C4graphGraph forms for C4 [ 288, 241 ] = BGCG(UG(ATD[144,12]);K1;4)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 241 ] = BGCG(UG(ATD[144,12]);K1;4).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {138, 154}, {142, 154}, {129, 148}, {131, 159}, {134, 164}, {140, 168}, {129, 166}, {131, 164}, {133, 174}, {139, 160}, {134, 168}, {144, 191}, {129, 177}, {135, 182}, {138, 191}, {139, 177}, {141, 182}, {128, 190}, {137, 182}, {136, 202}, {128, 195}, {129, 194}, {135, 194}, {134, 218}, {139, 234}, {142, 234}, {141, 232}, {131, 237}, {133, 234}, {132, 244}, {141, 253}, {135, 247}, {133, 245}, {140, 253}, {135, 244}, {131, 247}, {128, 245}, {137, 252}, {140, 251}, {144, 232}, {132, 254}, {130, 254}, {138, 247}, {64, 192}, {87, 215}, {98, 226}, {109, 236}, {112, 241}, {49, 179}, {115, 241}, {111, 237}, {59, 185}, {74, 200}, {78, 204}, {84, 214}, {90, 216}, {99, 225}, {32, 163}, {34, 161}, {104, 236}, {66, 199}, {106, 239}, {72, 205}, {77, 200}, {97, 228}, {43, 173}, {125, 251}, {107, 237}, {49, 183}, {44, 170}, {70, 192}, {73, 207}, {17, 150}, {30, 151}, {106, 227}, {60, 181}, {93, 215}, {17, 154}, {126, 245}, {119, 252}, {100, 239}, {29, 150}, {80, 219}, {35, 175}, {123, 247}, {67, 207}, {64, 204}, {39, 171}, {33, 172}, {77, 192}, {81, 220}, {88, 213}, {24, 150}, {35, 173}, {37, 170}, {113, 254}, {99, 236}, {51, 163}, {110, 254}, {53, 165}, {68, 213}, {89, 200}, {33, 179}, {41, 187}, {9, 154}, {35, 176}, {76, 223}, {84, 199}, {91, 200}, {15, 155}, {118, 226}, {76, 216}, {6, 147}, {66, 215}, {52, 161}, {74, 223}, {5, 147}, {68, 210}, {37, 179}, {13, 155}, {84, 195}, {94, 198}, {32, 185}, {50, 171}, {41, 176}, {82, 203}, {57, 163}, {119, 237}, {102, 252}, {85, 207}, {67, 216}, {7, 155}, {106, 246}, {37, 185}, {87, 203}, {91, 199}, {3, 158}, {14, 147}, {98, 255}, {13, 147}, {114, 236}, {50, 173}, {112, 239}, {58, 165}, {83, 204}, {89, 198}, {9, 169}, {126, 222}, {122, 218}, {86, 246}, {95, 255}, {14, 175}, {124, 221}, {112, 209}, {22, 183}, {18, 179}, {16, 177}, {72, 233}, {88, 249}, {10, 168}, {127, 221}, {117, 215}, {18, 176}, {4, 167}, {24, 187}, {10, 174}, {116, 208}, {111, 203}, {50, 150}, {71, 227}, {26, 191}, {67, 229}, {109, 203}, {71, 225}, {77, 235}, {95, 249}, {11, 172}, {21, 178}, {48, 152}, {121, 209}, {120, 208}, {118, 222}, {53, 157}, {14, 164}, {124, 214}, {105, 195}, {55, 157}, {82, 249}, {122, 209}, {78, 226}, {124, 208}, {109, 193}, {20, 185}, {110, 195}, {60, 145}, {58, 151}, {25, 183}, {117, 219}, {64, 238}, {30, 176}, {79, 225}, {20, 187}, {105, 198}, {65, 238}, {56, 151}, {51, 156}, {76, 227}, {78, 225}, {102, 214}, {27, 170}, {90, 235}, {13, 191}, {86, 228}, {98, 208}, {67, 240}, {90, 233}, {24, 172}, {41, 157}, {40, 156}, {31, 171}, {87, 227}, {8, 