C4graphGraph forms for C4 [ 288, 247 ] = BGCG(UG(ATD[144,77]);K1;2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 247 ] = BGCG(UG(ATD[144,77]);K1;2).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {130, 147}, {137, 155}, {141, 152}, {142, 155}, {129, 152}, {130, 155}, {135, 165}, {140, 175}, {143, 172}, {140, 170}, {131, 171}, {136, 164}, {128, 173}, {131, 182}, {143, 186}, {133, 189}, {141, 181}, {129, 184}, {137, 179}, {142, 181}, {128, 188}, {135, 186}, {142, 179}, {139, 203}, {133, 196}, {139, 200}, {137, 197}, {129, 207}, {132, 212}, {144, 194}, {139, 223}, {138, 223}, {130, 218}, {134, 222}, {129, 216}, {144, 201}, {141, 209}, {131, 221}, {144, 240}, {136, 233}, {143, 237}, {132, 225}, {130, 229}, {141, 234}, {142, 230}, {133, 236}, {132, 238}, {135, 237}, {133, 232}, {134, 247}, {135, 242}, {144, 232}, {140, 240}, {106, 234}, {34, 163}, {126, 255}, {89, 216}, {91, 218}, {44, 174}, {93, 223}, {65, 194}, {125, 254}, {103, 228}, {33, 165}, {66, 198}, {64, 196}, {36, 160}, {75, 207}, {78, 202}, {85, 209}, {24, 157}, {80, 213}, {27, 157}, {79, 201}, {80, 214}, {96, 230}, {26, 157}, {124, 251}, {121, 254}, {39, 160}, {102, 225}, {68, 204}, {85, 221}, {16, 153}, {121, 240}, {119, 254}, {34, 171}, {23, 158}, {101, 236}, {49, 187}, {69, 207}, {62, 180}, {77, 199}, {80, 218}, {75, 192}, {125, 246}, {76, 199}, {22, 154}, {104, 228}, {58, 182}, {51, 191}, {29, 145}, {88, 212}, {37, 168}, {64, 205}, {46, 163}, {90, 215}, {41, 167}, {96, 238}, {84, 219}, {90, 213}, {99, 236}, {5, 149}, {13, 157}, {12, 156}, {6, 151}, {122, 235}, {11, 154}, {77, 220}, {82, 195}, {12, 158}, {121, 235}, {113, 227}, {62, 172}, {49, 163}, {48, 162}, {44, 190}, {84, 198}, {46, 189}, {49, 162}, {35, 183}, {53, 161}, {40, 188}, {38, 178}, {32, 181}, {107, 254}, {50, 167}, {64, 214}, {125, 235}, {108, 251}, {116, 227}, {7, 159}, {111, 247}, {3, 154}, {7, 158}, {82, 203}, {96, 250}, {10, 145}, {105, 242}, {47, 180}, {76, 215}, {87, 204}, {58, 166}, {120, 228}, {85, 201}, {92, 192}, {3, 158}, {126, 227}, {56, 165}, {14, 147}, {90, 199}, {100, 249}, {32, 190}, {103, 249}, {86, 200}, {63, 159}, {127, 223}, {54, 151}, {72, 233}, {21, 183}, {115, 209}, {59, 153}, {84, 246}, {28, 191}, {53, 150}, {50, 145}, {20, 176}, {122, 222}, {28, 184}, {52, 145}, {89, 252}, {15, 169}, {95, 249}, {51, 148}, {4, 173}, {111, 198}, {70, 239}, {29, 180}, {85, 255}, {69, 238}, {105, 194}, {76, 231}, {77, 230}, {21, 185}, {120, 212}, {31, 179}, {100, 200}, {5, 168}, {115, 222}, {63, 146}, {71, 234}, {87, 250}, {60, 146}, {109, 195}, {86, 249}, {97, 206}, {98, 205}, {101, 202}, {14, 190}, {123, 203}, {79, 255}, {99, 211}, {24, 169}, {65, 240}, {29, 172}, {118, 196}, {23, 164}, {103, 212}, {70, 245}, {36, 151}, {94, 