[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 290, 2 ] =
C_290(1,17).
(I) Following is a form readable by MAGMA:
g:=Graph<290|{ {2, 3}, {288, 289}, {286, 287}, {284, 285}, {282, 283}, {280,
281}, {278, 279}, {276, 277}, {274, 275}, {272, 273}, {270, 271}, {268, 269},
{266, 267}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254,
255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243},
{240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228,
229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217},
{214, 215}, {212, 213}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114,
115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103},
{100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86,
87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70,
71}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19},
{20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35},
{36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51},
{52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67},
{68, 69}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134,
135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147},
{148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160,
161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173},
{174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186,
187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198, 199},
{200, 201}, {202, 203}, {204, 205}, {206, 207}, {208, 209}, {210, 211}, {1, 2},
{289, 290}, {285, 286}, {281, 282}, {277, 278}, {273, 274}, {269, 270}, {265,
266}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242},
{237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213,
214}, {121, 122}, {117, 118}, {113, 114}, {109, 110}, {105, 106}, {101, 102},
{97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {5, 6},
{9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38},
{41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70},
{125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149,
150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174},
{177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {201,
202}, {205, 206}, {209, 210}, {3, 4}, {283, 284}, {275, 276}, {267, 268}, {259,
260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212},
{115, 116}, {107, 108}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {11, 12}, {19,
20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {59, 60}, {67, 68}, {123, 124},
{131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179,
180}, {187, 188}, {195, 196}, {203, 204}, {7, 8}, {279, 280}, {263, 264}, {247,
248}, {231, 232}, {215, 216}, {119, 120}, {103, 104}, {87, 88}, {71, 72}, {23,
24}, {39, 40}, {55, 56}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {199,
200}, {2, 19}, {270, 287}, {268, 285}, {266, 283}, {264, 281}, {262, 279}, {260,
277}, {258, 275}, {256, 273}, {238, 255}, {236, 253}, {234, 251}, {232, 249},
{230, 247}, {228, 245}, {226, 243}, {224, 241}, {110, 127}, {108, 125}, {106,
123}, {104, 121}, {102, 119}, {100, 117}, {98, 115}, {96, 113}, {78, 95}, {76,
93}, {74, 91}, {72, 89}, {70, 87}, {4, 21}, {6, 23}, {8, 25}, {10, 27}, {12,
29}, {14, 31}, {32, 49}, {34, 51}, {36, 53}, {38, 55}, {40, 57}, {42, 59}, {44,
61}, {46, 63}, {64, 81}, {66, 83}, {68, 85}, {128, 145}, {130, 147}, {132, 149},
