[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 290, 4 ] =
C_290(1,133).
(I) Following is a form readable by MAGMA:
g:=Graph<290|{ {2, 3}, {288, 289}, {286, 287}, {284, 285}, {282, 283}, {280,
281}, {278, 279}, {276, 277}, {274, 275}, {272, 273}, {270, 271}, {268, 269},
{266, 267}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254,
255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243},
{240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228,
229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217},
{214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202,
203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191},
{188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176,
177}, {174, 175}, {172, 173}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79},
{76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63},
{60, 61}, {58, 59}, {56, 57}, {54, 55}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12,
13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28,
29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44,
45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {88, 89}, {90, 91}, {92, 93}, {94,
95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108,
109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121},
{122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134,
135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147},
{148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160,
161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {1, 2}, {289,
290}, {285, 286}, {281, 282}, {277, 278}, {273, 274}, {269, 270}, {265, 266},
{261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237,
238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214},
{209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185,
186}, {181, 182}, {177, 178}, {173, 174}, {85, 86}, {81, 82}, {77, 78}, {73,
74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17,
18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49,
50}, {53, 54}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110},
{113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137,
138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162},
{165, 166}, {169, 170}, {3, 4}, {283, 284}, {275, 276}, {267, 268}, {259, 260},
{251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203,
204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {83, 84}, {75, 76}, {67,
68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {91,
92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140},
{147, 148}, {155, 156}, {163, 164}, {7, 8}, {279, 280}, {263, 264}, {247, 248},
{231, 232}, {215, 216}, {199, 200}, {183, 184}, {87, 88}, {71, 72}, {55, 56},
{23, 24}, {39, 40}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168},
{15, 16}, {271, 272}, {239, 240}, {207, 208}, {175, 176}, {79, 80}, {47, 48},
{111, 112}, {143, 144}, {31, 32}, {287, 288}, {223, 224}, {95, 96}, {159, 160},
{63, 64}, {191, 192}, {2, 135}, {82, 215}, {80, 213}, {74, 207}, {72, 205}, {66,
199}, {64, 197}, {58, 191}, {56, 189}, {8, 141}, {10, 143}, {16, 149}, {18,
151}, {24, 157}, {26, 159}, {32, 165}, {34, 167}, {40, 173}, {42, 175}, {48,
181}, {50, 183}, {88, 221}, {90, 223}, {96, 229}, {98, 231}, {104, 237}, {106,
239}, {112, 245}, {114, 247}, {120, 253}, {122, 255}, {1, 134}, {81, 214}, {73,
