C4graphGraph forms for C4 [ 288, 245 ] = BGCG(UG(ATD[144,32]);K1;{6,9})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 245 ] = BGCG(UG(ATD[144,32]);K1;{6,9}).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {140, 158}, {132, 157}, {141, 150}, {134, 155}, {130, 160}, {138, 173}, {134, 171}, {138, 164}, {137, 186}, {144, 165}, {134, 186}, {129, 193}, {128, 193}, {136, 203}, {141, 206}, {143, 199}, {131, 201}, {142, 194}, {138, 218}, {142, 222}, {139, 222}, {135, 209}, {139, 221}, {135, 220}, {135, 218}, {137, 214}, {133, 230}, {144, 245}, {129, 231}, {132, 236}, {136, 228}, {129, 236}, {137, 228}, {136, 230}, {130, 242}, {141, 253}, {132, 245}, {140, 253}, {133, 240}, {142, 251}, {143, 249}, {142, 249}, {141, 245}, {132, 248}, {139, 247}, {136, 244}, {39, 167}, {109, 237}, {70, 198}, {96, 224}, {69, 199}, {99, 225}, {22, 149}, {126, 253}, {67, 192}, {59, 184}, {75, 200}, {91, 222}, {44, 170}, {117, 243}, {70, 192}, {81, 215}, {116, 243}, {118, 241}, {29, 149}, {27, 146}, {63, 182}, {52, 189}, {113, 251}, {123, 241}, {39, 172}, {97, 234}, {16, 156}, {60, 176}, {49, 189}, {80, 220}, {102, 234}, {31, 146}, {64, 205}, {58, 183}, {42, 167}, {81, 220}, {98, 239}, {33, 175}, {69, 203}, {92, 210}, {26, 149}, {126, 241}, {42, 165}, {32, 175}, {68, 203}, {72, 199}, {84, 219}, {45, 189}, {105, 248}, {8, 154}, {120, 234}, {95, 205}, {49, 162}, {68, 215}, {11, 159}, {122, 238}, {108, 248}, {43, 191}, {79, 219}, {81, 197}, {85, 193}, {2, 151}, {110, 251}, {51, 166}, {78, 219}, {66, 212}, {78, 216}, {89, 207}, {8, 159}, {37, 189}, {45, 181}, {5, 156}, {44, 181}, {86, 207}, {50, 168}, {127, 229}, {110, 244}, {4, 159}, {114, 233}, {111, 244}, {52, 175}, {73, 210}, {77, 208}, {105, 244}, {2, 156}, {57, 167}, {40, 182}, {34, 188}, {76, 210}, {77, 211}, {99, 253}, {76, 211}, {121, 230}, {108, 243}, {102, 249}, {91, 196}, {1, 161}, {112, 208}, {104, 200}, {66, 226}, {4, 164}, {21, 180}, {113, 208}, {54, 148}, {31, 188}, {111, 204}, {103, 196}, {16, 180}, {56, 156}, {51, 151}, {72, 236}, {17, 180}, {115, 214}, {50, 151}, {49, 148}, {5, 163}, {7, 161}, {71, 224}, {17, 184}, {122, 211}, {92, 246}, {115, 217}, {10, 161}, {53, 158}, {50, 158}, {86, 250}, {61, 147}, {120, 214}, {106, 196}, {80, 254}, {13, 162}, {118, 217}, {22, 185}, {18, 162}, {107, 219}, {25, 169}, {101, 212}, {116, 198}, {119, 197}, {24, 171}, {67, 240}, {92, 232}, {97, 213}, {38, 147}, {40, 158}, {106, 220}, {12, 187}, {125, 202}, {30, 169}, {84, 227}, {95, 232}, {11, 179}, {72, 240}, {82, 234}, {43, 146}, {66, 251}, {87, 237}, {7, 188}, {21, 174}, {14, 181}, {91, 224}, {14, 178}, {108, 208}, {46, 146}, {76, 240}, {94, 226}, {102, 218}, {65, 252}, {21, 171}, {83, 236}, {35, 227}, {58, 250}, {9, 200}, {122, 