[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 288, 235 ] =
BGCG(UG(ATD[144,3]);K1;2).
(I) Following is a form readable by MAGMA:
g:=Graph<288|{ {138, 154}, {143, 159}, {142, 158}, {142, 155}, {138, 147}, {132,
159}, {137, 149}, {138, 149}, {142, 170}, {143, 170}, {144, 185}, {140, 167},
{132, 171}, {128, 176}, {131, 182}, {137, 188}, {133, 190}, {134, 185}, {143,
176}, {136, 183}, {135, 199}, {128, 195}, {130, 199}, {136, 206}, {142, 199},
{128, 202}, {141, 192}, {129, 207}, {134, 212}, {132, 215}, {130, 214}, {133,
209}, {131, 215}, {139, 211}, {128, 217}, {135, 219}, {144, 204}, {134, 217},
{139, 235}, {130, 224}, {133, 225}, {132, 225}, {144, 246}, {140, 230}, {136,
230}, {131, 236}, {140, 227}, {130, 246}, {143, 244}, {129, 253}, {137, 245},
{141, 240}, {134, 248}, {74, 202}, {113, 241}, {81, 209}, {21, 148}, {110, 239},
{65, 192}, {54, 183}, {16, 146}, {70, 196}, {45, 175}, {27, 153}, {74, 200},
{114, 241}, {36, 160}, {58, 190}, {71, 195}, {79, 203}, {25, 156}, {117, 240},
{109, 232}, {72, 205}, {79, 202}, {96, 229}, {52, 178}, {35, 164}, {120, 255},
{73, 206}, {87, 223}, {70, 207}, {118, 255}, {95, 214}, {20, 158}, {114, 248},
{38, 172}, {29, 151}, {42, 161}, {118, 253}, {112, 251}, {109, 230}, {106, 225},
{70, 205}, {31, 147}, {121, 245}, {58, 182}, {54, 186}, {92, 208}, {50, 191},
{122, 247}, {105, 228}, {84, 217}, {89, 212}, {40, 166}, {60, 179}, {63, 175},
{125, 237}, {108, 252}, {41, 184}, {127, 238}, {104, 249}, {64, 209}, {47, 190},
{94, 207}, {10, 152}, {113, 227}, {64, 210}, {52, 166}, {89, 203}, {120, 235},
{32, 180}, {96, 244}, {97, 245}, {10, 156}, {123, 237}, {120, 238}, {109, 251},
{107, 253}, {37, 179}, {58, 173}, {123, 236}, {105, 254}, {56, 160}, {58, 162},
{90, 194}, {5, 156}, {48, 169}, {40, 177}, {36, 189}, {80, 201}, {85, 207},
{108, 246}, {51, 168}, {124, 231}, {64, 220}, {88, 196}, {51, 174}, {127, 226},
{117, 232}, {84, 201}, {88, 197}, {92, 193}, {35, 189}, {93, 195}, {4, 155},
{68, 219}, {66, 221}, {43, 180}, {90, 197}, {56, 152}, {114, 210}, {100, 196},
{87, 246}, {82, 240}, {121, 219}, {85, 247}, {98, 192}, {16, 179}, {124, 223},
{29, 190}, {93, 254}, {21, 177}, {49, 148}, {78, 235}, {3, 165}, {31, 185}, {50,
149}, {93, 250}, {30, 182}, {59, 147}, {77, 229}, {81, 249}, {22, 191}, {126,
215}, {115, 216}, {126, 213}, {13, 161}, {116, 216}, {62, 146}, {30, 178}, {17,
189}, {95, 243}, {26, 183}, {59, 150}, {22, 184}, {119, 217}, {57, 151}, {83,
253}, {86, 248}, {13, 162}, {105, 198}, {103, 200}, {86, 230}, {115, 195}, {97,
209}, {98, 210}, {35, 146}, {117, 199}, {122, 200}, {29, 174}, {111, 220}, {76,
255}, {91, 232}, {45, 153}, {72, 252}, {124, 201}, {72, 254}, {104, 222}, {7,
176}, {43, 156}, {30, 169}, {1, 185}, {26, 162}, {85, 237}, {23, 174}, {39,
158}, {15, 181}, {45, 151}, {66, 249}, {104, 211}, {73, 242}, {28, 160}, {118,