206}, {65, 198}, {57, 190}, {9, 142}, {17, 150}, {25, 158}, {33, 166}, {41,
174}, {49, 182}, {89, 222}, {97, 230}, {105, 238}, {113, 246}, {121, 254}, {3,
136}, {87, 220}, {83, 216}, {71, 204}, {67, 200}, {55, 188}, {7, 140}, {19,
152}, {23, 156}, {35, 168}, {39, 172}, {51, 184}, {99, 232}, {103, 236}, {115,
248}, {119, 252}, {4, 137}, {86, 219}, {84, 217}, {70, 203}, {68, 201}, {54,
187}, {6, 139}, {20, 153}, {22, 155}, {36, 169}, {38, 171}, {52, 185}, {100,
233}, {102, 235}, {116, 249}, {118, 251}, {5, 138}, {85, 218}, {69, 202}, {21,
154}, {37, 170}, {53, 186}, {101, 234}, {117, 250}, {11, 144}, {79, 212}, {75,
208}, {15, 148}, {43, 176}, {47, 180}, {107, 240}, {111, 244}, {2, 159}, {78,
211}, {76, 209}, {66, 223}, {64, 221}, {12, 145}, {14, 147}, {32, 189}, {34,
191}, {44, 177}, {46, 179}, {96, 253}, {98, 255}, {108, 241}, {110, 243}, {1,
158}, {77, 210}, {65, 222}, {13, 146}, {33, 190}, {45, 178}, {97, 254}, {109,
242}, {3, 160}, {87, 244}, {83, 240}, {79, 236}, {75, 232}, {71, 228}, {67,
224}, {7, 164}, {11, 168}, {15, 172}, {19, 176}, {23, 180}, {27, 184}, {31,
188}, {91, 248}, {95, 252}, {4, 161}, {86, 243}, {84, 241}, {78, 235}, {76,
233}, {70, 227}, {68, 225}, {6, 163}, {12, 169}, {14, 171}, {20, 177}, {22,
179}, {28, 185}, {30, 187}, {92, 249}, {94, 251}, {5, 162}, {85, 242}, {77,
234}, {69, 226}, {13, 170}, {21, 178}, {29, 186}, {93, 250}, {8, 165}, {74,
231}, {72, 229}, {10, 167}, {24, 181}, {26, 183}, {88, 245}, {90, 247}, {9,
166}, {73, 230}, {25, 182}, {89, 246}, {27, 160}, {31, 164}, {91, 224}, {95,
228}, {16, 173}, {82, 239}, {80, 237}, {18, 175}, {28, 161}, {30, 163}, {92,
225}, {94, 227}, {17, 174}, {81, 238}, {29, 162}, {93, 226}, {35, 192}, {63,
220}, {59, 216}, {55, 212}, {39, 196}, {43, 200}, {47, 204}, {51, 208}, {36,
193}, {62, 219}, {60, 217}, {54, 211}, {38, 195}, {44, 201}, {46, 203}, {52,
209}, {37, 194}, {61, 218}, {45, 202}, {53, 210}, {40, 197}, {58, 215}, {56,
213}, {42, 199}, {41, 198}, {57, 214}, {59, 192}, {63, 196}, {48, 205}, {62,
195}, {60, 193}, {50, 207}, {49, 206}, {61, 194}, {127, 128}, {1, 290}, {99,
256}, {103, 260}, {107, 264}, {111, 268}, {115, 272}, {119, 276}, {123, 280},
{127, 284}, {100, 257}, {102, 259}, {108, 265}, {110, 267}, {116, 273}, {118,
275}, {124, 281}, {126, 283}, {101, 258}, {109, 266}, {117, 274}, {125, 282},
{104, 261}, {106, 263}, {120, 277}, {122, 279}, {105, 262}, {121, 278}, {123,
256}, {127, 260}, {112, 269}, {114, 271}, {124, 257}, {126, 259}, {113, 270},
{125, 258}, {128, 261}, {130, 263}, {136, 269}, {138, 271}, {144, 277}, {146,
279}, {152, 285}, {154, 287}, {129, 262}, {137, 270}, {145, 278}, {153, 286},
{131, 264}, {135, 268}, {147, 280}, {151, 284}, {132, 265}, {134, 267}, {148,
281}, {150, 283}, {133, 266}, {149, 282}, {139, 272}, {143, 276}, {128, 285},
{130, 287}, {140, 273}, {142, 275}, {129, 286}, {141, 274}, {131, 288}, {132,
289}, {133, 290}, {155, 288}, {156, 289}, {157, 290}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 134, 290, 158)(3, 267, 289, 25)(4, 110, 288, 182)(5, 243, 287, 49)(6, 86,
286, 206)(7, 219, 285, 73)(8, 62, 284, 230)(9, 195, 283, 97)(10, 38, 282,
254)(11, 171, 281, 121)(12, 14, 280, 278)(13, 147, 279, 145)(15, 123, 277,
169)(16, 256, 276, 36)(17, 99, 275, 193)(18, 232, 274, 60)(19, 75, 273, 217)(20,