187}, {62, 255}, {19, 209}, {123, 185}, {62, 252}, {59, 249}, {48, 242}, {84, 150}, {100, 166}, {32, 227}, {122, 185}, {117, 182}, {33, 226}, {12, 200}, {7, 194}, {18, 215}, {17, 212}, {124, 186}, {125, 187}, {13, 202}, {35, 228}, {34, 229}, {22, 209}, {81, 150}, {90, 157}, {97, 166}, {18, 218}, {116, 188}, {107, 163}, {105, 161}, {2, 203}, {120, 177}, {44, 229}, {23, 221}, {47, 229}, {22, 221}, {20, 216}, {126, 178}, {123, 183}, {18, 223}, {55, 250}, {31, 210}, {12, 194}, {120, 182}, {35, 237}, {96, 174}, {23, 216}, {34, 237}, {1, 209}, {110, 190}, {103, 183}, {65, 145}, {62, 238}, {39, 247}, {38, 246}, {19, 195}, {39, 246}, {64, 145}, {63, 238}, {56, 233}, {46, 255}, {100, 181}, {30, 204}, {112, 162}, {106, 184}, {59, 233}, {74, 152}, {75, 152}, {107, 184}, {25, 205}, {124, 168}, {29, 201}, {3, 214}, {125, 168}, {20, 193}, {74, 159}, {101, 176}, {35, 245}, {57, 239}, {101, 179}, {27, 204}, {65, 150}, {100, 179}, {15, 215}, {36, 252}, {76, 148}, {109, 180}, {25, 195}, {104, 178}, {67, 153}, {97, 186}, {124, 167}, {108, 183}, {105, 178}, {101, 190}, {98, 190}, {63, 226}, {119, 170}, {6, 216}, {116, 170}, {54, 232}, {27, 196}, {52, 235}, {45, 242}, {28, 195}, {1, 225}, {121, 153}, {75, 171}, {83, 179}, {6, 231}, {36, 197}, {30, 252}, {127, 157}, {63, 221}, {44, 206}, {40, 202}, {42, 201}, {112, 147}, {60, 223}, {15, 235}, {55, 211}, {33, 197}, {73, 173}, {4, 225}, {125, 152}, {124, 153}, {48, 213}, {42, 207}, {14, 235}, {1, 231}, {30, 248}, {88, 190}, {88, 191}, {26, 242}, {66, 170}, {6, 239}, {115, 154}, {61, 212}, {43, 194}, {19, 250}, {15, 230}, {21, 255}, {123, 145}, {67, 169}, {28, 246}, {85, 191}, {11, 224}, {20, 255}, {75, 160}, {3, 239}, {119, 155}, {64, 172}, {37, 201}, {13, 225}, {45, 192}, {118, 155}, {112, 157}, {78, 160}, {119, 153}, {87, 185}, {95, 177}, {12, 227}, {58, 213}, {37, 202}, {17, 254}, {94, 177}, {14, 254}, {61, 205}, {51, 195}, {41, 217}, {24, 232}, {24, 233}, {86, 164}, {90, 168}, {72, 187}, {103, 148}, {85, 166}, {87, 164}, {93, 174}, {98, 145}, {10, 254}, {6, 243}, {68, 177}, {80, 165}, {41, 223}, {47, 217}, {83, 165}, {85, 163}, {88, 174}, {90, 172}, {48, 199}, {9, 241}, {54, 206}, {98, 154}, {29, 228}, {38, 223}, {73, 176}, {86, 175}, {90, 163}, {99, 154}, {82, 169}, {110, 149}, {87, 172}, {11, 247}, {103, 155}, {100, 152}, {10, 247}, {106, 151}, {61, 192}, {51, 206}, {16, 238}, {109, 147}, {65, 191}, {56, 198}, {50, 204}, {43, 213}, {32, 222}, {25, 231}, {78, 176}, {83, 173}, {20, 235}, {57, 198}, {48, 207}, {82, 173}, {95, 160}, {2, 258}, {8, 264}, {3, 258}, {10, 265}, {29, 281}, {31, 283}, {28, 281}, {24, 287}, {26, 285}, {16, 280}, {9, 261}, {19, 287}, {8, 261}, {5, 266}, {9, 281}, {5, 279}, {26, 264}, {4, 279}, {27, 