C4graphGraph forms for C4 [ 288, 244 ] = BGCG(UG(ATD[144,32]);K1;5)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 244 ] = BGCG(UG(ATD[144,32]);K1;5).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {139, 155}, {139, 152}, {138, 158}, {132, 145}, {142, 155}, {135, 158}, {136, 151}, {133, 165}, {141, 164}, {136, 165}, {129, 175}, {134, 168}, {129, 174}, {130, 176}, {144, 164}, {140, 187}, {141, 180}, {130, 184}, {131, 184}, {137, 183}, {136, 183}, {143, 206}, {134, 196}, {132, 194}, {143, 198}, {144, 218}, {137, 196}, {128, 206}, {129, 206}, {139, 218}, {144, 200}, {135, 222}, {140, 213}, {131, 217}, {143, 213}, {142, 212}, {143, 212}, {128, 221}, {138, 234}, {133, 227}, {141, 235}, {140, 229}, {140, 224}, {141, 224}, {134, 233}, {129, 243}, {132, 243}, {130, 250}, {133, 255}, {137, 242}, {136, 246}, {22, 150}, {33, 161}, {93, 221}, {126, 255}, {16, 146}, {114, 240}, {29, 159}, {22, 148}, {75, 201}, {17, 146}, {120, 251}, {108, 239}, {73, 202}, {39, 163}, {125, 249}, {56, 188}, {95, 219}, {26, 159}, {82, 215}, {88, 221}, {96, 229}, {26, 156}, {126, 248}, {121, 255}, {45, 171}, {85, 211}, {19, 148}, {78, 201}, {92, 219}, {22, 158}, {48, 184}, {29, 149}, {85, 221}, {87, 223}, {99, 235}, {103, 239}, {42, 163}, {83, 218}, {90, 211}, {96, 233}, {98, 235}, {29, 151}, {65, 203}, {28, 151}, {127, 244}, {119, 252}, {49, 186}, {102, 237}, {23, 155}, {123, 247}, {103, 233}, {117, 251}, {111, 225}, {2, 146}, {70, 214}, {42, 186}, {82, 194}, {101, 245}, {55, 166}, {83, 194}, {42, 184}, {111, 253}, {54, 164}, {43, 185}, {57, 170}, {114, 225}, {110, 253}, {88, 203}, {69, 209}, {112, 228}, {89, 205}, {2, 151}, {40, 189}, {34, 180}, {116, 226}, {61, 171}, {10, 157}, {104, 255}, {35, 180}, {37, 189}, {56, 160}, {53, 173}, {49, 169}, {44, 180}, {101, 253}, {44, 181}, {52, 173}, {9, 147}, {97, 251}, {64, 219}, {84, 207}, {92, 199}, {99, 248}, {34, 190}, {72, 212}, {76, 208}, {92, 192}, {4, 153}, {108, 241}, {36, 185}, {84, 201}, {100, 249}, {81, 207}, {37, 186}, {112, 239}, {108, 243}, {105, 246}, {64, 223}, {54, 169}, {51, 172}, {87, 247}, {86, 247}, {125, 220}, {78, 236}, {111, 205}, {79, 237}, {14, 173}, {55, 148}, {73, 234}, {87, 244}, {13, 169}, {105, 205}, {24, 188}, {14, 171}, {73, 236}, {80, 245}, {95, 250}, {104, 205}, {31, 185}, {83, 245}, {71, 224}, {114, 213}, {50, 154}, {113, 217}, {107, 195}, {98, 202}, {5, 172}, {109, 196}, {63, 150}, {21, 188}, {15, 166}, {10, 163}, {65, 235}, {122, 208}, {114, 216}, {123, 208}, {16, 188}, {2, 172}, {90, 244}, {76, 227}, {124, 211}, {120, 215}, {101, 202}, {3, 177}, {109, 223}, {45, 159}, {35, 145}, {91, 233}, {97, 211}, {2, 177}, {84, 224}, {38, 147}, {109, 216}, {25, 175}, {35, 149}, {16, 167}, {110, 217}, {103, 208}, {11, 179}, {33, 153}, {93, 229}, {95, 231}, {10, 179}, {17, 171}, {41, 147}, {37, 159}, {20, 174}, {74, 240}, {21, 174}, {75, 240}, {24, 164}, {77, 241}, {14, 179}, {111, 210}, {36, 153}, {91, 230}, {66, 252}, {68, 250}, {90, 