237}, {3, 183}, {112, 196}, {110, 218}, {78, 250}, {92, 234}, {9, 190}, {127, 200}, {108, 219}, {66, 245}, {77, 250}, {31, 167}, {123, 195}, {107, 211}, {43, 147}, {79, 247}, {17, 168}, {124, 197}, {86, 239}, {88, 225}, {25, 163}, {113, 203}, {37, 159}, {28, 166}, {12, 183}, {94, 229}, {22, 170}, {91, 231}, {2, 191}, {119, 202}, {40, 149}, {16, 173}, {101, 216}, {1, 191}, {75, 245}, {83, 237}, {106, 170}, {114, 178}, {19, 210}, {33, 224}, {89, 152}, {42, 232}, {4, 192}, {43, 239}, {20, 208}, {102, 162}, {4, 193}, {98, 167}, {7, 193}, {32, 230}, {21, 210}, {51, 244}, {117, 189}, {30, 215}, {107, 162}, {53, 252}, {45, 228}, {122, 177}, {26, 214}, {112, 188}, {57, 245}, {51, 255}, {49, 253}, {17, 220}, {112, 189}, {47, 226}, {81, 156}, {90, 151}, {44, 226}, {106, 164}, {9, 217}, {74, 154}, {8, 217}, {56, 233}, {41, 251}, {29, 206}, {33, 242}, {74, 153}, {98, 177}, {35, 247}, {111, 187}, {33, 244}, {70, 147}, {54, 227}, {23, 193}, {127, 169}, {121, 175}, {46, 248}, {26, 205}, {118, 161}, {62, 233}, {10, 210}, {108, 180}, {65, 153}, {57, 225}, {9, 208}, {120, 161}, {105, 176}, {21, 204}, {39, 253}, {118, 172}, {105, 179}, {42, 246}, {119, 171}, {4, 217}, {37, 248}, {31, 194}, {102, 187}, {103, 186}, {112, 174}, {34, 253}, {109, 178}, {56, 231}, {52, 235}, {60, 220}, {124, 156}, {13, 236}, {64, 161}, {61, 220}, {45, 204}, {43, 202}, {25, 248}, {18, 243}, {19, 241}, {116, 150}, {30, 253}, {48, 211}, {42, 201}, {81, 178}, {13, 232}, {119, 146}, {78, 171}, {93, 184}, {95, 186}, {6, 224}, {114, 148}, {59, 221}, {20, 242}, {2, 229}, {55, 208}, {15, 231}, {126, 150}, {27, 243}, {17, 248}, {48, 217}, {76, 165}, {92, 181}, {25, 243}, {126, 148}, {59, 209}, {52, 222}, {44, 198}, {14, 229}, {115, 152}, {37, 206}, {14, 226}, {72, 164}, {15, 226}, {71, 170}, {58, 215}, {72, 166}, {120, 150}, {114, 156}, {87, 185}, {83, 188}, {32, 208}, {38, 214}, {35, 210}, {48, 193}, {42, 219}, {36, 213}, {89, 168}, {92, 173}, {6, 244}, {68, 182}, {67, 177}, {61, 207}, {41, 219}, {18, 224}, {82, 160}, {91, 169}, {38, 213}, {67, 176}, {43, 216}, {75, 184}, {27, 239}, {55, 195}, {79, 187}, {91, 175}, {110, 155}, {2, 244}, {71, 177}, {99, 149}, {12, 251}, {9, 241}, {88, 160}, {5, 252}, {107, 146}, {60, 197}, {57, 192}, {25, 224}, {8, 241}, {73, 176}, {63, 197}, {110, 148}, {84, 174}, {10, 241}, {66, 185}, {60, 199}, {40, 211}, {93, 166}, {50, 206}, {1, 252}, {104, 149}, {19, 238}, {83, 174}, {8, 246}, {13, 243}, {72, 182}, {97, 159}, {34, 221}, {70, 185}, {50, 205}, {80, 175}, {3, 259}, {24, 280}, {16, 273}, {30, 287}, {10, 264}, {28, 286}, {1, 261}, {26, 286}, {18, 278}, {2, 262}, {17, 279}, {24, 286}, {27, 284}, {8, 256}, {6, 271}, {11, 257}, {11, 263}, {22, 282}, {15, 259}, {46, 288}, {18, 285}, {31, 