264}, {23, 259}, {13, 280}, {23, 256}, {15, 278}, {28, 258}, {3, 284}, {7, 280}, {55, 278}, {32, 258}, {41, 267}, {36, 262}, {38, 261}, {40, 267}, {41, 269}, {55, 275}, {52, 284}, {37, 268}, {57, 272}, {53, 284}, {46, 261}, {54, 282}, {60, 272}, {56, 277}, {53, 283}, {60, 275}, {34, 274}, {49, 257}, {47, 287}, {62, 268}, {58, 270}, {53, 256}, {59, 270}, {33, 279}, {46, 278}, {47, 278}, {36, 283}, {69, 260}, {79, 270}, {79, 268}, {77, 266}, {84, 275}, {71, 271}, {89, 272}, {68, 271}, {77, 262}, {70, 266}, {74, 262}, {88, 276}, {71, 266}, {89, 276}, {70, 264}, {64, 271}, {93, 274}, {94, 273}, {71, 275}, {74, 286}, {93, 265}, {73, 284}, {92, 265}, {79, 281}, {118, 288}, {93, 267}, {89, 257}, {91, 257}, {69, 280}, {82, 268}, {94, 257}, {111, 269}, {96, 263}, {114, 283}, {113, 282}, {114, 286}, {121, 277}, {127, 273}, {80, 288}, {113, 259}, {109, 286}, {115, 260}, {99, 282}, {121, 256}, {104, 273}, {107, 273}, {117, 270}, {127, 260}, {102, 282}, {117, 265}, {104, 276}, {96, 285}, {126, 256}, {111, 272}, {114, 269}, {131, 259}, {130, 259}, {143, 269}, {140, 271}, {131, 262}, {144, 277}, {129, 263}, {130, 260}, {143, 263}, {128, 267}, {140, 263}, {144, 287}, {133, 276}, {128, 279}, {137, 286}, {133, 274}, {138, 274}, {135, 285}, {134, 285}, {139, 277}, {128, 288}, {131, 288} }>;

(II) A more general form is to represent the graph as the orbit of {140, 158} under the group generated by the following permutations:

a: (1, 7, 13)(2, 8, 14)(3, 9, 15)(4, 10, 16)(5, 11, 17)(6, 12, 18)(19, 31, 37)(20, 32, 38)(21, 33, 39)(22, 34, 40)(23, 35, 41)(24, 36, 42)(25, 43, 49)(26, 44, 50)(27, 45, 51)(28, 46, 52)(29, 47, 53)(30, 48, 54)(55, 73, 79)(56, 74, 80)(57, 75, 81)(58, 76, 82)(59, 77, 83)(60, 78, 84)(61, 85, 91)(62, 86, 92)(63, 87, 93)(64, 88, 94)(65, 89, 95)(66, 90, 96)(67, 97, 103)(68, 98, 104)(69, 99, 105)(70, 100, 106)(71, 101, 107)(72, 102, 108)(109, 128, 139)(110, 127, 140)(111, 130, 141)(112, 129, 142)(113, 132, 143)(114, 131, 144)(115, 126, 136)(116, 125, 135)(117, 122, 138)(118, 121, 137)(119, 124, 134)(120, 123, 133)(145, 276, 177)(146, 189, 195)(147, 193, 222)(148, 169, 213)(149, 229, 158)(150, 272, 160)(151, 264, 181)(152, 220, 198)(153, 186, 155)(154, 178, 203)(156, 159, 254)(157, 263, 251)(161, 280, 225)(162, 231, 194)(163, 224, 212)(164, 265, 238)(165, 233, 262)(166, 196, 192)(167, 171, 197)(168, 285, 170)(172, 174, 226)(173, 270, 211)(175, 246, 255)(176, 219, 275)(179, 184, 266)(180, 279, 247)(182, 185, 274)(183, 240, 234)(187, 218, 243)(188, 202, 209)(190, 273, 271)(191, 257, 205)(199, 282, 248)(200, 215, 239)(201, 287, 283)(204, 242, 206)(207, 232, 252)(208, 236, 249)(210, 268, 250)(214, 241, 230)(216, 227, 223)(217, 256, 228)(221, 237, 267)(235, 258, 261)(244, 260, 253)(245, 269, 259)(277, 286, 288)(278, 284, 281)
