, 203}, {44,
201}, {7, 225}, {121, 159}, {64, 166}, {51, 213}, {17, 247}, {15, 233}, {93,
187}, {112, 151}, {94, 182}, {60, 213}, {82, 187}, {20, 254}, {49, 219}, {37,
207}, {10, 225}, {113, 154}, {17, 250}, {70, 173}, {24, 245}, {37, 203}, {42,
196}, {72, 166}, {52, 219}, {66, 173}, {58, 213}, {73, 166}, {84, 187}, {43,
219}, {98, 146}, {101, 149}, {103, 151}, {16, 225}, {61, 204}, {28, 237}, {24,
233}, {68, 181}, {102, 151}, {3, 241}, {104, 154}, {28, 238}, {8, 250}, {40,
219}, {97, 146}, {7, 243}, {58, 206}, {48, 196}, {26, 238}, {14, 250}, {2, 247},
{59, 206}, {6, 243}, {99, 149}, {6, 241}, {109, 154}, {66, 181}, {59, 204}, {51,
196}, {28, 235}, {81, 166}, {23, 239}, {111, 151}, {91, 163}, {2, 251}, {108,
149}, {32, 217}, {22, 239}, {15, 245}, {58, 192}, {49, 203}, {14, 245}, {52,
207}, {50, 201}, {34, 217}, {11, 247}, {53, 201}, {50, 206}, {30, 226}, {6,
251}, {62, 195}, {29, 224}, {19, 238}, {12, 241}, {15, 241}, {96, 158}, {100,
154}, {5, 250}, {63, 192}, {60, 195}, {49, 206}, {22, 233}, {8, 247}, {4, 260},
{5, 262}, {1, 260}, {6, 259}, {19, 283}, {13, 260}, {9, 259}, {15, 259}, {20,
280}, {21, 280}, {10, 260}, {9, 262}, {31, 272}, {20, 283}, {11, 283}, {2, 275},
{24, 265}, {18, 259}, {10, 283}, {11, 280}, {26, 265}, {7, 275}, {12, 280}, {4,
273}, {30, 264}, {8, 273}, {21, 264}, {23, 264}, {60, 284}, {50, 278}, {61,
281}, {62, 281}, {32, 264}, {33, 265}, {35, 265}, {53, 287}, {54, 285}, {63,
276}, {55, 284}, {53, 281}, {56, 276}, {52, 281}, {51, 285}, {38, 278}, {47,
287}, {45, 285}, {35, 272}, {44, 287}, {42, 285}, {40, 272}, {38, 287}, {47,
278}, {44, 272}, {41, 278}, {78, 270}, {65, 256}, {77, 271}, {69, 256}, {75,
270}, {79, 266}, {76, 266}, {72, 271}, {89, 286}, {74, 256}, {68, 271}, {83,
286}, {78, 256}, {80, 286}, {78, 257}, {81, 257}, {91, 267}, {88, 266}, {74,
286}, {65, 276}, {87, 257}, {69, 284}, {87, 270}, {84, 270}, {90, 257}, {64,
284}, {72, 276}, {81, 271}, {85, 266}, {114, 274}, {122, 282}, {105, 267}, {125,
282}, {123, 274}, {124, 277}, {120, 274}, {125, 279}, {96, 267}, {126, 277},
{124, 279}, {113, 282}, {110, 258}, {116, 282}, {100, 267}, {117, 263}, {85,
288}, {121, 268}, {119, 258}, {114, 263}, {86, 288}, {116, 258}, {123, 268},
{126, 263}, {123, 263}, {111, 274}, {94, 288}, {95, 288}, {125, 258}, {132,
261}, {134, 261}, {137, 269}, {139, 269}, {132, 268}, {141, 261}, {140, 262},
{143, 261}, {128, 269}, {130, 268}, {130, 269}, {133, 277}, {134, 279}, {133,
279}, {135, 277}, {144, 262}, {137, 275}, {139, 273}, {142, 275}, {143, 273}
}>;
(II) A more general form is to represent the graph as the orbit of {129, 148}
under the group generated by the following permutations:
a: (1, 2, 9, 8)(3, 4, 7, 6)(10, 137, 18, 143)(11, 144, 17, 136)(12, 139, 16,
141)(13, 142, 15, 138)(14, 140)(19, 128, 27, 134)(20, 135, 26, 127)(21, 130, 25,
132)(22, 133, 24, 129)(23, 131)(28, 119, 36, 125)(29, 126, 35, 118)(30, 121, 34,
123)(31, 124, 33, 120)(32, 122)(37, 110, 45, 116)(38, 117, 44, 109)(39, 112, 43,
114)(40, 115, 42, 111)(41, 113)(46, 101, 54, 107)(47, 108, 53, 100)(48, 103, 52,
105)(49, 106, 51, 102)(50, 104)(55, 92, 63, 98)(56, 99, 62, 91)(57, 94, 61,
96)(58, 97, 60, 93)(59, 95)(64, 83, 72, 89)(65, 90, 71, 82)(66, 85, 70, 87)(67,
88, 69, 84)(68, 86)(73, 74, 81, 80)(75, 76, 79, 78)(145, 273, 225, 251)(146,
284, 208, 192)(147, 253, 256, 244)(148, 239, 178, 245)(149, 231, 163, 165)(150,
222, 281, 267)(151, 219, 176, 196)(152, 212, 252, 271)(153, 268)(154, 278, 184,
201)(155, 270, 232, 266)(156, 198, 246, 257)(157, 276, 216, 255)(158, 181, 288,
204)(159, 217, 249, 264)(160, 229, 195, 187)(161, 274, 174, 172)(162, 280, 177,
185)(164, 277, 265, 214)(166, 286)(167, 205, 262, 250)(168, 287)(169, 207, 200,
228)(170, 285, 190, 203)(171, 194, 206, 193)(173, 182)(175, 247)(179, 227, 283,
242)(180, 248, 272, 220)(183, 202, 243, 241)(186, 236, 282, 235)(188, 215, 199,
279)(189, 238, 211, 254)(191, 230, 197, 234)(209, 261, 210, 269)(213, 218)(221,
224, 263, 226)(223, 260, 275, 259)(233, 240)(237, 258) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 10)(2, 14)(3, 18)(4, 16)(5, 11)(6, 15)(7, 13)(8, 17)(9, 12)(19, 136)(20,
140)(21, 144)(22, 142)(23, 137)(24, 141)(25, 139)(26, 143)(27, 138)(28, 127)(29,
131)(30, 135)(31, 133)(32, 128)(33, 132)(34, 130)(35, 134)(36, 129)(37, 118)(38,
122)(39, 126)(40, 124)(41, 119)(42, 123)(43, 121)(44, 125)(45, 120)(46, 109)(47,
113)(48, 117)(49, 115)(50, 110)(51, 114)(52, 112)(53, 116)(54, 111)(55, 100)(56,
104)(57, 108)(58, 106)(59, 101)(60, 105)(61, 103)(62, 107)(63, 102)(64, 91)(65,
95)(66, 99)(67, 97)(68, 92)(69, 96)(70, 94)(71, 98)(72, 93)(73, 82)(74, 86)(75,
90)(76, 88)(77, 83)(78, 87)(79, 85)(80, 89)(81, 84)(146, 147)(148, 254)(149,
181)(150, 184)(151, 230)(152, 286)(153, 177)(154, 165)(155, 182)(156, 216)(157,
212)(158, 256)(159, 224)(160, 193)(161, 268)(162, 188)(163, 255)(164, 178)(166,
187)(167, 283)(168, 234)(169, 281)(170, 206)(171, 200)(172, 219)(173, 222)(174,
277)(175, 210)(176, 213)(179, 223)(180, 249)(183, 209)(185, 273)(186, 278)(189,
226)(190, 231)(191, 204)(192, 218)(194, 276)(195, 197)(196, 263)(198, 253)(199,
240)(201, 258)(203, 220)(207, 221)(208, 271)(211, 235)(214, 237)(215, 236)(217,
269)(225, 260)(227, 238)(228, 248)(229, 232)(233, 243)(239, 275)(241, 259)(242,
264)(245, 251)(246, 288)(247, 250)(257, 270)(261, 265)(262, 280)(267, 284)(272,
279)(274, 285)(282, 287)