189}, {116, 193}, {34, 151}, {77, 248}, {81, 228}, {2, 180}, {39, 145}, {23, 161}, {4, 178}, {68, 242}, {12, 187}, {125, 202}, {112, 199}, {108, 219}, {65, 246}, {26, 173}, {23, 160}, {87, 224}, {24, 160}, {36, 156}, {74, 242}, {92, 228}, {8, 177}, {22, 175}, {21, 172}, {89, 224}, {91, 226}, {8, 178}, {108, 214}, {33, 155}, {18, 168}, {12, 182}, {9, 178}, {38, 157}, {26, 161}, {12, 183}, {72, 243}, {80, 235}, {102, 218}, {109, 209}, {103, 219}, {71, 250}, {75, 246}, {79, 242}, {6, 184}, {120, 198}, {16, 175}, {46, 145}, {69, 250}, {80, 239}, {25, 217}, {11, 202}, {49, 240}, {3, 193}, {39, 229}, {27, 217}, {123, 184}, {10, 206}, {122, 190}, {54, 243}, {5, 194}, {62, 249}, {55, 240}, {34, 229}, {33, 230}, {9, 206}, {89, 158}, {10, 194}, {106, 162}, {48, 248}, {81, 153}, {8, 193}, {111, 166}, {92, 149}, {45, 231}, {83, 153}, {88, 146}, {95, 149}, {15, 196}, {117, 190}, {82, 153}, {113, 189}, {63, 242}, {40, 230}, {21, 218}, {55, 248}, {25, 201}, {121, 169}, {114, 162}, {65, 145}, {54, 230}, {42, 250}, {63, 238}, {107, 186}, {105, 184}, {59, 233}, {117, 167}, {74, 153}, {105, 186}, {103, 180}, {75, 152}, {118, 162}, {125, 169}, {97, 180}, {114, 167}, {43, 253}, {56, 238}, {19, 196}, {126, 169}, {115, 164}, {62, 233}, {35, 244}, {30, 201}, {6, 222}, {126, 166}, {32, 248}, {29, 197}, {22, 206}, {4, 221}, {119, 174}, {101, 188}, {57, 224}, {23, 206}, {19, 202}, {100, 189}, {7, 221}, {116, 174}, {41, 243}, {70, 156}, {31, 196}, {111, 180}, {38, 253}, {60, 224}, {123, 167}, {96, 188}, {98, 190}, {100, 184}, {3, 222}, {104, 181}, {39, 250}, {69, 152}, {76, 146}, {120, 166}, {27, 196}, {127, 160}, {44, 243}, {60, 220}, {69, 165}, {93, 189}, {50, 211}, {61, 220}, {42, 201}, {44, 207}, {61, 216}, {80, 181}, {43, 205}, {52, 210}, {47, 201}, {28, 251}, {115, 148}, {53, 220}, {118, 159}, {1, 235}, {51, 217}, {16, 251}, {56, 211}, {46, 197}, {16, 252}, {57, 213}, {53, 217}, {51, 223}, {44, 192}, {29, 240}, {70, 171}, {61, 211}, {68, 170}, {82, 188}, {61, 210}, {23, 231}, {20, 229}, {110, 159}, {52, 197}, {46, 223}, {75, 186}, {7, 245}, {38, 212}, {2, 241}, {97, 146}, {78, 186}, {96, 148}, {4, 241}, {57, 204}, {30, 232}, {85, 163}, {31, 232}, {58, 205}, {75, 188}, {108, 148}, {19, 234}, {108, 149}, {45, 212}, {28, 230}, {104, 146}, {101, 159}, {47, 213}, {46, 212}, {40, 210}, {15, 244}, {47, 212}, {28, 231}, {27, 231}, {49, 205}, {73, 181}, {94, 162}, {2, 255}, {88, 165}, {1, 255}, {107, 149}, {59, 197}, {45, 211}, {96, 158}, {97, 158}, {103, 152}, {1, 258}, {5, 262}, {2, 262}, {25, 285}, {14, 266}, {31, 282}, {15, 260}, {1, 268}, {5, 267}, {3, 268}, {20, 283}, {21, 261}, {6, 277}, {7, 276}, {17, 260}, {18, 263}, {54, 288}, {12, 276}, {19, 265}, {17, 266}, {11, 279}, {11, 277}, {13, 275}, {22, 265}, {28, 