b: (3, 136)(4, 135)(5, 106)(6, 105)(7, 25)(8, 26)(9, 130)(10, 129)(11, 96)(12, 95)(13, 19)(14, 20)(15, 52)(16, 51)(17, 85)(18, 86)(21, 100)(22, 99)(23, 126)(24, 125)(27, 70)(28, 69)(29, 115)(30, 116)(31, 67)(32, 68)(33, 81)(34, 82)(35, 120)(36, 119)(37, 47)(38, 48)(39, 143)(40, 144)(41, 42)(43, 61)(44, 62)(45, 46)(49, 55)(50, 56)(53, 121)(54, 122)(57, 111)(58, 112)(59, 90)(60, 89)(63, 141)(64, 142)(65, 66)(71, 91)(72, 92)(73, 133)(74, 134)(77, 103)(78, 104)(79, 127)(80, 128)(83, 93)(84, 94)(87, 102)(88, 101)(97, 109)(98, 110)(113, 123)(114, 124)(117, 132)(118, 131)(139, 140)(145, 251)(146, 192)(147, 213)(148, 211)(149, 154)(150, 226)(151, 156)(152, 171)(153, 283)(155, 262)(157, 270)(158, 277)(159, 285)(160, 200)(161, 231)(162, 250)(163, 184)(164, 218)(165, 267)(166, 180)(167, 269)(168, 233)(169, 188)(170, 252)(172, 249)(173, 274)(174, 179)(175, 215)(176, 276)(177, 227)(178, 216)(181, 255)(182, 245)(183, 208)(185, 282)(186, 286)(187, 232)(189, 278)(191, 212)(193, 254)(194, 205)(195, 280)(196, 266)(198, 204)(199, 246)(201, 217)(202, 287)(203, 258)(206, 238)(207, 223)(209, 225)(210, 240)(214, 228)(219, 273)(220, 279)(221, 253)(222, 271)(229, 268)(230, 284)(234, 237)(236, 265)(239, 244)(241, 259)(242, 261)(243, 248)(247, 263)(257, 275)(260, 281)
c: (3, 5)(4, 6)(7, 19)(8, 20)(9, 21)(10, 22)(11, 23)(12, 24)(13, 25)(14, 26)(15, 27)(16, 28)(17, 29)(18, 30)(31, 55)(32, 56)(33, 57)(34, 58)(35, 59)(36, 60)(37, 61)(38, 62)(39, 63)(40, 64)(41, 65)(42, 66)(43, 47)(44, 48)(49, 67)(50, 68)(51, 69)(52, 70)(53, 71)(54, 72)(73, 77)(74, 78)(79, 109)(80, 110)(81, 111)(82, 112)(83, 113)(84, 114)(85, 115)(86, 116)(87, 117)(88, 118)(89, 119)(90, 120)(91, 121)(92, 122)(93, 123)(94, 124)(95, 125)(96, 126)(97, 127)(98, 128)(99, 129)(100, 130)(101, 131)(102, 132)(103, 133)(104, 134)(105, 135)(106, 136)(107, 137)(108, 138)(141, 143)(142, 144)(145, 267)(146, 278)(147, 268)(148, 240)(149, 254)(150, 269)(151, 203)(152, 160)(153, 257)(154, 193)(155, 276)(156, 258)(157, 234)(158, 271)(159, 216)(161, 209)(162, 169)(163, 214)(164, 243)(165, 251)(166, 260)(167, 226)(168, 177)(170, 207)(171, 200)(172, 182)(173, 208)(174, 241)(175, 198)(176, 262)(178, 285)(179, 259)(180, 281)(181, 242)(183, 274)(184, 228)(185, 265)(186, 273)(187, 232)(188, 250)(189, 192)(190, 288)(191, 217)(194, 287)(195, 280)(196, 230)(197, 272)(199, 206)(201, 212)(202, 205)(204, 215)(210, 211)(213, 229)(218, 248)(219, 286)(220, 244)(221, 247)(222, 277)(223, 252)(224, 256)(225, 231)(227, 233)(235, 264)(236, 282)(237, 270)(238, 246)(239, 279)(245, 249)(253, 263)(255, 261)(266, 284)(275, 283)