{134, 151}, {136, 153}, {138, 155}, {140, 157}, {142, 159}, {160, 177}, {162,
179}, {164, 181}, {166, 183}, {168, 185}, {170, 187}, {172, 189}, {174, 191},
{192, 209}, {194, 211}, {196, 213}, {198, 215}, {200, 217}, {202, 219}, {204,
221}, {206, 223}, {1, 18}, {269, 286}, {265, 282}, {261, 278}, {257, 274}, {237,
254}, {233, 250}, {229, 246}, {225, 242}, {109, 126}, {105, 122}, {101, 118},
{97, 114}, {77, 94}, {73, 90}, {5, 22}, {9, 26}, {13, 30}, {33, 50}, {37, 54},
{41, 58}, {45, 62}, {65, 82}, {69, 86}, {129, 146}, {133, 150}, {137, 154},
{141, 158}, {161, 178}, {165, 182}, {169, 186}, {173, 190}, {193, 210}, {197,
214}, {201, 218}, {205, 222}, {3, 20}, {267, 284}, {259, 276}, {235, 252}, {227,
244}, {107, 124}, {99, 116}, {75, 92}, {11, 28}, {35, 52}, {43, 60}, {67, 84},
{131, 148}, {139, 156}, {163, 180}, {171, 188}, {195, 212}, {203, 220}, {7, 24},
{271, 272}, {263, 280}, {239, 240}, {231, 248}, {111, 112}, {103, 120}, {79,
80}, {71, 88}, {15, 16}, {39, 56}, {47, 48}, {135, 152}, {143, 144}, {167, 184},
{175, 176}, {199, 216}, {207, 208}, {15, 32}, {271, 288}, {223, 240}, {95, 112},
{79, 96}, {31, 48}, {143, 160}, {159, 176}, {207, 224}, {16, 33}, {272, 289},
{222, 239}, {220, 237}, {218, 235}, {216, 233}, {214, 231}, {212, 229}, {94,
111}, {92, 109}, {90, 107}, {88, 105}, {86, 103}, {84, 101}, {82, 99}, {80, 97},
{18, 35}, {20, 37}, {22, 39}, {24, 41}, {26, 43}, {28, 45}, {30, 47}, {144,
161}, {146, 163}, {148, 165}, {150, 167}, {152, 169}, {154, 171}, {156, 173},
{158, 175}, {208, 225}, {210, 227}, {17, 34}, {273, 290}, {221, 238}, {217,
234}, {213, 230}, {93, 110}, {89, 106}, {85, 102}, {81, 98}, {21, 38}, {25, 42},
{29, 46}, {145, 162}, {149, 166}, {153, 170}, {157, 174}, {209, 226}, {19, 36},
{219, 236}, {211, 228}, {91, 108}, {83, 100}, {27, 44}, {147, 164}, {155, 172},
{23, 40}, {287, 288}, {223, 224}, {215, 232}, {95, 96}, {87, 104}, {31, 32},
{151, 168}, {159, 160}, {47, 64}, {63, 80}, {175, 192}, {191, 208}, {48, 65},
{50, 67}, {52, 69}, {54, 71}, {56, 73}, {58, 75}, {60, 77}, {62, 79}, {176,
193}, {178, 195}, {180, 197}, {182, 199}, {184, 201}, {186, 203}, {188, 205},
{190, 207}, {49, 66}, {53, 70}, {57, 74}, {61, 78}, {177, 194}, {181, 198},
{185, 202}, {189, 206}, {51, 68}, {59, 76}, {179, 196}, {187, 204}, {55, 72},
{63, 64}, {183, 200}, {191, 192}, {111, 128}, {127, 144}, {112, 129}, {120,
137}, {118, 135}, {116, 133}, {114, 131}, {122, 139}, {124, 141}, {126, 143},
{113, 130}, {121, 138}, {117, 134}, {125, 142}, {115, 132}, {123, 140}, {119,
136}, {127, 128}, {2, 275}, {4, 277}, {6, 279}, {8, 281}, {10, 283}, {12, 285},
{14, 287}, {1, 274}, {5, 278}, {9, 282}, {13, 286}, {3, 276}, {11, 284}, {7,
280}, {1, 290}, {15, 288}, {16, 289}, {17, 290}, {239, 256}, {255, 272}, {240,
257}, {254, 271}, {252, 269}, {250, 267}, {248, 265}, {246, 263}, {244, 261},
{242, 259}, {241, 258}, {253, 270}, {249, 266}, {245, 262}, {243, 260}, {251,
268}, {247, 264}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 274, 290, 18)(3, 257, 289, 35)(4, 240, 288, 52)(5, 223, 287, 69)(6, 206,
286, 86)(7, 189, 285, 103)(8, 172, 284, 120)(9, 155, 283, 137)(10, 138, 282,
154)(11, 121, 281, 171)(12, 104, 280, 188)(13, 87, 279, 205)(14, 70, 278,
222)(15, 53, 277, 239)(16, 36, 276, 256)(17, 19, 275, 273)(20, 258, 272, 34)(21,