202}, {113, 205}, {108, 208}, {36, 153}, {127, 194}, {42, 151}, {89, 228}, {24,
166}, {17, 174}, {19, 172}, {76, 243}, {83, 236}, {14, 206}, {96, 160}, {3,
194}, {122, 187}, {59, 250}, {39, 229}, {46, 236}, {87, 149}, {15, 204}, {42,
233}, {40, 235}, {25, 221}, {63, 251}, {99, 167}, {26, 223}, {119, 178}, {112,
181}, {7, 193}, {110, 168}, {107, 173}, {99, 165}, {18, 213}, {125, 186}, {6,
206}, {29, 213}, {18, 218}, {33, 232}, {49, 248}, {46, 231}, {97, 168}, {98,
171}, {8, 194}, {7, 204}, {13, 198}, {86, 157}, {44, 224}, {95, 147}, {12, 193},
{60, 241}, {34, 239}, {92, 145}, {100, 169}, {44, 226}, {61, 243}, {86, 152},
{37, 234}, {51, 252}, {89, 150}, {99, 172}, {10, 218}, {125, 173}, {34, 242},
{28, 204}, {32, 241}, {114, 163}, {62, 239}, {61, 239}, {67, 145}, {75, 153},
{13, 222}, {116, 167}, {105, 186}, {2, 214}, {14, 218}, {38, 243}, {63, 234},
{55, 226}, {19, 197}, {102, 176}, {4, 211}, {76, 148}, {41, 240}, {101, 188},
{98, 187}, {9, 211}, {5, 222}, {103, 188}, {62, 229}, {37, 254}, {66, 158},
{102, 186}, {71, 155}, {100, 184}, {33, 252}, {104, 181}, {102, 187}, {60, 225},
{48, 237}, {116, 170}, {8, 215}, {118, 169}, {23, 247}, {122, 154}, {113, 145},
{124, 157}, {1, 227}, {41, 203}, {72, 170}, {83, 177}, {70, 165}, {123, 152},
{71, 164}, {82, 177}, {48, 212}, {56, 220}, {79, 171}, {55, 210}, {81, 180},
{32, 198}, {125, 155}, {57, 223}, {50, 212}, {48, 214}, {47, 201}, {90, 188},
{21, 242}, {120, 159}, {69, 162}, {68, 163}, {66, 165}, {65, 166}, {63, 216},
{53, 221}, {126, 150}, {94, 182}, {46, 196}, {112, 154}, {52, 222}, {77, 167},
{2, 233}, {17, 250}, {5, 238}, {94, 181}, {2, 238}, {67, 175}, {27, 247}, {14,
226}, {12, 224}, {84, 184}, {4, 233}, {65, 172}, {22, 251}, {7, 234}, {73, 164},
{90, 183}, {94, 179}, {4, 234}, {115, 157}, {54, 216}, {53, 219}, {50, 220},
{23, 249}, {10, 228}, {78, 161}, {37, 213}, {53, 197}, {88, 168}, {97, 145},
{24, 233}, {57, 200}, {80, 161}, {34, 208}, {77, 191}, {12, 255}, {62, 205},
{53, 198}, {23, 228}, {80, 163}, {14, 250}, {41, 221}, {1, 244}, {74, 191}, {88,
173}, {3, 244}, {20, 227}, {74, 189}, {76, 187}, {92, 171}, {57, 193}, {103,
159}, {101, 157}, {25, 224}, {99, 154}, {8, 242}, {108, 150}, {28, 231}, {111,
148}, {59, 192}, {33, 218}, {79, 180}, {95, 164}, {82, 175}, {111, 146}, {11,
245}, {46, 208}, {25, 231}, {93, 163}, {52, 203}, {77, 178}, {2, 258}, {27,
283}, {9, 265}, {9, 267}, {1, 258}, {36, 288}, {8, 269}, {21, 272}, {6, 256},
{18, 276}, {18, 277}, {24, 287}, {6, 270}, {12, 260}, {9, 257}, {20, 286}, {11,
256}, {43, 288}, {30, 277}, {27, 272}, {24, 276}, {26, 278}, {11, 261}, {17,
257}, {20, 260}, {15, 283}, {19, 262}, {28, 265}, {19, 261}, {3, 283}, {31,
263}, {15, 278}, {31, 262}, {16, 265}, {5, 280}, {16, 269}, {6, 283}, {11, 276},
{22, 265}, {42, 266}, {61, 285}, {47, 271}, {47, 269}, {60, 281}, {39, 257},