259}, {26, 261}, {36, 260}, {40, 265}, {47, 270}, {63, 282}, {34, 260}, {62, 280}, {43, 269}, {42, 269}, {62, 281}, {56, 272}, {36, 269}, {52, 285}, {59, 272}, {54, 282}, {48, 286}, {38, 265}, {55, 280}, {36, 278}, {63, 269}, {42, 280}, {37, 278}, {45, 283}, {32, 282}, {58, 256}, {29, 288}, {48, 270}, {95, 286}, {91, 281}, {93, 287}, {70, 256}, {72, 270}, {85, 281}, {66, 271}, {79, 258}, {92, 273}, {65, 271}, {86, 280}, {92, 274}, {79, 256}, {94, 273}, {64, 273}, {83, 257}, {69, 273}, {90, 271}, {86, 256}, {71, 272}, {73, 286}, {85, 258}, {84, 268}, {73, 272}, {66, 286}, {93, 257}, {94, 258}, {81, 270}, {83, 268}, {102, 262}, {107, 267}, {101, 262}, {115, 279}, {121, 284}, {121, 287}, {116, 275}, {123, 284}, {119, 287}, {104, 257}, {124, 277}, {99, 271}, {125, 275}, {99, 274}, {122, 264}, {100, 274}, {101, 274}, {127, 264}, {127, 263}, {113, 264}, {120, 257}, {114, 267}, {113, 267}, {110, 275}, {103, 281}, {96, 287}, {138, 264}, {133, 259}, {144, 278}, {130, 261}, {141, 266}, {132, 259}, {130, 266}, {143, 263}, {143, 261}, {137, 263}, {132, 277}, {140, 285}, {134, 276}, {142, 285}, {144, 259}, {143, 283}, {142, 283}, {128, 279}, {139, 284}, {136, 276}, {130, 284}, {137, 279}, {136, 278}, {136, 288}, {143, 288} }>;

(II) A more general form is to represent the graph as the orbit of {138, 154} under the group generated by the following permutations:

a: (2, 79)(3, 90)(4, 68)(5, 58)(6, 72)(7, 37)(8, 61)(9, 52)(10, 34)(11, 54)(12, 144)(13, 49)(14, 43)(15, 18)(16, 50)(17, 140)(19, 143)(20, 133)(21, 40)(22, 26)(24, 28)(25, 138)(27, 127)(29, 125)(30, 135)(31, 137)(32, 128)(36, 134)(38, 130)(39, 119)(41, 132)(42, 131)(44, 124)(45, 139)(46, 121)(47, 123)(48, 105)(51, 122)(53, 113)(55, 110)(56, 129)(57, 117)(59, 126)(60, 93)(62, 118)(63, 115)(64, 108)(65, 96)(66, 89)(67, 116)(69, 107)(70, 102)(71, 111)(73, 120)(74, 112)(76, 109)(77, 84)(78, 103)(80, 83)(81, 100)(82, 106)(85, 98)(86, 101)(88, 114)(94, 95)(97, 99)(145, 287)(146, 236)(147, 205)(148, 238)(149, 273)(150, 251)(151, 194)(152, 186)(153, 239)(154, 285)(155, 179)(156, 218)(157, 254)(158, 271)(159, 280)(160, 231)(161, 206)(162, 249)(163, 190)(164, 269)(165, 267)(166, 272)(167, 213)(168, 260)(169, 197)(170, 221)(171, 252)(172, 230)(173, 175)(174, 229)(176, 244)(177, 211)(178, 210)(180, 225)(181, 257)(182, 232)(183, 191)(184, 270)(185, 245)(187, 259)(188, 246)(189, 220)(192, 214)(193, 216)(195, 248)(196, 263)(198, 286)(199, 200)(201, 247)(202, 288)(203, 227)(204, 219)(207, 208)(209, 223)(212, 284)(215, 224)(217, 264)(222, 233)(226, 281)(228, 274)(234, 283)(235, 268)(237, 250)(240, 275)(241, 242)(243, 277)(253, 266)(255, 258)(256, 262)(261, 265)(276, 278)(279, 282)