241, 271, 51)(22, 224, 270, 68)(23, 207, 269, 85)(24, 190, 268, 102)(25, 173,
267, 119)(26, 156, 266, 136)(27, 139, 265, 153)(28, 122, 264, 170)(29, 105, 263,
187)(30, 88, 262, 204)(31, 71, 261, 221)(32, 54, 260, 238)(33, 37, 259, 255)(38,
242, 254, 50)(39, 225, 253, 67)(40, 208, 252, 84)(41, 191, 251, 101)(42, 174,
250, 118)(43, 157, 249, 135)(44, 140, 248, 152)(45, 123, 247, 169)(46, 106, 246,
186)(47, 89, 245, 203)(48, 72, 244, 220)(49, 55, 243, 237)(56, 226, 236, 66)(57,
209, 235, 83)(58, 192, 234, 100)(59, 175, 233, 117)(60, 158, 232, 134)(61, 141,
231, 151)(62, 124, 230, 168)(63, 107, 229, 185)(64, 90, 228, 202)(65, 73, 227,
219)(74, 210, 218, 82)(75, 193, 217, 99)(76, 176, 216, 116)(77, 159, 215,
133)(78, 142, 214, 150)(79, 125, 213, 167)(80, 108, 212, 184)(81, 91, 211,
201)(92, 194, 200, 98)(93, 177, 199, 115)(94, 160, 198, 132)(95, 143, 197,
149)(96, 126, 196, 166)(97, 109, 195, 183)(110, 178, 182, 114)(111, 161, 181,
131)(112, 144, 180, 148)(113, 127, 179, 165)(128, 162, 164, 130)(129, 145, 163,
147)
C4[ 290, 2 ]
290
-1 2 290 18 274
-2 275 1 3 19
-3 276 2 4 20
-4 277 3 5 21
-5 22 278 4 6
-6 23 279 5 7
-7 24 280 6 8
-8 25 281 7 9
-9 26 282 8 10
-10 11 27 283 9
-11 12 28 284 10
-12 11 13 29 285
-13 286 12 14 30
-14 287 13 15 31
-15 288 14 16 32
-16 33 289 15 17
-17 34 290 16 18
-18 1 35 17 19
-19 2 36 18 20
-20 3 37 19 21
-21 22 4 38 20
-22 23 5 39 21
-23 22 24 6 40
-24 23 25 7 41
-25 24 26 8 42
-26 25 27 9 43
-27 44 26 28 10
-28 11 45 27 29
-29 12 46 28 30
-30 13 47 29 31
-31 14 48 30 32
-32 33 15 49 31
-33 34 16 50 32
-34 33 35 17 51
-35 34 36 18 52
-36 35 37 19 53
-37 36 38 20 54
-38 55 37 39 21
-39 22 56 38 40
-40 23 57 39 41
-41 24 58 40 42
-42 25 59 41 43
-43 44 26 60 42
-44 45 27 61 43
-45 44 46 28 62
-46 45 47 29 63
-47 46 48 30 64
-48 47 49 31 65
-49 66 48 50 32
-50 33 67 49 51
-51 34 68 50 52
-52 35 69 51 53
-53 36 70 52 54
-54 55 37 71 53
-55 56 38 72 54
-56 55 57 39 73
-57 56 58 40 74
-58 57 59 41 75
-59 58 60 42 76
-60 77 59 61 43
-61 44 78 60 62
-62 45 79 61 63
-63 46 80 62 64
-64 47 81 63 65
-65 66 48 82 64
-66 67 49 83 65
-67 66 68 50 84
-68 67 69 51 85
-69 68 70 52 86
-70 69 71 53 87
-71 88 70 72 54
-72 55 89 71 73
-73 56 90 72 74
-74 57 91 73 75
-75 58 92 74 76
-76 77 59 93 75
-77 78 60 94 76
-78 77 79 61 95
-79 78 80 62 96
-80 79 81 63 97
-81 80 82 64 98
-82 99 81 83 65
-83 66 100 82 84
-84 67 101 83 85
-85 68 102 84 86
-86 69 103 85 87
-87 88 70 104 86
-88 89 71 105 87
-89 88 90 72 106
-90 89 91 73 107
-91 90 92 74 108
-92 91 93 75 109
-93 110 92 94 76
-94 77 111 93 95
-95 78 112 94 96
-96 79 113 95 97
-97 80 114 96 98
-98 99 81 115 97
-99 100 82 116 98
-100 99 101 83 117
-101 100 102 84 118
-102 101 103 85 119
-103 102 104 86 120
-104 121 103 105 87
-105 88 122 104 106
-106 89 123 105 107
-107 90 124 106 108
-108 91 125 107 109
-109 110 92 126 108
-110 111 93 127 109
-111 110 112 94 128
-112 111 113 95 129
-113 112 114 96 130
-114 113 115 97 131
-115 132 114 116 98
-116 99 133 115 117
-117 100 134 116 118
-118 101 135 117 119
-119 102 136 118 120
-120 121 103 137 119
-121 122 104 138 120
-122 121 123 105 139
-123 122 124 106 140
-124 123 125 107 141
-125 124 126 108 142
-126 143 125 127 109
-127 110 144 126 128
-128 111 145 127 129
-129 112 146 128 130
-130 113 147 129 131
-131 132 114 148 130
-132 133 115 149 131