{54, 272}, {32, 263}, {55, 272}, {35, 266}, {38, 269}, {55, 284}, {49, 286},
{38, 277}, {34, 278}, {39, 275}, {43, 284}, {56, 256}, {44, 278}, {33, 285},
{45, 273}, {49, 271}, {61, 259}, {40, 279}, {51, 268}, {44, 275}, {64, 257},
{91, 282}, {69, 262}, {84, 273}, {69, 259}, {78, 264}, {75, 268}, {71, 271},
{65, 267}, {91, 273}, {87, 282}, {75, 261}, {115, 288}, {69, 273}, {78, 282},
{68, 274}, {73, 287}, {82, 260}, {68, 275}, {80, 267}, {91, 256}, {75, 279},
{67, 285}, {67, 284}, {81, 270}, {85, 266}, {102, 262}, {110, 271}, {116, 279},
{123, 287}, {119, 274}, {111, 264}, {117, 287}, {103, 268}, {107, 263}, {121,
264}, {119, 261}, {83, 288}, {112, 259}, {109, 281}, {127, 267}, {107, 286},
{106, 284}, {101, 274}, {96, 280}, {100, 285}, {110, 274}, {126, 258}, {101,
280}, {121, 260}, {106, 279}, {106, 277}, {138, 270}, {129, 264}, {144, 281},
{135, 268}, {137, 258}, {135, 266}, {141, 259}, {129, 270}, {136, 263}, {139,
281}, {139, 286}, {140, 276}, {131, 280}, {141, 275}, {133, 282} }>;
(II) A more general form is to represent the graph as the orbit of {138, 154}
under the group generated by the following permutations:
a: (1, 2)(3, 48)(4, 20)(5, 31)(6, 30)(7, 12)(8, 50)(9, 49)(10, 19)(11, 18)(13,
32)(14, 119)(15, 118)(16, 111)(17, 110)(21, 22)(23, 88)(24, 140)(25, 102)(26,
79)(27, 100)(28, 76)(29, 97)(33, 75)(34, 74)(35, 62)(36, 61)(37, 121)(38,
56)(39, 71)(40, 109)(41, 54)(42, 113)(43, 69)(44, 128)(45, 67)(46, 122)(47,
64)(52, 136)(53, 105)(55, 84)(57, 92)(58, 81)(59, 101)(60, 78)(63, 82)(65,
86)(66, 125)(68, 93)(70, 85)(72, 135)(73, 77)(80, 114)(83, 112)(87, 132)(89,
90)(91, 106)(94, 129)(95, 96)(98, 124)(99, 123)(103, 108)(104, 107)(115,
141)(116, 117)(120, 144)(126, 137)(127, 134)(130, 143)(131, 138)(145, 151)(147,
280)(148, 265)(149, 215)(150, 188)(152, 172)(153, 285)(154, 236)(155, 158)(156,
262)(157, 192)(159, 246)(160, 243)(161, 241)(162, 180)(164, 229)(165, 237)(166,
230)(167, 287)(168, 174)(169, 283)(170, 199)(171, 223)(173, 249)(176, 224)(177,
251)(178, 206)(179, 264)(181, 253)(182, 270)(183, 203)(184, 272)(185, 238)(186,
221)(187, 231)(189, 239)(190, 209)(191, 242)(194, 212)(195, 275)(196, 247)(197,
228)(200, 208)(201, 210)(202, 278)(204, 255)(205, 266)(211, 286)(213, 245)(214,
244)(216, 240)(217, 226)(218, 261)(219, 254)(220, 269)(222, 263)(225, 282)(227,
233)(232, 279)(234, 260)(235, 281)(248, 267)(250, 274)(252, 268)(256, 277)(257,
271)(259, 288)(273, 284) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 126)(4, 37)(5, 131)(8, 127)(9, 16)(10, 123)(12, 92)(13, 58)(14, 73)(17,
35)(18, 24)(20, 113)(21, 55)(23, 85)(25, 46)(29, 42)(30, 52)(32, 107)(33,
117)(34, 44)(38, 65)(39, 62)(40, 106)(41, 100)(43, 83)(47, 80)(48, 89)(49,
114)(51, 135)(53, 88)(59, 95)(60, 139)(61, 141)(64, 111)(66, 70)(67, 82)(68,
110)(71, 93)(72, 142)(76, 98)(78, 133)(79, 118)(81, 129)(94, 104)(97, 121)(105,