b: (2, 90)(3, 79)(4, 72)(5, 61)(6, 68)(7, 54)(8, 58)(9, 43)(10, 50)(11, 37)(12, 143)(13, 40)(14, 52)(15, 28)(16, 34)(17, 140)(18, 24)(19, 144)(20, 137)(21, 49)(22, 26)(23, 35)(25, 130)(27, 132)(29, 134)(30, 139)(31, 133)(32, 128)(36, 125)(38, 138)(39, 119)(41, 127)(42, 121)(44, 124)(45, 135)(46, 131)(47, 123)(48, 117)(51, 110)(53, 113)(55, 122)(56, 129)(57, 105)(59, 115)(60, 107)(62, 112)(63, 126)(64, 120)(65, 111)(66, 103)(67, 102)(69, 93)(70, 116)(71, 96)(73, 108)(74, 118)(75, 87)(76, 101)(77, 98)(78, 89)(80, 95)(81, 114)(82, 106)(83, 94)(84, 85)(86, 109)(88, 100)(92, 104)(97, 99)(141, 142)(145, 237)(146, 274)(147, 210)(148, 272)(149, 181)(150, 168)(151, 177)(152, 215)(153, 162)(154, 253)(155, 230)(156, 275)(157, 264)(158, 225)(159, 223)(160, 176)(161, 175)(163, 195)(164, 197)(165, 189)(166, 238)(167, 270)(169, 269)(170, 277)(171, 174)(172, 179)(173, 206)(178, 205)(180, 271)(182, 283)(183, 261)(184, 213)(185, 279)(186, 224)(187, 263)(188, 227)(190, 248)(191, 265)(192, 208)(193, 256)(194, 211)(196, 259)(198, 204)(199, 281)(200, 226)(201, 284)(202, 278)(203, 246)(207, 214)(209, 280)(212, 247)(216, 262)(217, 254)(218, 240)(219, 286)(220, 267)(221, 243)(222, 242)(228, 236)(229, 252)(231, 244)(232, 234)(233, 241)(235, 255)(239, 249)(245, 282)(250, 287)(251, 260)(257, 273)(258, 268)(266, 285)(276, 288)
c: (1, 2, 5, 13, 33, 49, 58, 79)(3, 4, 10, 26, 40, 67, 88, 99)(6, 7, 18, 43, 70, 85, 95, 101)(8, 9, 23, 52, 61, 76, 104, 109)(11, 12, 30, 63, 77, 103, 107, 110)(14, 15, 37, 72, 86, 94, 98, 102)(16, 17, 27, 59, 81, 106, 120, 122)(19, 20, 47, 65, 89, 117, 119, 130)(21, 22, 34, 68, 90, 97, 114, 116)(24, 25, 56, 74, 80, 111, 113, 125)(28, 29, 53, 71, 83, 112, 129, 138)(31, 32, 48, 75, 105, 128, 137, 141)(35, 36, 44, 62, 92, 118, 124, 134)(38, 39, 57, 66, 96, 123, 133, 143)(41, 42, 64, 91, 108, 131, 132, 136)(45, 46, 60, 87, 93, 121, 139, 142)(50, 51, 73, 82, 100, 126, 127, 140)(54, 55, 69, 78, 84, 115, 135, 144)(145, 224, 215, 287, 284, 234, 283, 212)(146, 236, 193, 178, 206, 161, 210, 216)(147, 155, 179, 205, 256, 258, 255, 262)(148, 247, 259, 288, 157, 250, 204, 199)(149, 159, 277, 276, 176, 269, 192, 281)(150, 217, 272, 153, 239, 166, 264, 251)(151, 242, 235, 180, 267, 275, 172, 183)(152, 186, 195, 279, 182, 232, 282, 248)(154, 231, 197, 220, 227, 257, 209, 177)(156, 207, 249, 274, 222, 221, 168, 173)(158, 167, 174, 261, 265, 229, 213, 271)(160, 285, 211, 223, 181, 203, 189, 169)(162, 208, 218, 175, 260, 170, 233, 228)(163, 286, 188, 184, 245, 263, 253, 171)(164, 244, 278, 243, 280, 273, 226, 214)(165, 225, 268, 241, 194, 191, 230, 240)(185, 270, 246, 198, 190, 252, 266, 196)(187, 201, 238, 200, 219, 237, 254, 202)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 241 ]
288
-1 255 235 268 258
-2 255 180 262 241
-3 222 158 268 193
-4 221 167 178 241
