C4graphGraph forms for C4 [ 288, 240 ] = BGCG(UG(ATD[144,12]);K1;1)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 240 ] = BGCG(UG(ATD[144,12]);K1;1).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {143, 157}, {136, 155}, {137, 157}, {134, 147}, {130, 153}, {133, 158}, {139, 151}, {135, 165}, {135, 164}, {141, 174}, {143, 169}, {144, 185}, {129, 171}, {136, 162}, {129, 173}, {135, 171}, {142, 186}, {129, 182}, {132, 188}, {139, 178}, {139, 182}, {139, 180}, {135, 198}, {133, 193}, {140, 203}, {141, 199}, {142, 196}, {137, 199}, {142, 193}, {138, 216}, {140, 213}, {140, 214}, {131, 216}, {138, 209}, {132, 217}, {131, 227}, {144, 242}, {138, 233}, {141, 238}, {134, 227}, {128, 231}, {142, 233}, {144, 249}, {143, 228}, {133, 232}, {137, 231}, {143, 255}, {132, 246}, {130, 244}, {136, 240}, {144, 232}, {138, 242}, {137, 241}, {141, 244}, {129, 251}, {130, 255}, {39, 167}, {75, 203}, {80, 208}, {23, 150}, {71, 198}, {85, 212}, {94, 223}, {34, 160}, {69, 199}, {87, 213}, {100, 230}, {22, 149}, {120, 251}, {106, 233}, {105, 234}, {97, 226}, {19, 151}, {53, 177}, {45, 169}, {25, 156}, {107, 238}, {71, 194}, {83, 214}, {36, 162}, {119, 241}, {115, 245}, {66, 196}, {51, 181}, {81, 214}, {94, 217}, {38, 174}, {24, 146}, {49, 187}, {34, 168}, {38, 173}, {61, 182}, {52, 184}, {114, 254}, {27, 150}, {51, 190}, {48, 189}, {33, 175}, {27, 148}, {74, 197}, {80, 192}, {105, 249}, {36, 181}, {58, 171}, {99, 242}, {47, 189}, {62, 172}, {58, 168}, {52, 166}, {32, 179}, {126, 237}, {118, 229}, {35, 183}, {112, 228}, {94, 202}, {48, 165}, {87, 194}, {61, 170}, {67, 212}, {73, 209}, {89, 193}, {93, 196}, {2, 152}, {55, 173}, {46, 180}, {33, 187}, {14, 149}, {126, 229}, {104, 243}, {37, 185}, {69, 217}, {66, 222}, {99, 255}, {5, 152}, {69, 216}, {77, 208}, {97, 252}, {41, 183}, {106, 244}, {91, 197}, {65, 222}, {12, 172}, {110, 206}, {109, 205}, {103, 199}, {75, 235}, {78, 238}, {81, 241}, {6, 167}, {53, 148}, {98, 195}, {1, 163}, {121, 219}, {109, 207}, {13, 175}, {86, 244}, {9, 170}, {70, 229}, {25, 186}, {79, 236}, {5, 161}, {20, 176}, {84, 240}, {100, 192}, {60, 153}, {76, 233}, {90, 255}, {74, 237}, {120, 223}, {11, 163}, {124, 212}, {116, 220}, {64, 232}, {96, 200}, {12, 165}, {126, 215}, {116, 221}, {101, 204}, {24, 178}, {65, 235}, {74, 224}, {77, 231}, {86, 252}, {7, 172}, {127, 212}, {125, 214}, {122, 209}, {112, 219}, {15, 164}, {88, 243}, {96, 203}, {101, 206}, {13, 161}, {61, 145}, {54, 154}, {31, 179}, {16, 189}, {4, 170}, {57, 151}, {99, 205}, {15, 160}, {64, 239}, {99, 204}, {8, 184}, {121, 200}, {66, 240}, {75, 249}, {82, 224}, {6, 181}, {43, 152}, {73, 250}, {78, 253}, {82, 225}, {89, 234}, {5, 177}, {76, 248}, {86, 227}, {122, 207}, {102, 211}, {3, 181}, {42, 156}, {40, 