125)(108, 130)(120, 132)(145, 260)(146, 257)(148, 210)(150, 214)(155, 254)(156,
236)(158, 205)(161, 190)(163, 271)(164, 250)(166, 277)(168, 219)(169, 203)(171,
255)(173, 198)(174, 266)(177, 284)(179, 211)(180, 253)(182, 222)(192, 243)(196,
221)(199, 252)(207, 249)(208, 224)(209, 264)(213, 233)(215, 238)(218, 287)(225,
235)(226, 242)(228, 237)(239, 275)(240, 285)(241, 286)(267, 269)
c: (2, 113)(3, 96)(4, 92)(5, 70)(6, 56)(8, 39)(9, 34)(10, 129)(12, 37)(13,
100)(14, 111)(15, 28)(16, 44)(17, 21)(18, 121)(19, 119)(20, 126)(22, 26)(23,
83)(24, 97)(25, 94)(27, 36)(29, 82)(30, 53)(31, 134)(32, 48)(33, 78)(35, 55)(38,
68)(40, 51)(41, 58)(42, 67)(43, 85)(46, 104)(47, 141)(49, 59)(50, 136)(52,
88)(54, 74)(57, 63)(60, 130)(61, 80)(62, 127)(64, 73)(65, 110)(66, 131)(69,
84)(71, 98)(72, 120)(76, 93)(77, 90)(79, 125)(81, 123)(86, 138)(87, 109)(89,
107)(95, 114)(99, 101)(102, 128)(103, 116)(105, 118)(106, 135)(108, 139)(112,
124)(115, 122)(117, 133)(132, 142)(137, 140)(145, 233)(146, 226)(147, 248)(148,
250)(149, 230)(150, 286)(151, 175)(152, 270)(154, 157)(155, 171)(156, 207)(158,
215)(159, 170)(160, 283)(161, 285)(162, 184)(163, 243)(164, 210)(165, 280)(166,
168)(167, 188)(169, 198)(172, 274)(173, 203)(174, 177)(178, 197)(179, 224)(180,
237)(181, 231)(182, 221)(183, 191)(186, 202)(187, 195)(189, 272)(190, 240)(192,
271)(193, 234)(194, 229)(196, 222)(199, 225)(200, 216)(201, 259)(205, 238)(206,
220)(208, 211)(209, 287)(212, 263)(213, 260)(214, 241)(217, 262)(218, 264)(219,
277)(223, 251)(227, 258)(228, 253)(232, 282)(235, 252)(236, 249)(239, 267)(242,
257)(245, 276)(246, 281)(247, 288)(254, 255)(265, 278)(266, 284)(268, 279)(269,
275)
d: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(18, 28)(20,
31)(22, 33)(23, 35)(25, 38)(26, 40)(27, 42)(29, 36)(30, 46)(32, 49)(34, 52)(37,
56)(39, 59)(41, 61)(43, 47)(44, 65)(48, 70)(50, 72)(51, 74)(53, 76)(54, 78)(55,
80)(57, 75)(58, 83)(60, 86)(62, 89)(63, 91)(64, 93)(66, 95)(67, 84)(68, 98)(69,
82)(71, 81)(73, 104)(77, 108)(79, 110)(87, 116)(88, 118)(90, 120)(92, 119)(94,
123)(96, 126)(97, 128)(99, 130)(101, 132)(102, 121)(105, 111)(106, 124)(112,
117)(113, 134)(115, 133)(122, 135)(125, 129)(136, 139)(137, 143)(138, 142)(140,
144)(145, 217)(146, 228)(147, 158)(148, 198)(149, 170)(150, 229)(151, 153)(152,
179)(154, 199)(155, 270)(156, 269)(157, 225)(159, 188)(160, 213)(161, 272)(162,
177)(163, 210)(164, 249)(165, 214)(166, 278)(167, 246)(168, 202)(169, 196)(171,
274)(172, 224)(173, 253)(174, 189)(175, 273)(176, 245)(178, 208)(180, 271)(181,
287)(182, 236)(183, 235)(184, 285)(185, 227)(186, 264)(187, 219)(190, 288)(191,
252)(192, 275)(193, 261)(194, 238)(195, 209)(197, 255)(200, 268)(201, 284)(203,
239)(204, 276)(205, 212)(206, 211)(207, 237)(215, 280)(216, 282)(218, 265)(220,
254)(221, 243)(222, 242)(223, 279)(226, 267)(230, 281)(231, 277)(232, 251)(233,