228}, {93, 227}, {39, 152}, {69, 250}, {67, 252}, {82, 237}, {92, 227}, {90, 154}, {123, 187}, {118, 182}, {58, 251}, {61, 252}, {60, 253}, {84, 149}, {38, 228}, {115, 177}, {39, 228}, {29, 217}, {123, 191}, {12, 201}, {126, 187}, {36, 225}, {5, 195}, {55, 241}, {7, 192}, {34, 234}, {117, 189}, {38, 238}, {98, 170}, {3, 202}, {118, 191}, {17, 216}, {87, 158}, {10, 192}, {116, 190}, {51, 249}, {99, 169}, {50, 249}, {117, 190}, {110, 165}, {58, 241}, {18, 222}, {115, 191}, {37, 232}, {58, 247}, {40, 229}, {96, 174}, {120, 183}, {127, 176}, {12, 220}, {101, 181}, {11, 218}, {115, 162}, {35, 242}, {21, 196}, {13, 220}, {100, 181}, {103, 182}, {4, 214}, {32, 242}, {19, 193}, {5, 214}, {126, 173}, {61, 238}, {31, 204}, {13, 222}, {74, 153}, {66, 150}, {124, 168}, {125, 168}, {7, 209}, {62, 232}, {59, 237}, {34, 244}, {27, 204}, {100, 179}, {12, 212}, {53, 236}, {121, 160}, {70, 156}, {120, 162}, {79, 149}, {7, 220}, {107, 176}, {71, 156}, {30, 197}, {28, 199}, {30, 194}, {106, 182}, {18, 207}, {127, 162}, {122, 167}, {98, 191}, {8, 214}, {49, 239}, {32, 254}, {27, 197}, {21, 203}, {1, 222}, {31, 192}, {50, 210}, {53, 213}, {48, 209}, {121, 152}, {112, 145}, {71, 166}, {83, 178}, {28, 254}, {69, 167}, {68, 166}, {61, 223}, {42, 200}, {1, 226}, {67, 160}, {59, 216}, {75, 168}, {89, 186}, {93, 190}, {6, 226}, {124, 152}, {17, 245}, {7, 226}, {118, 147}, {13, 232}, {70, 160}, {80, 182}, {41, 206}, {72, 175}, {24, 240}, {117, 157}, {63, 215}, {62, 215}, {113, 155}, {46, 197}, {67, 175}, {11, 230}, {44, 193}, {8, 230}, {122, 148}, {47, 193}, {72, 167}, {8, 248}, {106, 154}, {56, 200}, {3, 242}, {108, 157}, {107, 154}, {57, 200}, {54, 199}, {9, 248}, {12, 254}, {51, 193}, {28, 238}, {79, 189}, {88, 170}, {60, 207}, {68, 183}, {80, 163}, {89, 170}, {19, 231}, {105, 157}, {69, 177}, {51, 199}, {6, 243}, {62, 203}, {31, 234}, {48, 198}, {9, 254}, {66, 181}, {25, 238}, {86, 161}, {14, 246}, {110, 150}, {106, 146}, {65, 185}, {59, 195}, {16, 232}, {89, 161}, {15, 246}, {53, 204}, {85, 172}, {40, 210}, {43, 209}, {72, 178}, {23, 236}, {64, 187}, {62, 197}, {56, 195}, {41, 210}, {73, 178}, {39, 219}, {109, 145}, {58, 198}, {94, 162}, {96, 156}, {27, 230}, {59, 198}, {88, 165}, {25, 231}, {50, 204}, {76, 178}, {78, 176}, {24, 231}, {30, 225}, {94, 161}, {9, 265}, {30, 286}, {11, 266}, {6, 260}, {23, 274}, {20, 274}, {26, 284}, {19, 276}, {27, 284}, {25, 286}, {15, 262}, {20, 285}, {4, 270}, {4, 276}, {23, 261}, {22, 261}, {18, 262}, {1, 276}, {8, 287}, {20, 268}, {6, 285}, {15, 274}, {3, 285}, {1, 286}, {26, 261}, {5, 282}, {38, 262}, {47, 271}, {45, 269}, {41, 267}, {46, 268}, {33, 258}, {47, 267}, {43, 268}, {46, 262}, {40, 257}, {52, 285}, {49, 283}, {45, 259}, {44, 259}, {57, 278}, {52, 283}, {47, 287}, {36, 277}, {46, 287}, {18, 288}, {60, 267}, {32, 280}, {63, 263}, {60, 260}, {33, 280}, {52, 269}, {32, 283}, {43, 272}, {55, 267}, {48, 269}, {57, 260}, {54, 264}, {63, 257}, {74, 266}, {81, 