d: (1, 2)(3, 135)(4, 136)(5, 105)(6, 106)(7, 16)(8, 15)(9, 55)(10, 56)(11, 121)(12, 122)(13, 69)(14, 70)(17, 116)(18, 115)(19, 28)(20, 27)(21, 31)(22, 32)(23, 91)(24, 92)(25, 51)(26, 52)(29, 86)(30, 85)(33, 110)(34, 109)(35, 87)(36, 88)(37, 48)(38, 47)(39, 144)(40, 143)(43, 62)(44, 61)(49, 130)(50, 129)(53, 96)(54, 95)(57, 80)(58, 79)(59, 117)(60, 118)(63, 142)(64, 141)(67, 100)(68, 99)(71, 126)(72, 125)(73, 134)(74, 133)(75, 76)(77, 104)(78, 103)(81, 98)(82, 97)(83, 124)(84, 123)(89, 131)(90, 132)(93, 114)(94, 113)(101, 119)(102, 120)(107, 108)(111, 128)(112, 127)(137, 138)(145, 150)(146, 255)(147, 229)(148, 160)(149, 175)(151, 231)(152, 240)(153, 179)(154, 215)(155, 176)(156, 161)(158, 263)(159, 230)(162, 260)(163, 248)(164, 228)(165, 167)(166, 169)(168, 236)(170, 212)(171, 210)(172, 245)(173, 186)(174, 283)(177, 282)(178, 266)(180, 188)(181, 192)(182, 249)(183, 219)(184, 243)(185, 227)(189, 242)(190, 197)(191, 252)(193, 204)(194, 238)(196, 216)(198, 254)(199, 202)(200, 211)(201, 207)(203, 225)(205, 206)(208, 273)(209, 258)(213, 268)(214, 218)(217, 223)(220, 239)(221, 222)(224, 256)(226, 251)(233, 265)(235, 264)(241, 275)(244, 279)(246, 287)(247, 277)(250, 281)(253, 271)(257, 259)(261, 278)(262, 276)(267, 269)(272, 288)(274, 286)(284, 285)
e: (1, 3, 5)(2, 4, 6)(7, 115, 70)(8, 116, 69)(9, 119, 72)(10, 120, 71)(11, 117, 68)(12, 118, 67)(13, 98, 56)(14, 97, 55)(15, 100, 58)(16, 99, 57)(17, 102, 60)(18, 101, 59)(19, 52, 85)(20, 51, 86)(21, 54, 89)(22, 53, 90)(23, 50, 87)(24, 49, 88)(25, 32, 128)(26, 31, 127)(27, 34, 130)(28, 33, 129)(29, 36, 132)(30, 35, 131)(37, 65, 144)(38, 66, 143)(39, 63, 140)(40, 64, 139)(41, 61, 142)(42, 62, 141)(43, 47, 45)(44, 48, 46)(73, 107, 135)(74, 108, 136)(75, 103, 133)(76, 104, 134)(77, 105, 137)(78, 106, 138)(79, 81, 83)(80, 82, 84)(91, 93, 95)(92, 94, 96)(109, 113, 111)(110, 114, 112)(121, 125, 123)(122, 126, 124)(145, 277, 202)(146, 229, 242)(147, 251, 269)(148, 276, 171)(149, 283, 157)(150, 165, 268)(151, 164, 216)(152, 183, 230)(153, 187, 241)(154, 198, 280)(155, 240, 200)(156, 225, 239)(158, 172, 221)(159, 243, 203)(160, 196, 274)(161, 214, 266)(162, 190, 233)(163, 209, 284)(166, 250, 235)(167, 238, 253)(168, 185, 256)(169, 227, 288)(170, 199, 261)(173, 219, 220)(174, 232, 257)(175, 193, 195)(176, 184, 218)(177, 224, 265)(178, 186, 211)(179, 270, 215)(180, 282, 272)(181, 213, 278)(182, 271, 247)(188, 260, 264)(189, 191, 287)(192, 194, 217)(197, 236, 281)(201, 252, 245)(204, 237, 259)(205, 222, 267)(206, 207, 255)(208, 244, 286)(210, 273, 285)(212, 249, 223)(226, 263, 246)(228, 262, 248)(231, 258, 279)(234, 275, 254)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 245 ]
288
-1 209 231 225 161
-2 156 203 258 151
-3 214 258 239 284
-4 279 159 225 164
-5 156 266 279 163
-6 231 243 216 239