283)(234, 256)(240, 259)(241, 248)(244, 258)(247, 266)(250, 257)(260, 262)(263,
286)
C4[ 288, 235 ]
288
-1 244 258 227 185
-2 233 214 258 238
-3 165 244 194 283
-4 155 211 233 234
-5 156 222 280 238
-6 256 270 206 283
-7 176 234 193 204
-8 242 269 215 194
-9 265 211 267 257
-10 156 228 152 218
-11 276 245 256 261
-12 255 224 193 260
-13 198 222 161 162
-14 226 206 250 218
-15 278 181 204 283
-16 265 146 179 269
-17 189 257 250 174
-18 276 277 213 218
-19 172 261 262 197
-20 286 158 227 260
-21 242 177 148 272
-22 265 191 184 251
-23 247 249 228 174
-24 166 276 287 233
-25 231 221 156 224
-26 223 278 183 162
-27 247 272 283 153
-28 231 265 160 204
-29 190 213 151 174
-30 178 277 169 182
-31 147 185 262 263
-32 198 180 241 263
-33 232 218 252 285
-34 242 278 239 208
-35 189 266 146 164
-36 189 288 160 153
-37 254 179 234 213
-38 243 277 269 172
-39 275 158 257 229
-40 166 177 235 279
-41 221 203 184 240
-42 233 266 161 151
-43 156 288 180 284
-44 275 278 224 226
-45 151 273 153 175
-46 231 236 196 208
-47 190 201 269 271
-48 212 169 214 237
-49 286 148 248 271
-50 220 212 191 149
-51 168 268 174 252
-52 166 178 222 203
-53 198 221 197 219
-54 183 216 272 186
-55 210 226 272 284
-56 220 256 160 152
-57 200 223 193 151
-58 190 182 162 173
-59 147 192 150 250
-60 179 225 281 241
-61 243 259 239 285
-62 146 205 239 229
-63 234 216 251 175
-64 209 220 210 257
-65 166 267 192 172
-66 165 221 158 249
-67 145 284 175 285
-68 275 163 219 274
-69 259 162 262 273
-70 165 205 196 207
-71 155 271 195 164
-72 254 170 205 252
-73 242 287 206 164
-74 189 200 191 202
-75 268 279 261 153
-76 187 243 255 148
-77 167 178 191 229
-78 264 235 161 282
-79 180 202 203 171
-80 201 267 161 163
-81 209 180 270 249
-82 177 260 240 175
-83 253 177 288 236
-84 201 184 217 273
-85 266 247 237 207
-86 157 248 152 230
-87 223 246 149 282
-88 168 173 196 197
-89 212 203 150 228
-90 188 183 194 197
-91 232 256 282 273
-92 145 171 193 208
-93 254 195 250 163
-94 179 181 182 207
-95 243 147 214 164
-96 244 280 160 229
-97 209 145 168 245
-98 187 210 192 171
-99 154 165 167 172
-100 169 184 196 285
-101 188 157 280 274
-102 176 187 262 186
-103 188 200 268 159
-104 211 222 181 249
-105 198 254 228 186
-106 277 279 225 284
-107 253 286 173 263
-108 246 150 208 252
-109 232 281 251 230
-110 168 271 239 274
-111 220 264 146 148
-112 154 181 259 251
-113 145 205 227 241
-114 210 248 163 241
-115 288 157 216 195
-116 167 279 170 216
-117 199 232 287 240
-118 253 255 169 202
-119 178 217 261 274
-120 255 235 159 238
-121 264 245 260 219
-122 154 187 200 247
-123 287 236 237 152
-124 231 157 201 223
-125 155 237 173 186
-126 213 258 215 150
-127 267 226 194 238
-128 176 202 195 217
-129 253 264 270 207
-130 199 224 246 214
-131 236 280 182 215
-132 159 225 171 215
-133 209 190 225 282
