[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 289, 1 ] =
C_289(1,38).
(I) Following is a form readable by MAGMA:
g:=Graph<289|{ {2, 3}, {288, 289}, {286, 287}, {284, 285}, {282, 283}, {280,
281}, {278, 279}, {276, 277}, {274, 275}, {272, 273}, {270, 271}, {268, 269},
{266, 267}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254,
255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243},
{240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228,
229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217},
{214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {116, 117}, {114,
115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103},
{100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86,
87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70,
71}, {68, 69}, {66, 67}, {64, 65}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13},
{14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29},
{30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45},
{46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61},
{62, 63}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128,
129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141},
{142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154,
155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167},
{168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180,
181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193},
{194, 195}, {196, 197}, {198, 199}, {200, 201}, {202, 203}, {204, 205}, {1, 2},
{285, 286}, {281, 282}, {277, 278}, {273, 274}, {269, 270}, {265, 266}, {261,
262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238},
{233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209,
210}, {113, 114}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89,
90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {5, 6}, {9,
10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41,
42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {117, 118}, {121, 122},
{125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149,
150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174},
{177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {201,
202}, {205, 206}, {3, 4}, {283, 284}, {275, 276}, {267, 268}, {259, 260}, {251,
252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {115, 116},
{107, 108}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {11, 12}, {19,
20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {59, 60}, {123, 124}, {131, 132},
{139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187,
188}, {195, 196}, {203, 204}, {7, 8}, {279, 280}, {263, 264}, {247, 248}, {231,
232}, {215, 216}, {103, 104}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56},
{119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {199, 200}, {15,
16}, {271, 272}, {239, 240}, {207, 208}, {111, 112}, {79, 80}, {47, 48}, {143,
144}, {175, 176}, {1, 39}, {217, 255}, {216, 254}, {209, 247}, {208, 246}, {89,
127}, {88, 126}, {81, 119}, {80, 118}, {73, 111}, {72, 110}, {65, 103}, {64,
102}, {8, 46}, {9, 47}, {16, 54}, {17, 55}, {24, 62}, {25, 63}, {128, 166},
{129, 167}, {136, 174}, {137, 175}, {144, 182}, {145, 183}, {152, 190}, {153,
191}, {192, 230}, {193, 231}, {200, 238}, {201, 239}, {2, 40}, {215, 253}, {214,