208, 272, 84)(21, 51, 271, 241)(22, 184, 270, 108)(23, 27, 269, 265)(24, 160,
268, 132)(26, 136, 266, 156)(28, 112, 264, 180)(29, 245, 263, 47)(30, 88, 262,
204)(31, 221, 261, 71)(32, 64, 260, 228)(33, 197, 259, 95)(34, 40, 258, 252)(35,
173, 257, 119)(37, 149, 255, 143)(39, 125, 253, 167)(41, 101, 251, 191)(42, 234,
250, 58)(43, 77, 249, 215)(44, 210, 248, 82)(45, 53, 247, 239)(46, 186, 246,
106)(48, 162, 244, 130)(50, 138, 242, 154)(52, 114, 240, 178)(54, 90, 238,
202)(55, 223, 237, 69)(56, 66, 236, 226)(57, 199, 235, 93)(59, 175, 233,
117)(61, 151, 231, 141)(63, 127, 229, 165)(65, 103, 227, 189)(67, 79, 225,
213)(68, 212, 224, 80)(70, 188, 222, 104)(72, 164, 220, 128)(74, 140, 218,
152)(76, 116, 216, 176)(78, 92, 214, 200)(81, 201, 211, 91)(83, 177, 209,
115)(85, 153, 207, 139)(87, 129, 205, 163)(89, 105, 203, 187)(94, 190, 198,
102)(96, 166, 196, 126)(98, 142, 194, 150)(100, 118, 192, 174)(107, 179, 185,
113)(109, 155, 183, 137)(111, 131, 181, 161)(120, 168, 172, 124)(122, 144, 170,
148)(133, 157, 159, 135)
C4[ 290, 4 ]
290
-1 2 134 158 290
-2 1 3 135 159
-3 2 4 136 160
-4 3 5 137 161
-5 4 6 138 162
-6 5 7 139 163
-7 6 8 140 164
-8 165 7 9 141
-9 166 8 10 142
-10 11 143 167 9
-11 12 144 168 10
-12 11 13 145 169
-13 12 14 146 170
-14 13 15 147 171
-15 14 16 148 172
-16 15 17 149 173
-17 16 18 150 174
-18 17 19 151 175
-19 176 18 20 152
-20 177 19 21 153
-21 22 154 178 20
-22 23 155 179 21
-23 22 24 156 180
-24 23 25 157 181
-25 24 26 158 182
-26 25 27 159 183
-27 26 28 160 184
-28 27 29 161 185
-29 28 30 162 186
-30 187 29 31 163
-31 188 30 32 164
-32 33 165 189 31
-33 34 166 190 32
-34 33 35 167 191
-35 34 36 168 192
-36 35 37 169 193
-37 36 38 170 194
-38 37 39 171 195
-39 38 40 172 196
-40 39 41 173 197
-41 198 40 42 174
-42 199 41 43 175
-43 44 176 200 42
-44 45 177 201 43
-45 44 46 178 202
-46 45 47 179 203
-47 46 48 180 204
-48 47 49 181 205
-49 48 50 182 206
-50 49 51 183 207
-51 50 52 184 208
-52 209 51 53 185
-53 210 52 54 186
-54 55 187 211 53
-55 56 188 212 54
-56 55 57 189 213
-57 56 58 190 214
-58 57 59 191 215
-59 58 60 192 216
-60 59 61 193 217
-61 60 62 194 218
-62 61 63 195 219
-63 220 62 64 196
-64 221 63 65 197
-65 66 198 222 64
-66 67 199 223 65
-67 66 68 200 224
-68 67 69 201 225
-69 68 70 202 226
-70 69 71 203 227
-71 70 72 204 228
-72 71 73 205 229
-73 72 74 206 230
-74 231 73 75 207
-75 232 74 76 208
-76 77 209 233 75
-77 78 210 234 76
-78 77 79 211 235
-79 78 80 212 236
-80 79 81 213 237
-81 80 82 214 238
-82 81 83 215 239
-83 82 84 216 240
-84 83 85 217 241
-85 242 84 86 218
-86 243 85 87 219
-87 88 220 244 86
-88 89 221 245 87
-89 88 90 222 246
-90 89 91 223 247
-91 90 92 224 248
-92 91 93 225 249
-93 92 94 226 250
-94 93 95 227 251
-95 94 96 228 252
-96 253 95 97 229
-97 254 96 98 230
-98 99 231 255 97
-99 100 232 256 98
-100 99 101 233 257
-101 100 102 234 258
-102 101 103 235 259
-103 102 104 236 260
-104 103 105 237 261
-105 104 106 238 262
-106 105 107 239 263
-107 264 106 108 240
-108 265 107 109 241
-109 110 242 266 108
-110 111 243 267 109
-111 110 112 244 268
-112 111 113 245 269
-113 112 114 246 270
-114 113 115 247 271
-115 114 116 248 272
-116 115 117 249 273
-117 116 118 250 274
-118 275 117 119 251
-119 276 118 120 252
-120 121 253 277 119
-121 122 254 278 120
-122 121 123 255 279
-123 122 124 256 280