-5 267 147 194 262
-6 222 277 147 184
-7 155 221 276 245
-8 177 178 189 193
-9 154 178 169 206
-10 168 194 206 174
-11 277 202 279 172
-12 187 276 182 183
-13 275 155 147 191
-14 266 147 164 175
-15 155 244 260 196
-16 177 251 175 252
-17 154 266 150 260
-18 176 168 179 263
-19 265 234 202 196
-20 187 283 185 229
-21 178 172 261 218
-22 265 183 206 175
-23 231 160 161 206
-24 187 160 150 172
-25 201 183 217 285
-26 191 161 173 261
-27 231 170 217 196
-28 231 259 251 230
-29 288 150 240 197
-30 176 232 201 151
-31 232 171 282 196
-32 248 282 163 185
-33 155 179 172 230
-34 161 260 151 229
-35 176 244 173 175
-36 156 278 269 260
-37 179 278 170 185
-38 253 265 157 212
-39 145 171 250 229
-40 210 265 156 230
-41 176 187 243 157
-42 201 269 280 250
-43 253 269 205 173
-44 243 170 192 207
-45 231 211 212 283
-46 145 212 223 197
-47 201 212 213 270
-48 286 248 270 152
-49 179 183 205 240
-50 211 171 150 173
-51 156 223 217 163
-52 210 161 197 285
-53 165 220 157 217
-54 243 288 282 230
-55 157 280 248 240
-56 211 238 151 272
-57 213 224 204 163
-58 165 256 205 151
-59 233 272 185 197
-60 220 145 224 181
-61 220 210 211 216
-62 233 280 281 249
-63 242 269 238 282
-64 192 204 238 273
-65 145 246 238 271
-66 286 199 215 271
-67 216 207 229 240
-68 242 210 213 170
-69 165 250 152 273
-70 156 256 192 171
-71 225 227 250 272
-72 243 233 270 205
-73 286 181 272 207
-74 242 200 223 153
-75 188 246 152 186
-76 146 223 216 227
-77 200 235 192 248
-78 225 204 226 186
-79 242 256 225 258
-80 235 181 239 219
-81 220 270 228 153
-82 188 203 249 153
-83 257 268 204 153
-84 199 268 214 195
-85 258 281 163 207
-86 256 246 280 228
-87 224 203 215 227
-88 165 146 213 249
-89 198 200 158 224
-90 233 235 216 271
-91 199 200 226 281
-92 149 228 273 274
-93 287 189 257 215
-94 198 258 162 273
-95 286 255 149 249
-96 188 287 158 148
-97 146 158 180 228
-98 255 190 226 208
-99 225 236 271 274
-100 189 184 239 274
-101 188 159 262 274
-102 214 218 262 252
-103 180 281 152 219
-104 146 257 181 236
-105 198 184 195 186
-106 246 227 162 239
-107 267 149 237 186
-108 148 214 149 219
-109 209 203 236 193
-110 275 254 159 195
-111 166 180 203 237
-112 209 199 239 241
-113 264 254 189 267
-114 167 267 236 162
-115 279 148 164 241
-116 275 193 174 208
-117 167 190 215 219
-118 222 159 226 162
-119 287 237 174 252
-120 198 166 257 208
-121 209 287 169 284
-122 209 264 190 218
-123 167 247 184 284
-124 221 277 214 208
-125 275 169 202 251
-126 166 222 245 169
-127 264 221 160 263
-128 190 245 279 195
-129 166 177 148 194
-130 254 266 261 284
-131 159 247 237 164
-132 254 244 277 259
-133 234 245 259 174
-134 276 168 218 164
-135 244 247 182 194
-136 276 288 278 202
-137 279 182 252 263
-138 154 264 191 247