c: (2, 8, 3, 6)(4, 9, 7, 5)(10, 136)(11, 143, 12, 141)(13, 144, 16, 140)(14,
139, 18, 142)(15, 137, 17, 138)(19, 127)(20, 134, 21, 132)(22, 135, 25, 131)(23,
130, 27, 133)(24, 128, 26, 129)(28, 118)(29, 125, 30, 123)(31, 126, 34, 122)(32,
121, 36, 124)(33, 119, 35, 120)(37, 109)(38, 116, 39, 114)(40, 117, 43, 113)(41,
112, 45, 115)(42, 110, 44, 111)(46, 100)(47, 107, 48, 105)(49, 108, 52, 104)(50,
103, 54, 106)(51, 101, 53, 102)(55, 91)(56, 98, 57, 96)(58, 99, 61, 95)(59, 94,
63, 97)(60, 92, 62, 93)(64, 82)(65, 89, 66, 87)(67, 90, 70, 86)(68, 85, 72,
88)(69, 83, 71, 84)(74, 80, 75, 78)(76, 81, 79, 77)(145, 243, 205, 273)(146,
181, 182, 276)(147, 244, 155, 252)(148, 233, 242, 185)(149, 281, 194, 213)(150,
197)(151, 285, 170, 201)(152, 232, 257, 246)(153, 249, 164, 189)(154, 203, 168,
207)(156, 270, 256, 286)(157, 255, 187, 284)(158, 160, 216, 173)(159, 199, 277,
217)(161, 186, 272, 248)(162, 283, 227, 210)(163, 234, 267, 165)(166, 253, 212,
198)(167, 260, 175, 225)(169, 228, 176, 278)(171, 191, 231, 218)(172, 236)(174,
263, 224, 282)(177, 209, 178, 239)(179, 240, 245, 269)(180, 258, 226, 274)(183,
259, 275, 250)(184, 219)(188, 211, 238, 214)(190, 196, 200, 287)(192, 229, 204,
288)(193, 206, 222, 230)(195, 208)(202, 262)(215, 265)(220, 235, 221, 237)(223,
241, 251, 247)(254, 279, 264, 268)(261, 280)(266, 271)
d: (2, 3)(4, 7)(5, 9)(6, 8)(11, 12)(13, 16)(14, 18)(15, 17)(20, 21)(22, 25)(23,
27)(24, 26)(29, 30)(31, 34)(32, 36)(33, 35)(38, 39)(40, 43)(41, 45)(42, 44)(47,
48)(49, 52)(50, 54)(51, 53)(56, 57)(58, 61)(59, 63)(60, 62)(65, 66)(67, 70)(68,
72)(69, 71)(74, 75)(76, 79)(77, 81)(78, 80)(83, 84)(85, 88)(86, 90)(87, 89)(92,
93)(94, 97)(95, 99)(96, 98)(101, 102)(103, 106)(104, 108)(105, 107)(110,
111)(112, 115)(113, 117)(114, 116)(119, 120)(121, 124)(122, 126)(123, 125)(128,
129)(130, 133)(131, 135)(132, 134)(137, 138)(139, 142)(140, 144)(141, 143)(145,
205)(146, 182)(147, 155)(148, 242)(149, 194)(151, 170)(152, 257)(153, 164)(154,
168)(156, 256)(157, 187)(158, 216)(159, 277)(160, 173)(161, 272)(162, 227)(163,
267)(165, 234)(166, 212)(167, 175)(169, 176)(171, 231)(174, 224)(177, 178)(179,
245)(180, 226)(181, 276)(183, 275)(185, 233)(186, 248)(188, 238)(189, 249)(190,
200)(191, 218)(192, 204)(193, 222)(196, 287)(198, 253)(199, 217)(201, 285)(203,
207)(206, 230)(209, 239)(210, 283)(211, 214)(213, 281)(220, 221)(223, 251)(225,
260)(228, 278)(229, 288)(232, 246)(235, 237)(240, 269)(241, 247)(243, 273)(244,
252)(250, 259)(254, 264)(255, 284)(258, 274)(263, 282)(268, 279)(270, 286)
C4[ 288, 231 ]
288
-1 167 225 260 175
-2 275 247 205 251
-3 145 223 183 241
-4 202 183 260 273
-5 167 205 250 262
-6 243 259 251 241
-7 275 243 202 225
-8 223 247 250 273