273}, {91, 283}, {86, 276}, {76, 264}, {81, 277}, {70, 259}, {77, 264}, {80, 277}, {82, 279}, {79, 265}, {102, 288}, {77, 266}, {78, 260}, {95, 275}, {71, 266}, {94, 275}, {65, 273}, {112, 288}, {64, 273}, {113, 288}, {81, 256}, {74, 281}, {67, 279}, {68, 273}, {77, 282}, {75, 275}, {85, 268}, {94, 263}, {66, 280}, {86, 269}, {91, 263}, {104, 265}, {119, 278}, {107, 265}, {116, 278}, {102, 270}, {124, 278}, {121, 274}, {115, 287}, {99, 270}, {127, 271}, {97, 272}, {118, 258}, {119, 258}, {102, 272}, {106, 284}, {105, 286}, {119, 256}, {116, 259}, {97, 281}, {113, 264}, {104, 275}, {122, 257}, {125, 257}, {100, 281}, {128, 258}, {138, 270}, {134, 256}, {130, 261}, {135, 256}, {132, 271}, {139, 263}, {137, 281}, {133, 279}, {131, 277}, {142, 280}, {131, 282}, {128, 282}, {135, 284}, {138, 279}, {142, 272}, {144, 271} }>;

(II) A more general form is to represent the graph as the orbit of {139, 155} under the group generated by the following permutations:

a: (2, 76)(3, 123, 106, 83)(4, 18, 105, 116)(5, 113, 136, 93)(6, 86, 135, 30)(7, 19, 13, 25)(8, 112, 14, 34)(9, 39, 100, 141)(10, 44, 99, 38)(11, 35, 126, 90)(12, 95, 125, 24)(15, 117, 70, 102)(16, 72, 69, 122)(17, 73, 115, 103)(20, 58, 26, 82)(21, 143, 130, 63)(22, 62, 129, 48)(23, 120, 96, 59)(27, 132, 52, 87)(28, 92, 51, 54)(29, 133, 85, 77)(31, 47, 49, 61)(32, 64, 50, 144)(33, 81, 111, 57)(36, 60, 89, 119)(37, 67, 43, 55)(40, 56, 142, 68)(41, 42, 66, 65)(45, 138, 46, 108)(53, 127, 91, 109)(71, 79, 121, 97)(74, 84, 104, 124)(78, 94, 134, 114)(80, 101, 98, 118)(88, 128, 131, 110)(107, 139, 137, 140)(145, 173, 244, 230)(146, 178, 177, 208)(147, 163, 181, 235)(148, 232, 175, 209)(149, 255, 211, 266)(150, 203, 206, 184)(151, 227, 172, 264)(152, 281, 224, 265)(153, 207, 205, 278)(154, 218, 242, 187)(155, 183, 229, 195)(156, 237, 274, 251)(157, 259, 270, 262)(158, 197, 243, 269)(159, 279, 268, 241)(160, 272, 166, 189)(161, 256, 225, 260)(162, 233, 216, 236)(164, 254, 219, 249)(165, 221, 282, 217)(168, 240, 201, 275)(169, 238, 192, 193)(170, 258, 277, 253)(171, 234, 287, 239)(174, 198, 261, 215)(176, 263, 196, 213)(179, 180, 248, 228)(182, 245, 202, 191)(185, 267, 186, 252)(188, 212, 250, 257)(190, 214, 288, 246)(194, 285, 247, 284)(200, 280, 273, 210)(204, 271, 283, 223)(220, 231)(222, 286, 226, 276)
b: (1, 3)(2, 4)(7, 52)(8, 51)(9, 54)(10, 53)(11, 50)(12, 49)(13, 32)(14, 31)(15, 34)(16, 33)(17, 36)(18, 35)(19, 115)(20, 116)(21, 119)(22, 120)(23, 117)(24, 118)(25, 98)(26, 97)(27, 100)(28, 99)(29, 102)(30, 101)(37, 142)(38, 141)(39, 140)(40, 139)(41, 144)(42, 143)(43, 45)(44, 46)(55, 127)(56, 128)(57, 129)(58, 130)(59, 131)(60, 132)(61, 65)(62, 66)(67, 88)(68, 87)(69, 86)(70, 85)(71, 90)(72, 89)(73, 105)(74, 106)(75, 103)(76, 104)(77, 107)(78, 108)(79, 113)(80, 114)(81, 109)(82, 110)(83, 111)(84, 112)(91, 125)(92, 126)(93, 121)(94, 122)(95, 123)(96, 124)(135, 137)(136, 138)(145, 207)(146, 153)(147, 164)(148, 162)(149, 288)(150, 