159}, {31, 167}, {114, 202}, {78, 246}, {40, 145}, {122, 195}, {72, 241}, {71, 253}, {115, 201}, {111, 213}, {92, 230}, {3, 184}, {67, 248}, {41, 146}, {24, 163}, {10, 177}, {83, 232}, {12, 176}, {26, 166}, {79, 242}, {123, 198}, {33, 159}, {39, 153}, {98, 220}, {91, 228}, {18, 210}, {124, 188}, {31, 223}, {87, 151}, {98, 162}, {108, 173}, {53, 247}, {125, 191}, {89, 155}, {95, 157}, {44, 239}, {125, 190}, {107, 168}, {46, 237}, {100, 167}, {26, 222}, {81, 149}, {21, 208}, {48, 245}, {83, 150}, {21, 211}, {56, 254}, {28, 218}, {88, 158}, {14, 201}, {121, 190}, {27, 220}, {51, 251}, {90, 147}, {92, 149}, {106, 160}, {9, 194}, {60, 247}, {21, 222}, {84, 159}, {93, 150}, {101, 174}, {19, 223}, {83, 159}, {40, 229}, {43, 230}, {11, 197}, {104, 166}, {57, 246}, {123, 180}, {118, 185}, {2, 210}, {55, 231}, {20, 196}, {7, 215}, {72, 152}, {17, 192}, {110, 191}, {29, 207}, {54, 228}, {72, 154}, {1, 210}, {17, 194}, {55, 227}, {114, 166}, {73, 157}, {32, 245}, {19, 197}, {118, 160}, {58, 236}, {44, 250}, {77, 155}, {10, 221}, {109, 186}, {20, 195}, {3, 218}, {113, 168}, {98, 187}, {23, 205}, {104, 178}, {68, 158}, {1, 218}, {17, 202}, {72, 147}, {102, 189}, {107, 183}, {117, 169}, {108, 176}, {29, 192}, {110, 179}, {35, 252}, {62, 225}, {2, 226}, {121, 153}, {59, 219}, {43, 203}, {30, 254}, {80, 176}, {46, 207}, {52, 213}, {14, 236}, {25, 251}, {91, 185}, {32, 195}, {42, 201}, {9, 237}, {64, 164}, {57, 221}, {42, 206}, {11, 239}, {95, 187}, {14, 235}, {116, 145}, {45, 200}, {22, 243}, {15, 234}, {124, 154}, {125, 155}, {16, 247}, {117, 146}, {70, 161}, {47, 200}, {30, 249}, {26, 253}, {81, 182}, {84, 179}, {59, 211}, {82, 186}, {95, 183}, {6, 239}, {122, 147}, {119, 158}, {56, 209}, {6, 236}, {126, 148}, {36, 206}, {28, 246}, {10, 225}, {119, 156}, {16, 252}, {54, 218}, {42, 198}, {78, 162}, {21, 248}, {62, 211}, {29, 240}, {12, 226}, {57, 215}, {36, 202}, {75, 165}, {34, 205}, {52, 219}, {35, 204}, {8, 248}, {44, 220}, {16, 224}, {13, 253}, {79, 191}, {90, 170}, {27, 234}, {33, 208}, {31, 238}, {77, 188}, {94, 175}, {47, 221}, {76, 190}, {18, 225}, {88, 171}, {69, 177}, {65, 180}, {103, 146}, {108, 154}, {32, 215}, {107, 156}, {62, 201}, {37, 210}, {86, 161}, {91, 172}, {92, 164}, {90, 163}, {9, 243}, {70, 188}, {35, 217}, {17, 235}, {85, 175}, {5, 254}, {111, 148}, {68, 191}, {25, 226}, {73, 178}, {26, 230}, {109, 145}, {68, 184}, {28, 224}, {82, 174}, {7, 250}, {60, 193}, {4, 250}, {50, 204}, {11, 245}, {87, 169}, {8, 247}, {39, 216}, {7, 263}, {29, 284}, {30, 287}, {22, 276}, {1, 263}, {13, 261}, {15, 263}, {41, 288}, {28, 278}, {22, 282}, {44, 288}, {23, 283}, {4, 265}, {18, 287}, {19, 285}, {10, 283}, {23, 262}, {30, 264}, {4, 284}, {18, 267}, {8, 274}, {24, 259}, {20, 265}, {2, 