-9 145 259 262 175
-10 210 225 260 283
-11 247 280 205 283
-12 210 145 280 241
-13 233 202 260 239
-14 245 205 239 250
-15 233 245 259 241
-16 209 202 225 185
-17 179 247 250 185
-18 209 145 179 259
-19 188 210 238 283
-20 254 280 283 164
-21 264 210 280 153
-22 199 233 239 164
-23 264 245 217 239
-24 188 265 233 245
-25 209 217 185 153
-26 265 179 238 185
-27 209 199 254 179
-28 188 235 237 238
-29 254 180 224 164
-30 264 226 174 153
-31 199 272 174 164
-32 264 235 236 217
-33 188 265 180 161
-34 224 161 217 153
-35 265 226 238 272
-36 199 254 236 237
-37 235 203 237 207
-38 287 278 180 224
-39 226 228 174 196
-40 203 272 174 219
-41 201 278 235 236
-42 180 161 196 285
-43 224 161 207 219
-44 287 201 226 272
-45 236 237 228 285
-46 165 234 203 207
-47 165 287 278 150
-48 234 150 228 196
-49 213 203 206 219
-50 201 278 171 206
-51 213 171 196 285
-52 281 207 219 230
-53 231 287 201 281
-54 231 228 230 285
-55 165 255 234 284
-56 165 276 160 150
-57 234 181 150 173
-58 213 192 160 206
-59 181 171 204 206
-60 213 171 195 284
-61 204 281 173 230
-62 231 255 281 195
-63 231 276 192 230
-64 166 255 212 284
-65 276 256 246 160
-66 232 156 181 173
-67 232 147 192 160
-68 212 181 204 271
-69 155 256 195 284
-70 155 246 204 173
-71 156 255 147 195
-72 166 276 192 271
-73 198 253 166 212
-74 286 256 246 252
-75 232 156 244 270
-76 198 232 266 147
-77 212 271 152 252
-78 155 256 257 270
-79 253 155 266 246
-80 286 156 147 152
-81 166 244 257 271
-82 187 198 253 157
-83 286 157 208 252
-84 187 244 270 208
-85 198 266 288 182
-86 288 158 152 252
-87 158 257 182 270
-88 253 266 146 229
-89 286 146 216 152
-90 244 257 216 229
-91 187 157 267 163
-92 157 191 149 208
-93 187 194 218 208
-94 222 288 191 182
-95 288 158 193 194
-96 267 158 182 197
-97 146 193 218 229
-98 146 216 163 197
-99 222 149 216 229
-100 154 168 267 163
-101 200 191 170 149
-102 190 194 151 218
-103 222 169 191 151
-104 154 193 194 184
-105 176 200 267 197
-106 176 170 193 218
-107 190 169 163 197
-108 222 168 149 184
-109 154 220 221 168
-110 200 170 258 186
-111 190 248 151 274
-112 221 169 172 151
-113 154 282 184 186
-114 176 200 263 274
-115 176 220 170 172
-116 190 169 258 282
-117 168 248 184 263
-118 220 221 211 214
-119 211 258 215 186
-120 214 215 248 274
-121 221 268 159 172
-122 159 249 282 186
-123 268 249 263 274
-124 220 277 279 172
-125 189 279 258 282
-126 189 277 248 263
-127 211 214 227 162
-128 242 211 269 215
-129 148 214 215 240
-130 177 268 159 269
-131 178 148 159 249
-132 268 249 162 261
-133 178 277 279 240
-134 189 279 227 261
-135 242 177 189 277
-136 167 227 162 175
-137 242 275 269 251
-138 223 148 183 240
-139 177 269 183 273
-140 167 178 148 262