-134 212 248 217 185
-135 199 266 268 219
-136 183 206 230 263
-137 188 245 258 149
-138 154 147 149 270
-139 286 211 235 281
-140 276 167 227 230
-141 275 192 259 240
-142 155 199 158 170
-143 176 244 159 170
-144 246 204 281 185
-145 67 113 92 97
-146 111 35 16 62
-147 59 138 95 31
-148 111 49 21 76
-149 137 50 138 87
-150 89 59 126 108
-151 45 57 29 42
-152 56 123 86 10
-153 45 36 27 75
-154 99 122 112 138
-155 4 125 71 142
-156 25 5 10 43
-157 101 124 115 86
-158 66 39 20 142
-159 132 143 103 120
-160 56 36 28 96
-161 78 13 80 42
-162 13 58 69 26
-163 68 80 114 93
-164 35 71 73 95
-165 66 99 3 70
-166 24 40 52 65
-167 77 99 116 140
-168 88 110 51 97
-169 100 48 30 118
-170 143 72 116 142
-171 132 79 92 98
-172 99 38 19 65
-173 88 58 125 107
-174 23 17 29 51
-175 45 67 82 63
-176 143 102 7 128
-177 82 83 40 21
-178 77 30 52 119
-179 37 16 60 94
-180 79 81 32 43
-181 112 15 104 94
-182 58 94 30 131
-183 90 26 136 54
-184 22 100 84 41
-185 1 144 134 31
-186 102 125 105 54
-187 122 102 76 98
-188 90 101 103 137
-189 35 36 17 74
-190 133 47 58 29
-191 22 77 50 74
-192 59 141 65 98
-193 12 57 92 7
-194 90 3 127 8
-195 71 93 115 128
-196 88 100 46 70
-197 88 90 19 53
-198 13 105 53 32
-199 135 117 130 142
-200 122 57 103 74
-201 47 80 124 84
-202 79 128 74 118
-203 89 79 41 52
-204 144 15 28 7
-205 113 70 72 62
-206 14 136 6 73
-207 70 94 85 129
-208 34 46 92 108
-209 133 81 64 97
-210 55 114 64 98
-211 4 104 139 9
-212 89 134 48 50
-213 37 126 18 29
-214 2 48 95 130
-215 132 126 8 131
-216 115 116 63 54
-217 134 84 128 119
-218 33 14 18 10
-219 121 68 135 53
-220 56 111 50 64
-221 66 25 41 53
-222 13 5 104 52
-223 57 124 26 87
-224 44 12 25 130
-225 132 133 60 106
-226 44 55 14 127
-227 1 113 140 20
-228 23 89 105 10
-229 77 39 62 96
-230 136 140 86 109
-231 46 25 124 28
-232 33 91 117 109
-233 2 24 4 42
-234 4 37 7 63
-235 78 40 139 120
-236 46 123 83 131
-237 123 48 125 85
-238 2 5 127 120
-239 110 34 61 62
-240 82 117 41 141
-241 113 114 60 32
-242 34 73 8 21
-243 38 61 95 76
-244 143 1 3 96
-245 11 121 137 97
-246 144 108 130 87
-247 23 122 27 85
-248 134 114 49 86
-249 66 23 81 104
-250 14 59 93 17
-251 22 112 63 109
-252 33 72 51 108
-253 83 107 118 129
-254 37 93 72 105
-255 12 118 76 120
-256 11 56 91 6
-257 17 39 9 64
-258 1 2 126 137
-259 112 69 61 141
-260 121 12 82 20
-261 11 19 75 119
-262 69 102 19 31
-263 136 107 31 32
-264 121 78 111 129
-265 22 16 28 9
-266 35 135 85 42
-267 80 127 9 65
-268 135 103 51 75
-269 47 16 38 8
-270 81 6 138 129
-271 110 47 49 71
-272 55 27 21 54
-273 45 69 91 84
-274 110 68 101 119
-275 44 68 39 141
-276 11 24 18 140
-277 38 18 106 30
-278 44 34 15 26
-279 116 40 106 75
-280 101 5 96 131
-281 144 60 139 109
-282 78 133 91 87
-283 3 15 27 6
-284 55 67 106 43
-285 33 67 100 61
-286 49 139 107 20
-287 24 123 73 117
-288 36 115 83 43
0