252}, {211, 249}, {210, 248}, {87, 125}, {86, 124}, {83, 121}, {82, 120}, {71,
109}, {70, 108}, {67, 105}, {66, 104}, {3, 41}, {6, 44}, {7, 45}, {18, 56}, {19,
57}, {22, 60}, {23, 61}, {130, 168}, {131, 169}, {134, 172}, {135, 173}, {146,
184}, {147, 185}, {150, 188}, {151, 189}, {194, 232}, {195, 233}, {198, 236},
{199, 237}, {4, 42}, {213, 251}, {212, 250}, {85, 123}, {84, 122}, {69, 107},
{68, 106}, {5, 43}, {20, 58}, {21, 59}, {132, 170}, {133, 171}, {148, 186},
{149, 187}, {196, 234}, {197, 235}, {10, 48}, {207, 245}, {206, 244}, {79, 117},
{78, 116}, {75, 113}, {74, 112}, {11, 49}, {14, 52}, {15, 53}, {138, 176}, {139,
177}, {142, 180}, {143, 181}, {202, 240}, {203, 241}, {12, 50}, {205, 243}, {77,
115}, {76, 114}, {13, 51}, {140, 178}, {141, 179}, {204, 242}, {31, 32}, {287,
288}, {223, 224}, {95, 96}, {159, 160}, {26, 64}, {63, 101}, {27, 65}, {30, 68},
{31, 69}, {58, 96}, {59, 97}, {62, 100}, {154, 192}, {155, 193}, {158, 196},
{159, 197}, {186, 224}, {187, 225}, {190, 228}, {191, 229}, {28, 66}, {29, 67},
{60, 98}, {61, 99}, {156, 194}, {157, 195}, {188, 226}, {189, 227}, {32, 70},
{33, 71}, {40, 78}, {41, 79}, {48, 86}, {49, 87}, {56, 94}, {57, 95}, {160,
198}, {161, 199}, {168, 206}, {169, 207}, {176, 214}, {177, 215}, {184, 222},
{185, 223}, {34, 72}, {35, 73}, {38, 76}, {39, 77}, {50, 88}, {51, 89}, {54,
92}, {55, 93}, {162, 200}, {163, 201}, {166, 204}, {167, 205}, {178, 216}, {179,
217}, {182, 220}, {183, 221}, {36, 74}, {37, 75}, {52, 90}, {53, 91}, {164,
202}, {165, 203}, {180, 218}, {181, 219}, {42, 80}, {43, 81}, {46, 84}, {47,
85}, {170, 208}, {171, 209}, {174, 212}, {175, 213}, {44, 82}, {45, 83}, {172,
210}, {173, 211}, {63, 64}, {191, 192}, {90, 128}, {95, 133}, {94, 132}, {91,
129}, {122, 160}, {123, 161}, {126, 164}, {127, 165}, {92, 130}, {93, 131},
{124, 162}, {125, 163}, {96, 134}, {113, 151}, {112, 150}, {105, 143}, {104,
142}, {97, 135}, {120, 158}, {121, 159}, {98, 136}, {115, 153}, {114, 152},
{103, 141}, {102, 140}, {99, 137}, {118, 156}, {119, 157}, {100, 138}, {116,
154}, {101, 139}, {117, 155}, {106, 144}, {111, 149}, {110, 148}, {107, 145},
{4, 255}, {1, 252}, {3, 254}, {108, 146}, {109, 147}, {2, 253}, {127, 128}, {5,
256}, {7, 258}, {13, 264}, {15, 266}, {21, 272}, {23, 274}, {29, 280}, {31,
282}, {37, 288}, {6, 257}, {14, 265}, {22, 273}, {30, 281}, {38, 289}, {8, 259},
{12, 263}, {24, 275}, {28, 279}, {9, 260}, {11, 262}, {25, 276}, {27, 278}, {10,
261}, {26, 277}, {16, 267}, {20, 271}, {17, 268}, {19, 270}, {18, 269}, {1,
289}, {32, 283}, {36, 287}, {33, 284}, {35, 286}, {34, 285}, {218, 256}, {251,
289}, {250, 288}, {223, 261}, {222, 260}, {219, 257}, {220, 258}, {221, 259},
{224, 262}, {249, 287}, {248, 286}, {241, 279}, {240, 278}, {233, 271}, {232,
270}, {225, 263}, {226, 264}, {247, 285}, {246, 284}, {243, 281}, {242, 280},
{231, 269}, {230, 268}, {227, 265}, {228, 266}, {245, 283}, {244, 282}, {229,
267}, {234, 272}, {239, 277}, {238, 276}, {235, 273}, {236, 274}, {237, 275},
{255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 252, 289, 39)(3, 214, 288, 77)(4, 176, 287, 115)(5, 138, 286, 153)(6,
100, 285, 191)(7, 62, 284, 229)(8, 24, 283, 267)(9, 275, 282, 16)(10, 237, 281,
54)(11, 199, 280, 92)(12, 161, 279, 130)(13, 123, 278, 168)(14, 85, 277,
206)(15, 47, 276, 244)(17, 260, 274, 31)(18, 222, 273, 69)(19, 184, 272,