-141 243 162 261 251
-142 275 243 178 240
-143 223 227 261 273
-144 242 177 262 175
-145 12 3 18 9
-146 88 89 97 98
-147 67 80 71 76
-148 138 129 140 131
-149 99 101 92 108
-150 56 57 47 48
-151 111 112 102 103
-152 77 89 80 86
-153 34 25 30 21
-154 100 113 104 109
-155 78 79 69 70
-156 66 80 71 75
-157 91 92 82 83
-158 95 96 86 87
-159 121 122 130 131
-160 56 67 58 65
-161 33 34 42 43
-162 132 136 127 141
-163 100 91 107 98
-164 22 29 20 31
-165 55 56 46 47
-166 81 72 73 64
-167 1 136 5 140
-168 100 117 108 109
-169 112 103 116 107
-170 110 101 115 106
-171 59 60 50 51
-172 121 112 124 115
-173 66 57 70 61
-174 39 40 30 31
-175 1 144 136 9
-176 114 115 105 106
-177 144 135 139 130
-178 133 140 131 142
-179 26 27 17 18
-180 33 38 29 42
-181 66 57 68 59
-182 94 85 96 87
-183 3 4 138 139
-184 113 104 117 108
-185 25 26 16 17
-186 110 122 113 119
-187 91 82 93 84
-188 33 24 28 19
-189 134 135 125 126
-190 111 102 116 107
-191 101 92 103 94
-192 67 58 72 63
-193 104 95 106 97
-194 102 93 104 95
-195 69 60 71 62
-196 48 39 51 42
-197 105 96 107 98
-198 82 73 85 76
-199 22 36 27 31
-200 110 101 114 105
-201 44 50 41 53
-202 13 4 16 7
-203 46 37 49 40
-204 68 59 70 61
-205 11 2 14 5
-206 58 59 49 50
-207 46 37 52 43
-208 92 93 83 84
-209 25 16 27 18
-210 12 19 10 21
-211 127 128 118 119
-212 77 68 73 64
-213 58 49 60 51
-214 127 118 129 120
-215 128 129 119 120
-216 99 89 90 98
-217 23 34 25 32
-218 102 93 106 97
-219 49 40 52 43
-220 124 115 118 109
-221 121 112 118 109
-222 99 103 94 108
-223 143 3 138 8
-224 34 38 29 43
-225 1 16 7 10
-226 44 35 39 30
-227 143 134 136 127
-228 45 48 39 54
-229 88 99 90 97
-230 61 52 63 54
-231 62 63 53 54
-232 66 67 75 76
-233 22 13 24 15
-234 55 46 57 48
-235 37 28 41 32
-236 45 36 41 32
-237 45 36 37 28
-238 35 26 28 19
-239 22 23 13 14
-240 133 138 129 142
-241 12 3 15 6
-242 144 135 137 128
-243 6 7 141 142
-244 90 81 84 75
-245 23 24 14 15
-246 79 70 74 65
-247 11 2 17 8
-248 111 126 117 120
-249 132 122 123 131
-250 14 5 17 8
-251 2 137 6 141
-252 77 83 74 86
-253 88 79 82 73
-254 36 27 29 20
-255 55 71 62 64
-256 78 69 74 65
-257 78 90 81 87
-258 110 125 116 119
-259 15 6 18 9
-260 1 13 4 10
-261 132 143 134 141
-262 144 5 140 9
-263 123 114 126 117
-264 23 30 21 32
-265 33 24 35 26
-266 88 79 85 76
-267 100 91 105 96
-268 121 132 123 130
-269 137 128 139 130
-270 78 84 75 87
-271 77 68 81 72
-272 44 35 40 31
-273 143 4 139 8
-274 111 123 114 120
-275 2 137 7 142
-276 56 72 63 65
-277 133 124 135 126
-278 47 38 50 41
-279 133 134 124 125
-280 11 12 20 21
-281 61 62 52 53
-282 122 113 125 116
-283 11 19 20 10
-284 55 69 60 64
-285 45 51 42 54
-286 89 80 83 74
-287 44 47 38 53
-288 94 95 85 86
0