215)(151, 270)(152, 229)(154, 266)(155, 189)(156, 211)(157, 236)(158, 183)(159, 272)(160, 221)(161, 167)(163, 213)(165, 279)(166, 244)(168, 233)(169, 254)(170, 175)(171, 185)(172, 214)(173, 192)(174, 278)(176, 241)(177, 276)(178, 205)(179, 204)(180, 262)(181, 197)(182, 240)(184, 198)(186, 212)(187, 219)(188, 258)(190, 274)(191, 231)(193, 287)(194, 253)(195, 282)(196, 256)(199, 248)(200, 206)(201, 239)(202, 286)(203, 252)(208, 275)(209, 269)(210, 218)(216, 277)(217, 237)(220, 283)(222, 242)(223, 273)(224, 228)(225, 245)(226, 285)(227, 255)(230, 249)(232, 280)(234, 246)(235, 238)(243, 260)(247, 250)(251, 261)(257, 263)(259, 268)(264, 265)(267, 271)(281, 284)
c: (2, 76)(3, 93)(4, 30)(5, 83)(6, 116)(8, 82)(9, 63)(10, 48)(11, 59)(12, 125)(14, 58)(15, 87)(16, 54)(17, 77)(18, 135)(19, 25)(20, 34)(21, 141)(22, 38)(23, 90)(26, 112)(27, 102)(28, 122)(29, 103)(31, 43)(32, 40)(33, 111)(35, 96)(37, 49)(39, 130)(41, 66)(44, 129)(45, 108)(46, 138)(47, 67)(50, 142)(51, 72)(52, 117)(53, 97)(55, 61)(56, 144)(60, 119)(62, 99)(64, 68)(69, 92)(70, 132)(71, 109)(73, 85)(74, 114)(78, 124)(79, 91)(80, 131)(84, 134)(86, 105)(88, 98)(94, 104)(100, 143)(101, 128)(106, 113)(107, 139)(110, 118)(115, 133)(120, 126)(121, 127)(123, 136)(137, 140)(145, 156)(146, 264)(147, 150)(148, 238)(149, 233)(151, 208)(152, 176)(153, 225)(154, 155)(157, 269)(158, 262)(159, 239)(160, 271)(161, 205)(162, 255)(163, 184)(164, 188)(165, 191)(166, 223)(167, 199)(168, 201)(169, 232)(171, 241)(172, 178)(173, 251)(174, 180)(175, 193)(177, 227)(179, 198)(181, 206)(182, 217)(183, 187)(189, 283)(190, 285)(192, 209)(194, 214)(195, 218)(196, 224)(197, 270)(202, 221)(203, 235)(204, 272)(207, 256)(210, 280)(211, 236)(212, 249)(213, 281)(215, 248)(216, 266)(219, 250)(228, 261)(229, 242)(230, 237)(234, 268)(243, 259)(244, 274)(245, 282)(246, 247)(252, 267)(253, 258)(254, 257)(260, 278)(263, 265)(276, 286)(279, 287)(284, 288)
d: (1, 2)(3, 105)(4, 106)(5, 135)(6, 136)(7, 28)(8, 27)(9, 31)(10, 32)(11, 91)(12, 92)(13, 51)(14, 52)(15, 20)(16, 19)(17, 86)(18, 85)(21, 55)(22, 56)(23, 121)(24, 122)(25, 69)(26, 70)(29, 116)(30, 115)(33, 80)(34, 79)(35, 117)(36, 118)(37, 44)(38, 43)(39, 142)(40, 141)(41, 65)(42, 66)(47, 62)(48, 61)(49, 100)(50, 99)(53, 126)(54, 125)(57, 110)(58, 109)(59, 87)(60, 88)(63, 144)(64, 143)(67, 130)(68, 129)(71, 96)(72, 95)(73, 104)(74, 103)(75, 76)(77, 134)(78, 133)(81, 128)(82, 127)(83, 94)(84, 93)(89, 101)(90, 102)(97, 112)(98, 111)(107, 138)(108, 137)(113, 124)(114, 123)(119, 131)(120, 132)(145, 251)(146, 276)(147, 185)(148, 188)(149, 190)(150, 200)(151, 226)(152, 155)(153, 182)(154, 270)(157, 242)(158, 195)(159, 259)(160, 261)(161, 245)(162, 194)(163, 280)(164, 257)(165, 260)(166, 174)(167, 231)(168, 264)(169, 249)(170, 253)(171, 269)(172, 222)(175, 250)(176, 279)(177, 286)(178, 275)(179, 283)(180, 189)(181, 186)(183, 243)(184, 252)(187, 213)(191, 225)(192, 254)(193, 232)(196, 241)(197, 287)(198, 223)(199, 220)(201, 227)(202, 205)(203, 267)(204, 248)(206, 273)(207, 221)(208, 240)(209, 238)(210, 235)(211, 288)(212, 219)(214, 284)(215, 271)(216, 247)(217, 278)(218, 263)(224, 229)(228, 272)(233, 266)(234, 265)(236, 255)(237, 244)(239, 281)(246, 285)(256, 282)(258, 277)(262, 268)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 244 ]