-124 123 125 257 281
-125 124 126 258 282
-126 125 127 259 283
-127 126 128 260 284
-128 127 129 261 285
-129 286 128 130 262
-130 287 129 131 263
-131 132 264 288 130
-132 133 265 289 131
-133 132 134 266 290
-134 1 133 135 267
-135 2 134 136 268
-136 3 135 137 269
-137 4 136 138 270
-138 5 137 139 271
-139 6 138 140 272
-140 7 139 141 273
-141 8 140 142 274
-142 143 275 9 141
-143 144 276 10 142
-144 11 143 145 277
-145 12 144 146 278
-146 13 145 147 279
-147 14 146 148 280
-148 15 147 149 281
-149 16 148 150 282
-150 17 149 151 283
-151 18 150 152 284
-152 19 151 153 285
-153 154 286 20 152
-154 155 287 21 153
-155 22 154 156 288
-156 23 155 157 289
-157 24 156 158 290
-158 1 25 157 159
-159 2 26 158 160
-160 3 27 159 161
-161 4 28 160 162
-162 5 29 161 163
-163 6 30 162 164
-164 165 7 31 163
-165 166 8 32 164
-166 33 165 167 9
-167 34 166 168 10
-168 11 35 167 169
-169 12 36 168 170
-170 13 37 169 171
-171 14 38 170 172
-172 15 39 171 173
-173 16 40 172 174
-174 17 41 173 175
-175 176 18 42 174
-176 177 19 43 175
-177 44 176 178 20
-178 45 177 179 21
-179 22 46 178 180
-180 23 47 179 181
-181 24 48 180 182
-182 25 49 181 183
-183 26 50 182 184
-184 27 51 183 185
-185 28 52 184 186
-186 187 29 53 185
-187 188 30 54 186
-188 55 187 189 31
-189 56 188 190 32
-190 33 57 189 191
-191 34 58 190 192
-192 35 59 191 193
-193 36 60 192 194
-194 37 61 193 195
-195 38 62 194 196
-196 39 63 195 197
-197 198 40 64 196
-198 199 41 65 197
-199 66 198 200 42
-200 67 199 201 43
-201 44 68 200 202
-202 45 69 201 203
-203 46 70 202 204
-204 47 71 203 205
-205 48 72 204 206
-206 49 73 205 207
-207 50 74 206 208
-208 209 51 75 207
-209 210 52 76 208
-210 77 209 211 53
-211 78 210 212 54
-212 55 79 211 213
-213 56 80 212 214
-214 57 81 213 215
-215 58 82 214 216
-216 59 83 215 217
-217 60 84 216 218
-218 61 85 217 219
-219 220 62 86 218
-220 221 63 87 219
-221 88 220 222 64
-222 89 221 223 65
-223 66 90 222 224
-224 67 91 223 225
-225 68 92 224 226
-226 69 93 225 227
-227 70 94 226 228
-228 71 95 227 229
-229 72 96 228 230
-230 231 73 97 229
-231 232 74 98 230
-232 99 231 233 75
-233 100 232 234 76
-234 77 101 233 235
-235 78 102 234 236
-236 79 103 235 237
-237 80 104 236 238
-238 81 105 237 239
-239 82 106 238 240
-240 83 107 239 241
-241 242 84 108 240
-242 243 85 109 241
-243 110 242 244 86
-244 111 243 245 87
-245 88 112 244 246
-246 89 113 245 247
-247 90 114 246 248
-248 91 115 247 249
-249 92 116 248 250
-250 93 117 249 251
-251 94 118 250 252
-252 253 95 119 251
-253 254 96 120 252
-254 121 253 255 97
-255 122 254 256 98
-256 99 123 255 257
-257 100 124 256 258
-258 101 125 257 259
-259 102 126 258 260
-260 103 127 259 261
-261 104 128 260 262
-262 105 129 261 263
-263 264 106 130 262
-264 265 107 131 263
-265 132 264 266 108
-266 133 265 267 109
-267 110 134 266 268
-268 111 135 267 269
-269 112 136 268 270
-270 113 137 269 271
-271 114 138 270 272
-272 115 139 271 273
-273 116 140 272 274
-274 275 117 141 273
-275 276 118 142 274
-276 143 275 277 119
-277 144 276 278 120
-278 121 145 277 279
-279 122 146 278 280
-280 123 147 279 281
-281 124 148 280 282
-282 125 149 281 283
-283 126 150 282 284
-284 127 151 283 285
-285 286 128 152 284
-286 287 129 153 285
-287 154 286 288 130
-288 155 287 289 131
-289 132 156 288 290
-290 1 133 157 289
0