-133 132 134 116 150
-134 133 135 117 151
-135 134 136 118 152
-136 135 137 119 153
-137 154 136 138 120
-138 121 155 137 139
-139 122 156 138 140
-140 123 157 139 141
-141 124 158 140 142
-142 143 125 159 141
-143 144 126 160 142
-144 143 145 127 161
-145 144 146 128 162
-146 145 147 129 163
-147 146 148 130 164
-148 165 147 149 131
-149 132 166 148 150
-150 133 167 149 151
-151 134 168 150 152
-152 135 169 151 153
-153 154 136 170 152
-154 155 137 171 153
-155 154 156 138 172
-156 155 157 139 173
-157 156 158 140 174
-158 157 159 141 175
-159 176 158 160 142
-160 143 177 159 161
-161 144 178 160 162
-162 145 179 161 163
-163 146 180 162 164
-164 165 147 181 163
-165 166 148 182 164
-166 165 167 149 183
-167 166 168 150 184
-168 167 169 151 185
-169 168 170 152 186
-170 187 169 171 153
-171 154 188 170 172
-172 155 189 171 173
-173 156 190 172 174
-174 157 191 173 175
-175 176 158 192 174
-176 177 159 193 175
-177 176 178 160 194
-178 177 179 161 195
-179 178 180 162 196
-180 179 181 163 197
-181 198 180 182 164
-182 165 199 181 183
-183 166 200 182 184
-184 167 201 183 185
-185 168 202 184 186
-186 187 169 203 185
-187 188 170 204 186
-188 187 189 171 205
-189 188 190 172 206
-190 189 191 173 207
-191 190 192 174 208
-192 209 191 193 175
-193 176 210 192 194
-194 177 211 193 195
-195 178 212 194 196
-196 179 213 195 197
-197 198 180 214 196
-198 199 181 215 197
-199 198 200 182 216
-200 199 201 183 217
-201 200 202 184 218
-202 201 203 185 219
-203 220 202 204 186
-204 187 221 203 205
-205 188 222 204 206
-206 189 223 205 207
-207 190 224 206 208
-208 209 191 225 207
-209 210 192 226 208
-210 209 211 193 227
-211 210 212 194 228
-212 211 213 195 229
-213 212 214 196 230
-214 231 213 215 197
-215 198 232 214 216
-216 199 233 215 217
-217 200 234 216 218
-218 201 235 217 219
-219 220 202 236 218
-220 221 203 237 219
-221 220 222 204 238
-222 221 223 205 239
-223 222 224 206 240
-224 223 225 207 241
-225 242 224 226 208
-226 209 243 225 227
-227 210 244 226 228
-228 211 245 227 229
-229 212 246 228 230
-230 231 213 247 229
-231 232 214 248 230
-232 231 233 215 249
-233 232 234 216 250
-234 233 235 217 251
-235 234 236 218 252
-236 253 235 237 219
-237 220 254 236 238
-238 221 255 237 239
-239 222 256 238 240
-240 223 257 239 241
-241 242 224 258 240
-242 243 225 259 241
-243 242 244 226 260
-244 243 245 227 261
-245 244 246 228 262
-246 245 247 229 263
-247 264 246 248 230
-248 231 265 247 249
-249 232 266 248 250
-250 233 267 249 251
-251 234 268 250 252
-252 253 235 269 251
-253 254 236 270 252
-254 253 255 237 271
-255 254 256 238 272
-256 255 257 239 273
-257 256 258 240 274
-258 275 257 259 241
-259 242 276 258 260
-260 243 277 259 261
-261 244 278 260 262
-262 245 279 261 263
-263 264 246 280 262
-264 265 247 281 263
-265 264 266 248 282
-266 265 267 249 283
-267 266 268 250 284
-268 267 269 251 285
-269 286 268 270 252
-270 253 287 269 271
-271 254 288 270 272
-272 255 289 271 273
-273 256 290 272 274
-274 275 1 257 273
-275 276 2 258 274
-276 275 277 3 259
-277 276 278 4 260
-278 277 279 5 261
-279 278 280 6 262
-280 279 281 7 263
-281 264 280 282 8
-282 265 281 283 9
-283 266 282 284 10
-284 11 267 283 285
-285 286 12 268 284
-286 287 13 269 285
-287 286 288 14 270
-288 287 289 15 271
-289 288 290 16 272
-290 1 289 17 273
0