107)(20, 146, 271, 145)(21, 108, 270, 183)(22, 70, 269, 221)(23, 32, 268,
259)(25, 245, 266, 46)(26, 207, 265, 84)(27, 169, 264, 122)(28, 131, 263,
160)(29, 93, 262, 198)(30, 55, 261, 236)(33, 230, 258, 61)(34, 192, 257, 99)(35,
154, 256, 137)(36, 116, 255, 175)(37, 78, 254, 213)(38, 40, 253, 251)(41, 215,
250, 76)(42, 177, 249, 114)(43, 139, 248, 152)(44, 101, 247, 190)(45, 63, 246,
228)(48, 238, 243, 53)(49, 200, 242, 91)(50, 162, 241, 129)(51, 124, 240,
167)(52, 86, 239, 205)(56, 223, 235, 68)(57, 185, 234, 106)(58, 147, 233,
144)(59, 109, 232, 182)(60, 71, 231, 220)(64, 208, 227, 83)(65, 170, 226,
121)(66, 132, 225, 159)(67, 94, 224, 197)(72, 193, 219, 98)(73, 155, 218,
136)(74, 117, 217, 174)(75, 79, 216, 212)(80, 178, 211, 113)(81, 140, 210,
151)(82, 102, 209, 189)(87, 201, 204, 90)(88, 163, 203, 128)(89, 125, 202,
166)(95, 186, 196, 105)(96, 148, 195, 143)(97, 110, 194, 181)(103, 171, 188,
120)(104, 133, 187, 158)(111, 156, 180, 135)(112, 118, 179, 173)(119, 141, 172,
150)(126, 164, 165, 127)(134, 149, 157, 142)
C4[ 289, 1 ]
289
-1 2 289 39 252
-2 253 1 3 40
-3 254 2 4 41
-4 255 3 5 42
-5 256 4 6 43
-6 44 257 5 7
-7 45 258 6 8
-8 46 259 7 9
-9 47 260 8 10
-10 11 48 261 9
-11 12 49 262 10
-12 11 13 50 263
-13 264 12 14 51
-14 265 13 15 52
-15 266 14 16 53
-16 267 15 17 54
-17 55 268 16 18
-18 56 269 17 19
-19 57 270 18 20
-20 58 271 19 21
-21 22 59 272 20
-22 23 60 273 21
-23 22 24 61 274
-24 275 23 25 62
-25 276 24 26 63
-26 277 25 27 64
-27 278 26 28 65
-28 66 279 27 29
-29 67 280 28 30
-30 68 281 29 31
-31 69 282 30 32
-32 33 70 283 31
-33 34 71 284 32
-34 33 35 72 285
-35 286 34 36 73
-36 287 35 37 74
-37 288 36 38 75
-38 289 37 39 76
-39 77 1 38 40
-40 78 2 39 41
-41 79 3 40 42
-42 80 4 41 43
-43 44 81 5 42
-44 45 82 6 43
-45 44 46 83 7
-46 45 47 84 8
-47 46 48 85 9
-48 47 49 86 10
-49 11 48 50 87
-50 88 12 49 51
-51 89 13 50 52
-52 90 14 51 53
-53 91 15 52 54
-54 55 92 16 53
-55 56 93 17 54
-56 55 57 94 18
-57 56 58 95 19
-58 57 59 96 20
-59 58 60 97 21
-60 22 59 61 98
-61 99 23 60 62
-62 100 24 61 63
-63 101 25 62 64
-64 102 26 63 65
-65 66 103 27 64
-66 67 104 28 65
-67 66 68 105 29
-68 67 69 106 30
-69 68 70 107 31
-70 69 71 108 32
-71 33 70 72 109
-72 110 34 71 73
-73 111 35 72 74
-74 112 36 73 75
-75 113 37 74 76
-76 77 114 38 75
-77 78 115 39 76
-78 77 79 116 40
-79 78 80 117 41
-80 79 81 118 42
-81 80 82 119 43
-82 44 81 83 120
-83 121 45 82 84
-84 122 46 83 85
-85 123 47 84 86
-86 124 48 85 87
-87 88 125 49 86
-88 89 126 50 87
-89 88 90 127 51
-90 89 91 128 52
-91 90 92 129 53
-92 91 93 130 54
-93 55 92 94 131
-94 132 56 93 95
-95 133 57 94 96
-96 134 58 95 97
-97 135 59 96 98
-98 99 136 60 97
-99 100 137 61 98
-100 99 101 138 62
-101 100 102 139 63
-102 101 103 140 64
-103 102 104 141 65
-104 66 103 105 142
-105 143 67 104 106
-106 144 68 105 107
-107 145 69 106 108
-108 146 70 107 109
-109 110 147 71 108
-110 111 148 72 109
-111 110 112 149 73
-112 111 113 150 74
-113 112 114 151 75
-114 113 115 152 76
-115 77 114 116 153
-116 154 78 115 117
-117 155 79 116 118
-118 156 80 117 119
-119 157 81 118 120
-120 121 158 82 119
-121 122 159 83 120
-122 121 123 160 84
-123 122 124 161 85
-124 123 125 162 86
-125 124 126 163 87
-126 88 125 127 164
-127 165 89 126 128
-128 166 90 127 129
-129 167 91 128 130