271}, {11, 281}, {20, 257}, {22, 259}, {16, 262}, {54, 288}, {7, 272}, {30, 261}, {5, 283}, {23, 265}, {1, 286}, {19, 268}, {61, 285}, {39, 261}, {58, 287}, {38, 256}, {41, 271}, {61, 279}, {47, 259}, {39, 264}, {63, 272}, {53, 261}, {40, 281}, {62, 268}, {57, 266}, {36, 272}, {56, 268}, {55, 258}, {55, 257}, {35, 283}, {54, 271}, {47, 276}, {45, 273}, {52, 264}, {59, 262}, {45, 275}, {73, 265}, {82, 272}, {95, 285}, {66, 260}, {73, 270}, {81, 281}, {95, 278}, {86, 284}, {69, 270}, {74, 257}, {87, 282}, {88, 264}, {93, 269}, {73, 280}, {113, 288}, {68, 278}, {94, 269}, {67, 279}, {78, 282}, {68, 273}, {117, 288}, {74, 284}, {81, 263}, {69, 285}, {71, 287}, {94, 262}, {67, 280}, {65, 284}, {83, 269}, {100, 260}, {117, 277}, {115, 274}, {100, 263}, {106, 265}, {110, 267}, {122, 287}, {113, 276}, {127, 280}, {99, 267}, {111, 260}, {96, 268}, {102, 266}, {109, 256}, {101, 267}, {124, 274}, {109, 258}, {116, 260}, {97, 275}, {123, 265}, {104, 283}, {116, 263}, {97, 277}, {118, 258}, {98, 279}, {123, 270}, {108, 276}, {114, 267}, {104, 275}, {125, 256}, {117, 266}, {138, 266}, {138, 269}, {132, 270}, {143, 258}, {128, 273}, {134, 274}, {131, 278}, {140, 282}, {128, 281}, {136, 275}, {137, 274}, {134, 283}, {136, 277}, {138, 277}, {139, 276} }>;

(II) A more general form is to represent the graph as the orbit of {130, 147} under the group generated by the following permutations:

a: (2, 39)(4, 55)(5, 24)(6, 34)(7, 74)(8, 32)(10, 14)(11, 23)(12, 22)(13, 17)(15, 35)(16, 82)(18, 46)(19, 44)(20, 48)(21, 47)(26, 89)(27, 37)(28, 53)(29, 70)(30, 51)(31, 119)(33, 49)(36, 59)(38, 141)(40, 73)(41, 78)(42, 77)(43, 50)(45, 139)(52, 130)(54, 131)(56, 111)(57, 143)(58, 126)(60, 144)(61, 133)(62, 66)(63, 65)(64, 129)(67, 99)(68, 113)(69, 112)(71, 114)(72, 116)(75, 118)(76, 79)(80, 115)(81, 106)(83, 132)(84, 96)(85, 90)(86, 97)(87, 108)(88, 94)(91, 134)(92, 109)(93, 120)(95, 117)(98, 101)(100, 136)(102, 135)(103, 138)(104, 127)(105, 107)(110, 122)(121, 137)(123, 128)(124, 140)(125, 142)(145, 147)(146, 194)(148, 287)(149, 280)(150, 166)(151, 221)(152, 214)(153, 272)(154, 158)(155, 235)(156, 170)(157, 168)(159, 284)(160, 262)(161, 184)(162, 242)(163, 224)(164, 263)(165, 187)(167, 202)(169, 283)(171, 271)(172, 245)(173, 195)(174, 238)(175, 274)(176, 211)(177, 267)(178, 234)(179, 254)(180, 185)(181, 256)(182, 227)(183, 259)(186, 266)(188, 270)(189, 285)(190, 241)(191, 261)(192, 258)(193, 257)(196, 207)(197, 240)(198, 268)(199, 201)(200, 275)(203, 273)(204, 276)(205, 216)(206, 239)(208, 217)(209, 213)(210, 226)(212, 269)(215, 255)(218, 222)(219, 250)(220, 232)(223, 228)(225, 237)(229, 264)(230, 246)(231, 247)(233, 260)(236, 279)(243, 248)(244, 253)(249, 277)(251, 282)(252, 286)(265, 281)(278, 288)