284}, {3, 285}, {50, 273}, {46, 266}, {49, 279}, {56, 286}, {53, 275}, {47, 264}, {50, 277}, {61, 277}, {37, 268}, {56, 274}, {49, 282}, {55, 284}, {38, 266}, {58, 279}, {39, 265}, {43, 260}, {50, 259}, {63, 270}, {49, 258}, {37, 272}, {54, 257}, {59, 268}, {41, 275}, {63, 261}, {60, 262}, {34, 281}, {63, 260}, {59, 256}, {48, 267}, {45, 278}, {38, 285}, {40, 276}, {51, 271}, {63, 257}, {45, 274}, {67, 258}, {92, 287}, {102, 288}, {71, 256}, {79, 263}, {93, 277}, {66, 267}, {85, 280}, {89, 276}, {65, 270}, {74, 261}, {95, 269}, {68, 272}, {88, 269}, {80, 262}, {70, 273}, {76, 283}, {93, 266}, {67, 281}, {85, 271}, {64, 286}, {115, 275}, {123, 281}, {113, 277}, {111, 264}, {105, 257}, {120, 272}, {106, 259}, {123, 273}, {117, 281}, {124, 272}, {120, 278}, {110, 286}, {102, 279}, {116, 261}, {115, 258}, {113, 256}, {101, 279}, {118, 260}, {112, 258}, {96, 275}, {112, 259}, {108, 287}, {84, 288}, {127, 267}, {96, 276}, {111, 282}, {100, 274}, {105, 273}, {117, 268}, {127, 262}, {97, 283}, {114, 265}, {97, 285}, {103, 282}, {119, 266}, {104, 278}, {103, 280}, {127, 256}, {113, 270}, {128, 257}, {140, 269}, {131, 260}, {132, 270}, {133, 271}, {131, 264}, {134, 269}, {128, 268}, {128, 271}, {136, 280}, {130, 286}, {134, 280} }>;

(II) A more general form is to represent the graph as the orbit of {143, 157} under the group generated by the following permutations:

a: (2, 79)(3, 90)(4, 68)(5, 58)(6, 72)(7, 37)(8, 61)(9, 52)(10, 34)(11, 54)(12, 144)(13, 49)(14, 43)(15, 18)(16, 50)(17, 140)(19, 143)(20, 133)(21, 40)(22, 26)(24, 28)(25, 138)(27, 127)(29, 125)(30, 135)(31, 137)(32, 128)(36, 134)(38, 130)(39, 119)(41, 132)(42, 131)(44, 124)(45, 139)(46, 121)(47, 123)(48, 105)(51, 122)(53, 113)(55, 110)(56, 129)(57, 117)(59, 126)(60, 93)(62, 118)(63, 115)(64, 108)(65, 96)(66, 89)(67, 116)(69, 107)(70, 102)(71, 111)(73, 120)(74, 112)(76, 109)(77, 84)(78, 103)(80, 83)(81, 100)(82, 106)(85, 98)(86, 101)(88, 114)(94, 95)(97, 99)(145, 248)(146, 246)(147, 181)(148, 256)(149, 230)(150, 262)(151, 169)(152, 236)(153, 266)(154, 239)(155, 240)(156, 216)(157, 223)(158, 265)(159, 208)(160, 225)(161, 279)(162, 280)(163, 218)(164, 287)(165, 249)(166, 243)(167, 241)(168, 177)(170, 184)(171, 254)(172, 185)(173, 286)(174, 244)(175, 187)(176, 232)(178, 278)(179, 231)(180, 200)(182, 274)(183, 217)(186, 233)(188, 288)(189, 273)(190, 207)(191, 284)(192, 214)(193, 196)(194, 213)(195, 271)(197, 228)(198, 264)(199, 238)(201, 260)(202, 269)(203, 235)(204, 252)(205, 283)(206, 227)(209, 251)(210, 263)(211, 229)(212, 220)(215, 268)(219, 237)(221, 281)(222, 276)(224, 259)(226, 242)(234, 267)(245, 257)(247, 277)(250, 272)(253, 282)(255, 285)(258, 261)(270, 275)