-7 188 280 161 194
-8 154 264 159 261
-9 200 281 261 241
-10 254 265 247 161
-11 179 224 159 247
-12 187 200 194 227
-13 202 225 280 162
-14 254 178 235 181
-15 278 235 215 230
-16 156 180 280 238
-17 254 212 180 184
-18 223 215 162 218
-19 209 287 195 250
-20 255 235 193 216
-21 255 180 171 174
-22 209 221 149 185
-23 221 256 259 216
-24 232 287 233 171
-25 231 169 205 195
-26 242 264 149 285
-27 264 146 204 196
-28 246 258 281 195
-29 201 149 281 228
-30 169 204 248 252
-31 188 210 146 283
-32 222 258 227 175
-33 279 226 175 197
-34 188 237 229 274
-35 245 237 227 228
-36 283 262 197 252
-37 189 201 202 268
-38 223 147 246 261
-39 167 246 247 172
-40 267 158 202 182
-41 223 267 269 217
-42 165 167 201 207
-43 146 191 213 194
-44 170 181 206 229
-45 242 189 181 192
-46 255 146 278 261
-47 287 278 217 229
-48 242 199 213 207
-49 189 257 148 162
-50 168 158 204 151
-51 166 151 195 206
-52 189 235 284 175
-53 256 158 283 284
-54 232 148 282 206
-55 275 211 278 250
-56 198 156 233 277
-57 198 167 239 272
-58 213 270 183 250
-59 233 270 249 184
-60 176 275 223 272
-61 212 147 192 205
-62 255 268 238 252
-63 221 182 226 238
-64 145 172 205 271
-65 145 191 150 252
-66 212 170 226 251
-67 169 192 240 153
-68 177 203 215 271
-69 199 203 280 260
-70 198 264 266 192
-71 275 266 224 271
-72 187 199 236 240
-73 176 210 173 284
-74 286 159 152 262
-75 200 160 171 152
-76 210 211 148 240
-77 211 266 262 208
-78 176 160 216 219
-79 268 270 281 219
-80 165 220 254 288
-81 220 215 150 197
-82 234 169 268 173
-83 165 179 236 173
-84 275 150 227 219
-85 166 191 193 163
-86 250 207 164 175
-87 237 172 185 164
-88 276 190 191 174
-89 276 257 272 207
-90 157 168 172 163
-91 222 224 257 196
-92 210 232 265 246
-93 265 267 174 274
-94 177 257 226 273
-95 177 232 160 205
-96 224 174 263 285
-97 166 234 213 186
-98 154 145 190 239
-99 154 253 225 282
-100 166 179 181 152
-101 176 179 190 212
-102 234 249 282 218
-103 155 148 183 196
-104 276 178 200 273
-105 178 244 248 161
-106 220 151 184 196
-107 184 163 273 219
-108 243 248 183 208
-109 286 147 180 237
-110 244 190 149 251
-111 244 269 204 272
-112 157 147 162 208
-113 259 282 251 208
-114 286 233 269 283
-115 154 214 260 217
-116 198 188 243 170
-117 243 265 182 270
-118 155 288 217 241
-119 155 170 153 197
-120 177 234 214 182
-121 277 256 153 230
-122 187 211 238 185
-123 145 183 185 241
-124 167 168 153 186
-125 187 168 202 152
-126 253 178 256 241
-127 157 260 229 273
-128 288 267 279 193
-129 231 236 193 263
-130 242 160 259 260
-131 288 201 259 262
-132 157 245 236 248
-133 276 240 230 274
-134 155 171 186 285
-135 209 220 218 285
-136 244 203 228 230
-137 286 214 228 186
-138 173 218 164 274
-139 221 222 277 247