-139 177 234 160 284
-140 253 168 251 285
-141 253 232 266 182
-142 154 234 283 285
-143 288 261 283 263
-144 232 278 191 259
-145 46 60 39 65
-146 88 104 97 76
-147 13 14 5 6
-148 115 96 129 108
-149 92 95 107 108
-150 24 17 50 29
-151 34 56 58 30
-152 69 48 103 75
-153 81 82 83 74
-154 17 138 9 142
-155 33 13 15 7
-156 36 70 40 51
-157 55 38 41 53
-158 89 3 96 97
-159 110 101 118 131
-160 23 24 127 139
-161 23 34 26 52
-162 114 94 106 118
-163 57 51 85 32
-164 134 14 115 131
-165 88 58 69 53
-166 111 126 129 120
-167 123 4 114 117
-168 134 18 140 10
-169 121 125 126 9
-170 44 68 37 27
-171 70 39 50 31
-172 11 33 24 21
-173 35 26 50 43
-174 133 116 119 10
-175 22 35 14 16
-176 35 18 30 41
-177 16 139 8 129
-178 4 8 9 21
-179 33 37 49 18
-180 111 2 103 97
-181 80 60 104 73
-182 12 135 137 141
-183 22 12 25 49
-184 100 123 6 105
-185 37 59 20 32
-186 78 105 107 75
-187 12 24 41 20
-188 101 82 96 75
-189 100 113 93 8
-190 122 117 128 98
-191 144 13 26 138
-192 44 77 70 64
-193 3 116 8 109
-194 135 5 129 10
-195 110 105 84 128
-196 15 27 19 31
-197 46 59 29 52
-198 89 94 105 120
-199 66 112 91 84
-200 77 89 91 74
-201 25 47 30 42
-202 11 125 136 19
-203 111 82 87 109
-204 78 57 83 64
-205 58 49 72 43
-206 22 23 9 10
-207 44 67 73 85
-208 124 116 98 120
-209 121 122 112 109
-210 68 61 40 52
-211 45 56 50 61
-212 45 46 47 38
-213 88 57 68 47
-214 102 124 84 108
-215 66 93 117 87
-216 67 90 61 76
-217 25 27 51 53
-218 122 134 102 21
-219 80 103 117 108
-220 81 60 61 53
-221 124 4 127 7
-222 3 126 6 118
-223 46 51 74 76
-224 89 57 60 87
-225 99 78 79 71
-226 78 91 118 98
-227 71 106 76 87
-228 81 92 86 97
-229 34 67 39 20
-230 33 28 40 54
-231 23 45 27 28
-232 144 30 31 141
-233 90 59 72 62
-234 133 139 19 142
-235 77 1 90 80
-236 99 114 104 109
-237 111 107 119 131
-238 56 63 64 65
-239 100 112 80 106
-240 55 67 49 29
-241 2 112 4 115
-242 68 79 63 74
-243 44 72 41 54
-244 132 35 135 15
-245 133 126 7 128
-246 106 75 86 65
-247 123 135 138 131
-248 55 77 48 32
-249 88 82 62 95
-250 69 71 39 42
-251 125 16 28 140
-252 102 16 137 119
-253 38 140 141 43
-254 110 132 113 130
-255 1 2 95 98
-256 79 58 70 86
-257 93 104 83 120
-258 1 79 94 85
-259 132 133 144 28
-260 34 36 15 17
-261 143 26 130 21
-262 2 101 102 5
-263 143 137 127 18
-264 122 113 127 138
-265 22 38 40 19
-266 14 17 130 141
-267 113 114 5 107
-268 1 3 83 84
-269 36 63 42 43
-270 47 48 81 72
-271 66 99 90 65
-272 56 59 71 73
-273 69 92 94 64
-274 99 100 101 92
-275 110 13 125 116
-276 12 134 136 7
-277 11 132 124 6
-278 144 36 37 136
-279 11 115 137 128
-280 55 62 42 86
-281 91 103 62 85
-282 63 31 32 54
-283 143 45 20 142
-284 121 123 139 130
-285 25 52 140 142
-286 66 48 73 95
-287 121 93 96 119
-288 143 136 29 54
0

**************