b: (1, 2, 5, 13, 33, 49, 58, 79)(3, 4, 10, 26, 40, 67, 88, 99)(6, 7, 18, 43, 70, 85, 95, 101)(8, 9, 23, 52, 61, 76, 104, 109)(11, 12, 30, 63, 77, 103, 107, 110)(14, 15, 37, 72, 86, 94, 98, 102)(16, 17, 27, 59, 81, 106, 120, 122)(19, 20, 47, 65, 89, 117, 119, 130)(21, 22, 34, 68, 90, 97, 114, 116)(24, 25, 56, 74, 80, 111, 113, 125)(28, 29, 53, 71, 83, 112, 129, 138)(31, 32, 48, 75, 105, 128, 137, 141)(35, 36, 44, 62, 92, 118, 124, 134)(38, 39, 57, 66, 96, 123, 133, 143)(41, 42, 64, 91, 108, 131, 132, 136)(45, 46, 60, 87, 93, 121, 139, 142)(50, 51, 73, 82, 100, 126, 127, 140)(54, 55, 69, 78, 84, 115, 135, 144)(145, 248, 243, 205, 184, 170, 283, 166)(146, 156, 286, 197, 176, 264, 270, 155)(147, 252, 202, 220, 211, 149, 160, 272)(148, 256, 214, 259, 251, 209, 224, 192)(150, 219, 182, 233, 278, 207, 247, 194)(151, 196, 200, 180, 193, 169, 266, 153)(152, 161, 175, 187, 279, 236, 263, 210)(154, 227, 217, 162, 288, 201, 164, 185)(157, 174, 167, 215, 267, 203, 273, 271)(158, 255, 285, 265, 221, 222, 276, 281)(159, 258, 171, 242, 218, 284, 177, 253)(163, 226, 254, 261, 208, 282, 168, 191)(165, 249, 257, 231, 199, 238, 179, 245)(172, 287, 260, 188, 280, 183, 206, 239)(173, 216, 246, 240, 275, 198, 232, 228)(178, 186, 274, 237, 262, 213, 277, 190)(181, 250, 225, 230, 229, 212, 269, 204)(189, 235, 234, 268, 241, 244, 223, 195)
c: (2, 90)(3, 79)(4, 72)(5, 61)(6, 68)(7, 54)(8, 58)(9, 43)(10, 50)(11, 37)(12, 143)(13, 40)(14, 52)(15, 28)(16, 34)(17, 140)(18, 24)(19, 144)(20, 137)(21, 49)(22, 26)(23, 35)(25, 130)(27, 132)(29, 134)(30, 139)(31, 133)(32, 128)(36, 125)(38, 138)(39, 119)(41, 127)(42, 121)(44, 124)(45, 135)(46, 131)(47, 123)(48, 117)(51, 110)(53, 113)(55, 122)(56, 129)(57, 105)(59, 115)(60, 107)(62, 112)(63, 126)(64, 120)(65, 111)(66, 103)(67, 102)(69, 93)(70, 116)(71, 96)(73, 108)(74, 118)(75, 87)(76, 101)(77, 98)(78, 89)(80, 95)(81, 114)(82, 106)(83, 94)(84, 85)(86, 109)(88, 100)(92, 104)(97, 99)(141, 142)(145, 161)(146, 267)(147, 284)(148, 270)(149, 166)(150, 217)(151, 249)(152, 170)(153, 156)(154, 250)(155, 162)(157, 176)(158, 167)(159, 175)(160, 224)(163, 210)(164, 278)(165, 169)(168, 247)(171, 274)(172, 228)(173, 209)(174, 233)(177, 277)(178, 287)(179, 271)(180, 264)(181, 191)(182, 254)(183, 262)(184, 236)(185, 197)(186, 244)(187, 208)(188, 220)(189, 281)(190, 206)(192, 269)(193, 238)(194, 203)(195, 231)(196, 199)(198, 200)(201, 219)(202, 214)(204, 283)(205, 252)(207, 227)(211, 258)(212, 288)(213, 235)(215, 257)(216, 266)(218, 263)(221, 273)(222, 282)(223, 232)(225, 259)(226, 255)(229, 261)(230, 243)(234, 246)(237, 260)(239, 272)(240, 280)(241, 265)(242, 285)(245, 268)(248, 279)(251, 286)(253, 276)(256, 275)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 240 ]
288
-1 210 163 218 263
-2 210 226 152 284
-3 181 184 218 285
-4 265 170 250 284