-140 253 158 271 263
-141 253 245 150 206
-142 222 194 249 251
-143 199 269 249 263
-144 165 287 277 245
-145 123 64 65 98
-146 46 27 31 43
-147 112 38 61 109
-148 103 49 54 76
-149 22 110 26 29
-150 81 84 141 65
-151 2 50 51 106
-152 100 125 74 75
-153 121 67 124 119
-154 99 115 8 98
-155 134 103 118 119
-156 56 2 5 16
-157 132 90 112 127
-158 50 40 140 53
-159 11 4 8 74
-160 78 95 75 130
-161 1 105 7 10
-162 13 112 49 18
-163 90 5 85 107
-164 4 138 86 87
-165 144 80 83 42
-166 100 51 85 97
-167 57 124 39 42
-168 90 124 125 50
-169 67 25 82 30
-170 44 66 116 119
-171 24 134 75 21
-172 90 39 64 87
-173 82 83 138 73
-174 88 93 96 21
-175 33 52 86 32
-176 78 101 60 73
-177 68 94 95 120
-178 14 104 126 105
-179 11 100 101 83
-180 16 17 21 109
-181 44 45 100 14
-182 40 117 63 120
-183 123 58 103 108
-184 59 17 106 107
-185 22 122 123 87
-186 134 124 137 97
-187 12 122 125 72
-188 34 116 7 31
-189 45 37 49 52
-190 88 110 101 98
-191 88 85 43 65
-192 45 67 70 61
-193 128 85 129 20
-194 12 7 43 142
-195 25 28 51 19
-196 91 103 27 106
-197 33 36 81 119
-198 56 57 70 116
-199 143 69 48 72
-200 12 104 9 75
-201 37 29 42 131
-202 13 37 125 40
-203 2 68 69 136
-204 111 27 50 30
-205 25 61 95 64
-206 44 51 141 54
-207 89 48 42 86
-208 77 112 113 108
-209 22 1 135 19
-210 92 73 31 76
-211 55 77 122 76
-212 66 101 17 61
-213 58 48 97 43
-214 3 115 137 120
-215 68 15 81 18
-216 23 78 6 20
-217 47 115 41 118
-218 102 135 138 18
-219 78 79 84 107
-220 80 135 81 106
-221 22 23 139 63
-222 91 139 32 142
-223 38 60 18 41
-224 11 91 71 96
-225 99 1 13 4
-226 33 66 94 63
-227 12 35 84 32
-228 35 136 137 29
-229 44 34 47 127
-230 121 133 15 136
-231 1 25 6 129
-232 24 92 95 54
-233 56 24 59 114
-234 102 82 97 120
-235 14 15 52 20
-236 132 72 83 129
-237 34 35 87 109
-238 122 16 62 63
-239 57 3 6 98
-240 67 133 72 76
-241 123 126 118 9
-242 45 26 48 130
-243 6 116 117 108
-244 110 111 136 105
-245 132 144 35 141
-246 92 38 28 39
-247 11 39 139 10
-248 132 105 30 108
-249 143 102 59 142
-250 55 58 19 86
-251 66 110 113 142
-252 36 62 30 65
-253 99 126 140 141
-254 14 80 17 10
-255 46 62 20 21
-256 121 23 126 53
-257 89 91 49 94
-258 2 3 28 32
-259 23 113 130 131
-260 69 115 127 130
-261 46 38 8 9
-262 77 36 74 131
-263 143 96 129 140
-264 26 70 27 8
-265 92 93 117 10
-266 77 70 5 71
-267 93 40 128 41
-268 79 37 82 62
-269 143 111 114 41
-270 79 58 59 117
-271 68 71 140 64
-272 89 111 57 60
-273 104 94 127 107
-274 34 133 93 138
-275 55 60 71 84
-276 88 89 133 104
-277 121 56 144 139
-278 55 46 47 15
-279 33 4 5 128
-280 13 69 16 7
-281 79 28 29 9
-282 99 102 113 54
-283 36 114 31 53
-284 3 73 52 53
-285 134 135 26 96
-286 114 137 74 109
-287 144 24 47 19
-288 80 128 118 131
0

**************