b: (1, 2, 14, 9, 10, 39)(3, 7, 37, 25, 27, 74)(4, 29, 49, 26, 59, 15)(5, 6, 43, 20, 21, 82)(8, 52, 30, 28, 94, 44)(11, 12, 63, 17, 18, 86)(13, 65, 22, 23, 97, 46)(16, 47, 48, 50, 34, 24)(19, 88, 53, 51, 130, 32)(31, 78, 73, 45, 113, 99)(33, 70, 55, 35, 36, 89)(38, 115, 76, 75, 143, 111)(40, 41, 119, 67, 68, 139)(42, 121, 71, 72, 138, 112)(54, 101, 105, 87, 123, 104)(56, 57, 118, 79, 80, 141)(58, 93, 83, 84, 125, 122)(60, 61, 95, 100, 81, 124)(62, 102, 64, 85, 91, 92)(66, 109, 134, 90, 129, 135)(69, 103, 116, 114, 137, 77)(96, 132, 120, 126, 110, 142)(98, 131, 127, 128, 108, 107)(106, 136, 117, 133, 144, 140)(145, 253, 286, 262, 226, 217)(146, 279, 278, 200, 281, 251)(147, 208, 210, 160, 252, 244)(148, 155, 230, 238, 212, 150)(149, 271, 202, 176, 204, 203)(151, 216, 242, 185, 195, 283)(152, 165, 245, 258, 247, 213)(153, 259, 193, 206, 163, 157)(154, 158, 159, 248, 243, 284)(156, 197, 220, 285, 249, 263)(161, 255, 218, 181, 268, 225)(162, 205, 221, 169, 173, 180)(164, 277, 189, 232, 240, 170)(166, 269, 174, 246, 235, 287)(167, 171, 280, 273, 276, 211)(168, 224, 239, 257, 183, 272)(172, 187, 214, 209, 231, 192)(175, 234, 233, 266, 196, 201)(177, 182, 223, 188, 219, 254)(178, 274, 199, 207, 186, 260)(179, 250, 270, 228, 227, 267)(184, 237, 198, 256, 222, 215)(190, 241, 264, 261, 191, 229)(194, 282, 265, 275, 288, 236)
c: (2, 24)(3, 9)(4, 23)(5, 39)(6, 13)(7, 48)(8, 12)(10, 35)(11, 55)(14, 15)(16, 73)(17, 34)(19, 21)(20, 74)(22, 32)(26, 51)(27, 33)(29, 111)(30, 89)(31, 144)(36, 99)(37, 49)(38, 114)(40, 82)(41, 42)(43, 76)(44, 47)(45, 132)(50, 79)(52, 134)(54, 133)(56, 70)(57, 136)(58, 129)(59, 67)(60, 119)(61, 131)(62, 66)(63, 107)(64, 126)(65, 105)(68, 69)(71, 141)(72, 75)(77, 78)(80, 110)(81, 109)(83, 139)(84, 108)(85, 98)(86, 135)(87, 96)(88, 104)(90, 101)(91, 130)(92, 106)(94, 127)(97, 102)(100, 143)(112, 113)(115, 122)(116, 118)(121, 137)(123, 128)(124, 125)(140, 142)(145, 247)(147, 231)(148, 214)(149, 160)(150, 161)(151, 236)(152, 287)(153, 176)(154, 208)(155, 175)(156, 256)(157, 244)(158, 217)(159, 162)(163, 248)(164, 192)(165, 239)(166, 184)(167, 201)(168, 253)(169, 229)(170, 181)(171, 220)(172, 260)(173, 265)(174, 276)(177, 209)(179, 240)(180, 198)(182, 207)(183, 241)(185, 268)(186, 249)(187, 206)(188, 203)(189, 288)(190, 259)(191, 286)(195, 281)(196, 227)(197, 254)(199, 202)(200, 237)(204, 238)(205, 255)(211, 272)(212, 228)(213, 267)(215, 216)(221, 279)(223, 269)(224, 243)(225, 275)(230, 282)(232, 271)(233, 245)(235, 274)(242, 284)(246, 251)(252, 261)(258, 263)(262, 280)(264, 283)(266, 277)(270, 273)(278, 285)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 247 ]
288
-1 286 191 261 252
-2 244 191 229 262
-3 154 158 259 183
-4 192 193 173 217
-5 168 149 283 252