-130 168 92 129 131
-131 132 169 93 130
-132 133 170 94 131
-133 132 134 171 95
-134 133 135 172 96
-135 134 136 173 97
-136 135 137 174 98
-137 99 136 138 175
-138 176 100 137 139
-139 177 101 138 140
-140 178 102 139 141
-141 179 103 140 142
-142 143 180 104 141
-143 144 181 105 142
-144 143 145 182 106
-145 144 146 183 107
-146 145 147 184 108
-147 146 148 185 109
-148 110 147 149 186
-149 187 111 148 150
-150 188 112 149 151
-151 189 113 150 152
-152 190 114 151 153
-153 154 191 115 152
-154 155 192 116 153
-155 154 156 193 117
-156 155 157 194 118
-157 156 158 195 119
-158 157 159 196 120
-159 121 158 160 197
-160 198 122 159 161
-161 199 123 160 162
-162 200 124 161 163
-163 201 125 162 164
-164 165 202 126 163
-165 166 203 127 164
-166 165 167 204 128
-167 166 168 205 129
-168 167 169 206 130
-169 168 170 207 131
-170 132 169 171 208
-171 209 133 170 172
-172 210 134 171 173
-173 211 135 172 174
-174 212 136 173 175
-175 176 213 137 174
-176 177 214 138 175
-177 176 178 215 139
-178 177 179 216 140
-179 178 180 217 141
-180 179 181 218 142
-181 143 180 182 219
-182 220 144 181 183
-183 221 145 182 184
-184 222 146 183 185
-185 223 147 184 186
-186 187 224 148 185
-187 188 225 149 186
-188 187 189 226 150
-189 188 190 227 151
-190 189 191 228 152
-191 190 192 229 153
-192 154 191 193 230
-193 231 155 192 194
-194 232 156 193 195
-195 233 157 194 196
-196 234 158 195 197
-197 198 235 159 196
-198 199 236 160 197
-199 198 200 237 161
-200 199 201 238 162
-201 200 202 239 163
-202 201 203 240 164
-203 165 202 204 241
-204 242 166 203 205
-205 243 167 204 206
-206 244 168 205 207
-207 245 169 206 208
-208 209 246 170 207
-209 210 247 171 208
-210 209 211 248 172
-211 210 212 249 173
-212 211 213 250 174
-213 212 214 251 175
-214 176 213 215 252
-215 253 177 214 216
-216 254 178 215 217
-217 255 179 216 218
-218 256 180 217 219
-219 220 257 181 218
-220 221 258 182 219
-221 220 222 259 183
-222 221 223 260 184
-223 222 224 261 185
-224 223 225 262 186
-225 187 224 226 263
-226 264 188 225 227
-227 265 189 226 228
-228 266 190 227 229
-229 267 191 228 230
-230 231 268 192 229
-231 232 269 193 230
-232 231 233 270 194
-233 232 234 271 195
-234 233 235 272 196
-235 234 236 273 197
-236 198 235 237 274
-237 275 199 236 238
-238 276 200 237 239
-239 277 201 238 240
-240 278 202 239 241
-241 242 279 203 240
-242 243 280 204 241
-243 242 244 281 205
-244 243 245 282 206
-245 244 246 283 207
-246 245 247 284 208
-247 209 246 248 285
-248 286 210 247 249
-249 287 211 248 250
-250 288 212 249 251
-251 289 213 250 252
-252 253 1 214 251
-253 254 2 215 252
-254 253 255 3 216
-255 254 256 4 217
-256 255 257 5 218
-257 256 258 6 219
-258 220 257 259 7
-259 221 258 260 8
-260 222 259 261 9
-261 223 260 262 10
-262 11 224 261 263
-263 264 12 225 262
-264 265 13 226 263
-265 264 266 14 227
-266 265 267 15 228
-267 266 268 16 229
-268 267 269 17 230
-269 231 268 270 18
-270 232 269 271 19
-271 233 270 272 20
-272 234 271 273 21
-273 22 235 272 274
-274 275 23 236 273
-275 276 24 237 274
-276 275 277 25 238
-277 276 278 26 239
-278 277 279 27 240
-279 278 280 28 241
-280 242 279 281 29
-281 243 280 282 30
-282 244 281 283 31
-283 245 282 284 32
-284 33 246 283 285
-285 286 34 247 284
-286 287 35 248 285
-287 286 288 36 249
-288 287 289 37 250
-289 1 288 38 251
0