288
-1 286 276 222 226
-2 177 146 172 151
-3 242 177 202 285
-4 276 214 270 153
-5 214 172 282 195
-6 243 226 260 285
-7 209 220 192 226
-8 287 214 248 230
-9 254 265 147 248
-10 157 179 192 163
-11 266 179 218 230
-12 220 254 201 212
-13 220 232 222 169
-14 179 246 171 173
-15 166 246 262 274
-16 188 232 167 146
-17 146 245 171 216
-18 222 288 207 262
-19 231 276 148 193
-20 268 174 274 285
-21 188 203 174 196
-22 158 148 150 261
-23 155 236 261 274
-24 231 188 240 164
-25 231 286 238 175
-26 156 159 261 284
-27 204 284 197 230
-28 199 254 238 151
-29 159 149 151 217
-30 286 225 194 197
-31 234 192 204 185
-32 242 254 280 283
-33 258 280 161 153
-34 244 190 234 180
-35 242 145 180 149
-36 277 225 185 153
-37 232 189 159 186
-38 147 238 228 262
-39 228 152 163 219
-40 210 189 257 229
-41 210 267 147 206
-42 200 184 163 186
-43 209 268 272 185
-44 180 181 193 259
-45 159 269 171 259
-46 287 268 262 197
-47 287 267 193 271
-48 198 209 269 184
-49 169 239 283 186
-50 154 210 204 249
-51 199 193 172 249
-52 269 173 283 285
-53 213 236 204 173
-54 264 199 169 164
-55 166 267 148 241
-56 188 200 160 195
-57 200 278 170 260
-58 198 247 251 241
-59 198 237 216 195
-60 253 267 260 207
-61 223 171 238 252
-62 232 203 215 197
-63 257 215 150 263
-64 187 223 273 219
-65 235 203 185 273
-66 181 280 150 252
-67 279 160 175 252
-68 166 183 250 273
-69 209 177 167 250
-70 156 214 160 259
-71 166 156 266 224
-72 167 178 212 175
-73 178 234 202 236
-74 266 281 240 153
-75 275 168 201 240
-76 264 178 227 208
-77 264 266 282 241
-78 176 201 236 260
-79 265 189 149 237
-80 277 245 182 163
-81 277 256 207 273
-82 279 215 237 194
-83 178 245 194 218
-84 201 224 149 207
-85 221 211 268 172
-86 276 247 269 161
-87 244 223 158 247
-88 165 221 170 203
-89 170 161 205 186
-90 154 211 244 228
-91 233 283 230 263
-92 199 192 227 219
-93 221 190 227 229
-94 275 161 162 263
-95 231 275 250 219
-96 156 233 174 229
-97 211 281 272 251
-98 191 202 235 170
-99 169 235 248 270
-100 179 181 281 249
-101 253 245 202 181
-102 288 237 270 272
-103 233 182 239 208
-104 275 265 255 205
-105 286 157 246 205
-106 154 146 182 284
-107 154 176 265 195
-108 243 157 239 241
-109 145 223 216 196
-110 165 253 150 217
-111 253 210 225 205
-112 145 288 228 239
-113 264 155 288 217
-114 213 225 216 240
-115 177 287 191 162
-116 190 278 226 259
-117 189 157 190 251
-118 147 191 258 182
-119 256 278 258 252
-120 215 183 162 251
-121 255 160 152 274
-122 167 257 148 208
-123 187 191 247 208
-124 211 168 278 152
-125 220 168 257 249
-126 187 255 248 173
-127 176 244 271 162
-128 221 258 282 206
-129 243 206 174 175