-6 244 224 271 151
-7 158 159 193 272
-8 256 246 217 241
-9 190 217 208 241
-10 264 210 145 241
-11 154 257 281 263
-12 156 158 183 251
-13 232 243 157 236
-14 190 147 226 229
-15 231 169 226 259
-16 173 262 273 153
-17 220 168 279 248
-18 243 278 224 285
-19 210 268 238 241
-20 176 242 257 208
-21 210 204 183 185
-22 154 170 259 282
-23 265 158 193 164
-24 286 157 169 280
-25 243 224 248 163
-26 286 157 214 205
-27 243 157 239 284
-28 286 166 191 184
-29 145 180 172 206
-30 253 287 215 261
-31 167 179 194 271
-32 190 181 208 230
-33 165 242 244 224
-34 253 221 171 163
-35 210 247 183 283
-36 213 160 151 272
-37 168 159 248 206
-38 178 256 213 214
-39 253 264 160 261
-40 188 211 149 281
-41 167 271 251 219
-42 232 201 246 219
-43 147 202 216 239
-44 198 190 226 174
-45 275 204 228 273
-46 189 288 248 163
-47 276 180 226 259
-48 211 193 162 217
-49 187 253 162 163
-50 145 167 205 206
-51 244 255 191 148
-52 264 145 222 235
-53 150 161 261 252
-54 288 227 271 151
-55 257 258 195 208
-56 165 231 233 268
-57 266 245 192 225
-58 166 287 182 215
-59 209 221 262 153
-60 220 199 146 197
-61 220 279 207 285
-62 233 180 268 172
-63 146 159 272 197
-64 214 161 205 196
-65 194 240 284 153
-66 198 245 260 185
-67 176 177 279 280
-68 278 182 204 273
-69 270 238 207 285
-70 245 147 239 185
-71 177 287 234 170
-72 166 233 182 164
-73 176 265 280 270
-74 154 257 284 153
-75 245 192 184 207
-76 165 231 199 215
-77 220 199 250 230
-78 202 171 282 250
-79 187 255 201 247
-80 213 214 218 175
-81 156 178 281 263
-82 203 160 195 272
-83 188 269 237 174
-84 198 246 174 219
-85 209 221 255 201
-86 200 249 239 284
-87 204 282 250 185
-88 264 212 225 160
-89 168 216 152 252
-90 199 213 215 151
-91 231 169 218 175
-92 234 181 192 173
-93 166 223 269 184
-94 269 237 229 262
-95 278 249 186 285
-96 268 238 250 230
-97 275 277 159 206
-98 177 167 279 205
-99 211 267 236 149
-100 200 249 260 263
-101 267 202 236 216
-102 187 266 225 162
-103 212 249 228 186
-104 275 149 228 283
-105 176 242 179 194
-106 265 234 170 164
-107 254 211 146 162
-108 276 180 251 219
-109 178 256 258 195
-110 155 267 148 218
-111 187 198 247 260
-112 188 189 174 196
-113 276 288 203 227
-114 156 178 267 148
-115 209 222 152 274
-116 150 227 260 263
-117 189 277 266 288
-118 258 161 172 196
-119 254 146 202 171
-120 212 150 161 228
-121 254 235 240 175
-122 177 287 222 235
-123 265 203 270 195
-124 156 251 197 274
-125 254 256 235 246
-126 255 148 150 227
-127 200 223 169 280
-128 188 281 173 273
-129 216 184 152 207
-130 155 147 218 229
-131 221 278 171 182
-132 212 225 270 238
-133 232 189 236 196
-134 222 247 283 274
-135 165 242 237 186
-136 275 233 277 164
-137 155 179 197 274
-138 266 277 223 269
-139 276 200 223 203