-5 177 254 161 152
-6 167 181 236 239
-7 215 172 250 263
-8 247 248 184 274
-9 243 170 237 194
-10 177 221 225 283
-11 245 239 163 197
-12 165 176 226 172
-13 253 161 261 175
-14 201 235 236 149
-15 234 160 164 263
-16 189 224 247 252
-17 202 235 192 194
-18 210 287 267 225
-19 223 151 197 285
-20 176 265 195 196
-21 211 222 248 208
-22 243 276 149 282
-23 150 205 283 262
-24 178 146 259 163
-25 156 226 251 186
-26 253 166 222 230
-27 220 234 148 150
-28 278 224 246 218
-29 192 207 240 284
-30 264 254 287 249
-31 167 179 223 238
-32 179 245 215 195
-33 187 159 175 208
-34 168 160 281 205
-35 204 183 217 252
-36 202 181 162 206
-37 210 268 272 185
-38 266 173 174 285
-39 265 167 216 153
-40 276 145 159 229
-41 275 288 146 183
-42 198 156 201 206
-43 203 260 152 230
-44 220 288 239 250
-45 200 278 169 274
-46 266 180 237 207
-47 264 221 189 200
-48 165 189 245 267
-49 187 279 258 282
-50 277 204 259 273
-51 190 181 271 251
-52 166 213 184 219
-53 275 177 148 247
-54 154 257 228 218
-55 231 227 173 284
-56 209 286 254 274
-57 221 246 215 151
-58 168 279 236 171
-59 211 256 268 219
-60 247 193 262 153
-61 145 277 170 182
-62 211 201 225 172
-63 257 270 260 261
-64 286 232 239 164
-65 222 180 235 270
-66 222 267 196 240
-67 212 258 248 281
-68 158 191 184 272
-69 177 199 216 217
-70 188 161 229 273
-71 198 253 256 194
-72 154 147 152 241
-73 209 178 157 250
-74 224 237 261 197
-75 165 235 203 249
-76 233 190 248 283
-77 231 155 188 208
-78 253 246 238 162
-79 242 191 236 263
-80 176 192 262 208
-81 214 149 182 241
-82 224 225 174 186
-83 232 159 214 150
-84 288 179 159 240
-85 212 280 271 175
-86 244 161 227 252
-87 169 213 194 151
-88 243 158 269 171
-89 155 276 234 193
-90 255 147 170 163
-91 172 228 185 197
-92 287 149 164 230
-93 266 277 150 196
-94 223 202 217 175
-95 187 157 269 183
-96 275 276 200 203
-97 226 283 252 285
-98 187 220 162 195
-99 242 255 204 205
-100 167 192 230 274
-101 279 204 206 174
-102 189 211 288 279
-103 199 146 280 282
-104 166 243 178 278
-105 234 257 249 273
-106 233 244 160 259
-107 156 168 183 238
-108 154 176 287 173
-109 145 205 207 186
-110 286 179 191 206
-111 264 213 148 282
-112 258 259 228 219
-113 277 168 256 270
-114 166 254 265 202
-115 275 201 245 258
-116 220 221 145 261
-117 146 169 268 281
-118 160 260 185 229
-119 156 266 158 241
-120 223 278 272 251
-121 200 190 153 219
-122 209 147 195 207
-123 198 180 281 273
-124 154 188 212 272
-125 155 190 191 214
-126 148 215 237 229
-127 212 256 267 262
-128 231 257 268 271
-129 171 182 173 251
-130 286 244 255 153
-131 264 216 227 260
-132 188 246 270 217
-133 232 158 193 271
-134 147 269 280 227
-135 165 198 171 164
-136 155 280 162 240
-137 231 199 157 241
-138 209 242 233 216