-130 176 184 250 261
-131 277 282 184 217
-132 243 145 194 271
-133 165 255 279 227
-134 233 168 256 196
-135 222 256 158 284
-136 165 246 183 151
-137 242 281 183 196
-138 234 158 279 270
-139 155 152 218 263
-140 187 213 224 229
-141 180 224 235 164
-142 155 212 280 272
-143 198 212 213 206
-144 200 271 218 164
-145 132 35 112 109
-146 2 16 17 106
-147 38 41 118 9
-148 22 55 122 19
-149 35 79 29 84
-150 22 66 110 63
-151 2 136 28 29
-152 121 124 39 139
-153 33 36 4 74
-154 90 50 106 107
-155 23 113 139 142
-156 26 70 71 96
-157 105 117 108 10
-158 22 135 138 87
-159 45 26 37 29
-160 121 56 67 70
-161 33 89 94 86
-162 115 94 127 120
-163 80 39 42 10
-164 144 24 141 54
-165 88 110 133 136
-166 55 68 15 71
-167 122 69 16 72
-168 134 124 125 75
-169 99 13 49 54
-170 88 89 57 98
-171 45 14 17 61
-172 2 5 51 85
-173 14 126 52 53
-174 96 129 20 21
-175 67 25 72 129
-176 78 127 107 130
-177 2 3 69 115
-178 72 83 73 76
-179 11 100 14 10
-180 44 34 35 141
-181 44 66 100 101
-182 80 103 106 118
-183 68 136 137 120
-184 48 42 130 131
-185 36 31 43 65
-186 89 37 49 42
-187 123 126 140 64
-188 56 24 16 21
-189 79 37 40 117
-190 34 93 116 117
-191 123 115 118 98
-192 92 7 31 10
-193 44 47 51 19
-194 132 82 83 30
-195 56 59 5 107
-196 134 137 21 109
-197 46 27 62 30
-198 143 58 48 59
-199 92 28 51 54
-200 56 144 57 42
-201 12 78 84 75
-202 101 3 73 98
-203 88 62 21 65
-204 27 50 31 53
-205 89 111 104 105
-206 143 128 41 129
-207 81 60 18 84
-208 122 123 103 76
-209 69 48 7 43
-210 111 50 40 41
-211 90 124 85 97
-212 143 12 72 142
-213 143 114 140 53
-214 4 70 5 8
-215 82 62 63 120
-216 59 114 17 109
-217 110 113 29 131
-218 11 144 83 139
-219 92 39 95 64
-220 12 13 125 7
-221 88 93 128 85
-222 1 13 135 18
-223 61 64 87 109
-224 71 84 140 141
-225 111 36 114 30
-226 1 6 116 7
-227 133 92 93 76
-228 90 112 38 39
-229 93 40 96 140
-230 11 91 27 8
-231 24 25 95 19
-232 13 37 16 62
-233 134 91 103 96
-234 34 138 73 31
-235 99 141 65 98
-236 23 78 73 53
-237 79 102 59 82
-238 25 38 28 61
-239 112 103 49 108
-240 24 114 74 75
-241 55 77 58 108
-242 35 3 137 32
-243 132 6 129 108
-244 34 90 127 87
-245 101 80 17 83
-246 14 15 136 105
-247 123 58 86 87
-248 99 126 8 9
-249 100 125 50 51
-250 68 69 95 130
-251 58 117 97 120
-252 66 67 61 119
-253 110 111 101 60
-254 12 28 9 32
-255 121 133 104 126
-256 134 135 81 119
-257 122 125 40 63
-258 33 128 118 119
-259 44 45 70 116
-260 78 57 60 6
-261 22 23 26 130
-262 46 15 38 18
-263 91 94 139 63
-264 77 113 54 76
-265 79 104 107 9
-266 11 77 71 74
-267 55 47 60 41
-268 46 85 20 43
-269 45 48 52 86
-270 99 102 4 138
-271 132 144 47 127
-272 102 97 43 142
-273 68 81 64 65
-274 121 23 15 20
-275 104 94 95 75
-276 1 4 19 86
-277 36 80 81 131
-278 57 124 116 119
-279 67 133 82 138
-280 33 66 32 142
-281 100 137 74 97
-282 77 5 128 131
-283 91 49 52 32
-284 135 26 27 106
-285 3 6 52 20
-286 1 25 105 30
-287 46 47 115 8
-288 112 102 113 18
0

**************