-140 170 282 240 175
-141 209 234 181 152
-142 155 179 181 230
-143 258 237 172 186
-144 232 201 194 240
-145 50 29 52 10
-146 60 63 107 119
-147 14 70 130 43
-148 110 114 126 51
-149 99 5 104 40
-150 126 116 53 120
-151 90 36 6 54
-152 89 115 129 141
-153 59 16 74 65
-154 11 22 3 74
-155 110 137 130 142
-156 12 124 81 114
-157 13 24 26 27
-158 12 23 3 7
-159 37 7 63 97
-160 88 36 82 39
-161 118 53 64 120
-162 102 48 49 107
-163 34 46 25 49
-164 23 136 72 106
-165 33 56 135 76
-166 58 93 28 72
-167 50 41 31 98
-168 89 37 5 17
-169 24 91 15 127
-170 22 71 106 140
-171 34 78 119 131
-172 143 29 62 118
-173 4 92 16 128
-174 44 112 83 84
-175 121 80 91 140
-176 67 105 73 20
-177 67 122 71 98
-178 81 114 38 109
-179 137 105 31 142
-180 47 29 62 108
-181 92 141 32 142
-182 68 58 72 131
-183 12 35 3 21
-184 93 28 129 75
-185 66 70 21 87
-186 143 135 103 95
-187 111 79 102 49
-188 112 83 40 128
-189 133 46 112 117
-190 44 14 9 32
-191 1 2 28 51
-192 57 4 92 75
-193 23 4 48 7
-194 144 105 31 65
-195 55 123 82 109
-196 133 112 118 64
-197 124 60 137 63
-198 44 66 111 84
-199 77 90 60 76
-200 100 127 139 86
-201 144 79 85 42
-202 78 101 119 43
-203 123 113 82 139
-204 45 68 21 87
-205 26 50 64 98
-206 37 50 29 97
-207 69 61 129 75
-208 55 9 20 32
-209 59 115 85 141
-210 35 19 10 21
-211 99 48 40 107
-212 88 132 103 120
-213 90 36 80 38
-214 80 26 38 64
-215 90 58 30 76
-216 89 101 129 43
-217 4 48 8 9
-218 110 80 91 130
-219 84 41 42 108
-220 77 60 17 61
-221 34 59 85 131
-222 122 134 115 52
-223 93 127 138 139
-224 33 25 6 18
-225 88 132 57 102
-226 44 14 47 15
-227 113 126 116 54
-228 45 103 104 120
-229 2 14 94 130
-230 77 96 32 142
-231 56 91 15 76
-232 133 144 13 42
-233 56 136 72 62
-234 92 71 106 141
-235 121 122 125 52
-236 99 133 13 101
-237 143 135 83 94
-238 132 69 19 96
-239 70 27 86 43
-240 121 144 140 65
-241 8 19 9 10
-242 33 135 105 20
-243 13 25 27 18
-244 33 2 6 51
-245 66 57 70 75
-246 125 84 8 42
-247 111 35 79 134
-248 46 25 37 17
-249 100 103 95 86
-250 77 78 96 87
-251 12 124 41 108
-252 1 89 5 53
-253 34 49 39 30
-254 121 125 107 119
-255 79 126 51 85
-256 125 38 8 109
-257 11 55 74 20
-258 55 143 118 109
-259 22 3 47 15
-260 66 100 111 116
-261 1 39 30 53
-262 2 59 16 94
-263 11 100 81 116
-264 88 39 52 10
-265 23 123 73 106
-266 57 102 138 117
-267 99 110 101 114
-268 56 62 19 96
-269 93 83 94 138
-270 132 123 69 73
-271 6 41 31 54
-272 36 82 7 63
-273 45 68 16 128
-274 134 124 115 137
-275 45 136 104 97
-276 47 113 139 108
-277 136 138 117 97
-278 68 18 95 131
-279 67 17 61 98
-280 67 24 127 73
-281 11 81 40 128
-282 22 78 140 87
-283 35 134 5 104
-284 27 74 86 65
-285 69 61 18 95
-286 1 24 26 28
-287 122 58 71 30
-288 46 113 117 54
0

**************