-139 178 180 182 151
-140 213 203 214 269
-141 199 244 238 174
-142 233 193 196 186
-143 255 157 169 228
-144 242 232 249 185
-145 61 116 40 109
-146 24 103 117 41
-147 122 90 134 72
-148 111 27 126 53
-149 22 14 81 92
-150 23 27 93 83
-151 57 139 19 87
-152 2 5 72 43
-153 121 60 39 130
-154 124 72 108 54
-155 77 89 125 136
-156 25 107 42 119
-157 143 137 73 95
-158 88 133 68 119
-159 33 83 40 84
-160 34 15 106 118
-161 13 70 5 86
-162 78 36 136 98
-163 11 1 24 90
-164 135 15 92 64
-165 12 135 48 75
-166 26 114 104 52
-167 100 6 39 31
-168 34 58 113 107
-169 143 45 117 87
-170 90 4 61 9
-171 88 58 135 129
-172 12 91 7 62
-173 55 38 129 108
-174 101 38 82 141
-175 33 13 94 85
-176 12 80 20 108
-177 69 5 53 10
-178 24 104 73 139
-179 110 84 31 32
-180 46 123 139 65
-181 3 36 6 51
-182 81 61 139 129
-183 35 95 41 107
-184 68 3 8 52
-185 144 91 37 118
-186 25 82 109 142
-187 33 49 95 98
-188 77 132 124 70
-189 47 102 48 16
-190 121 125 51 76
-191 110 68 79 125
-192 100 80 17 29
-193 89 133 60 142
-194 71 17 9 87
-195 122 20 32 98
-196 66 93 20 142
-197 11 91 19 74
-198 123 135 71 42
-199 69 103 137 141
-200 121 45 47 96
-201 14 115 62 42
-202 36 114 17 94
-203 96 140 75 43
-204 99 35 101 50
-205 99 23 34 109
-206 110 101 36 42
-207 122 46 29 109
-208 33 77 80 21
-209 56 122 138 73
-210 1 2 37 18
-211 102 59 62 21
-212 67 124 127 85
-213 111 52 140 87
-214 81 125 83 140
-215 57 126 7 32
-216 69 39 138 131
-217 132 35 69 94
-218 1 3 28 54
-219 121 112 59 52
-220 44 27 116 98
-221 57 47 116 10
-222 66 26 21 65
-223 94 19 31 120
-224 16 82 28 74
-225 82 18 62 10
-226 12 2 25 97
-227 55 134 86 131
-228 143 112 91 54
-229 70 126 40 118
-230 100 26 92 43
-231 55 77 137 128
-232 133 144 83 64
-233 138 106 76 142
-234 89 15 27 105
-235 14 17 75 65
-236 79 14 58 6
-237 46 126 74 9
-238 78 107 31 141
-239 11 44 6 64
-240 66 136 29 84
-241 81 137 72 119
-242 99 144 79 138
-243 22 88 104 9
-244 106 86 130 141
-245 11 48 115 32
-246 132 78 57 28
-247 16 60 8 53
-248 67 8 21 76
-249 144 105 30 75
-250 44 4 7 73
-251 25 51 129 120
-252 35 16 86 97
-253 78 13 26 71
-254 56 114 5 30
-255 99 143 90 130
-256 113 59 71 127
-257 105 128 63 54
-258 67 112 49 115
-259 24 112 50 106
-260 63 118 43 131
-261 13 116 63 74
-262 23 80 60 127
-263 1 79 15 7
-264 111 47 30 131
-265 4 114 39 20
-266 46 38 93 119
-267 66 48 127 18
-268 37 59 117 128
-269 88 134 95 140
-270 132 113 63 65
-271 133 51 128 85
-272 68 124 37 120
-273 123 70 50 105
-274 45 56 100 8
-275 115 41 96 53
-276 22 89 40 96
-277 113 93 50 61
-278 45 104 28 120
-279 101 58 102 49
-280 134 103 136 85
-281 34 67 123 117
-282 22 111 103 49
-283 23 97 10 76
-284 55 2 4 29
-285 3 38 19 97
-286 110 56 64 130
-287 92 18 30 108
-288 44 102 84 41
0

**************