[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 292, 5 ] =
SDD(C_73(1,27)).
(I) Following is a form readable by MAGMA:
g:=Graph<292|{ {128, 200}, {146, 218}, {145, 217}, {144, 216}, {135, 207}, {134,
206}, {133, 205}, {132, 204}, {131, 203}, {130, 202}, {129, 201}, {128, 201},
{146, 219}, {144, 217}, {134, 207}, {132, 205}, {130, 203}, {129, 202}, {145,
218}, {133, 206}, {131, 204}, {135, 208}, {143, 216}, {136, 208}, {143, 215},
{142, 214}, {141, 213}, {140, 212}, {139, 211}, {138, 210}, {137, 209}, {136,
209}, {142, 215}, {140, 213}, {138, 211}, {137, 210}, {141, 214}, {139, 212},
{27, 155}, {29, 157}, {26, 155}, {29, 156}, {66, 195}, {69, 196}, {24, 154},
{30, 156}, {25, 154}, {31, 156}, {26, 156}, {38, 160}, {16, 151}, {28, 155},
{17, 153}, {41, 161}, {17, 152}, {54, 191}, {41, 160}, {78, 199}, {82, 219},
{18, 152}, {42, 160}, {19, 152}, {43, 160}, {21, 153}, {47, 163}, {45, 161},
{23, 155}, {20, 153}, {51, 190}, {48, 189}, {47, 162}, {44, 161}, {23, 154},
{72, 197}, {75, 198}, {20, 154}, {44, 162}, {22, 153}, {46, 161}, {3, 147}, {53,
165}, {51, 163}, {5, 149}, {94, 206}, {2, 147}, {53, 164}, {50, 163}, {45, 188},
{42, 187}, {5, 148}, {70, 215}, {73, 216}, {92, 205}, {1, 147}, {54, 164}, {48,
162}, {6, 148}, {7, 148}, {55, 164}, {49, 162}, {88, 203}, {1, 148}, {64, 213},
{67, 214}, {76, 217}, {79, 218}, {14, 152}, {50, 164}, {62, 168}, {90, 204}, {4,
147}, {52, 163}, {15, 151}, {63, 167}, {14, 151}, {33, 184}, {62, 167}, {81,
200}, {12, 150}, {60, 166}, {13, 150}, {100, 255}, {61, 166}, {9, 149}, {99,
255}, {98, 254}, {59, 167}, {57, 165}, {11, 151}, {86, 202}, {8, 149}, {96,
253}, {59, 166}, {56, 165}, {39, 186}, {36, 185}, {11, 150}, {84, 201}, {8,
150}, {97, 255}, {56, 166}, {10, 149}, {97, 254}, {58, 165}, {90, 250}, {91,
251}, {93, 253}, {18, 179}, {95, 254}, {21, 180}, {88, 249}, {93, 252}, {89,
251}, {95, 253}, {94, 252}, {84, 247}, {120, 219}, {89, 250}, {82, 246}, {83,
247}, {80, 246}, {80, 247}, {112, 215}, {81, 246}, {91, 252}, {92, 251}, {6,
175}, {30, 183}, {114, 216}, {83, 248}, {2, 174}, {118, 218}, {85, 249}, {24,
181}, {116, 217}, {27, 182}, {85, 248}, {87, 250}, {86, 248}, {87, 249}, {96,
207}, {64, 240}, {65, 241}, {67, 241}, {98, 208}, {65, 242}, {66, 241}, {71,
244}, {70, 242}, {102, 210}, {71, 243}, {100, 209}, {117, 192}, {68, 242}, {119,
193}, {40, 159}, {127, 200}, {119, 192}, {68, 243}, {69, 242}, {39, 159}, {127,
199}, {126, 198}, {125, 197}, {124, 196}, {123, 195}, {122, 194}, {121, 193},
{120, 192}, {110, 214}, {76, 244}, {77, 245}, {9, 176}, {126, 199}, {124, 197},
{122, 195}, {108, 213}, {38, 159}, {36, 158}, {73, 243}, {79, 245}, {37, 158},
{125, 198}, {121, 194}, {104, 211}, {72, 243}, {77, 246}, {78, 245}, {33, 157},
{35, 159}, {12, 177}, {35, 158}, {32, 157}, {15, 178}, {32, 158}, {106, 212},
{74, 244}, {34, 157}, {123, 196}, {74, 245}, {75, 244}, {40, 232}, {41, 233},
{3, 193}, {43, 233}, {37, 231}, {36, 231}, {47, 236}, {42, 233}, {41, 234}, {34,
230}, {47, 235}, {46, 234}, {35, 231}, {7, 194}, {32, 230}, {44, 234}, {32,
231}, {45, 234}, {44, 235}, {33, 230}, {10, 195}, {118, 191}, {13, 196}, {116,
190}, {117, 191}, {35, 232}, {59, 240}, {112, 188}, {115, 191}, {113, 189},
{115, 190}, {38, 232}, {62, 240}, {38, 233}, {114, 189}, {113, 190}, {39, 232},
{62, 241}, {63, 240}, {104, 184}, {107, 187}, {105, 185}, {22, 199}, {109, 188},
{107, 186}, {102, 183}, {25, 200}, {13, 223}, {111, 189}, {101, 183}, {100,
182}, {61, 239}, {12, 223}, {111, 188}, {106, 185}, {105, 186}, {60, 239}, {10,
222}, {99, 183}, {97, 181}, {96, 180}, {59, 239}, {58, 238}, {11, 223}, {16,
197}, {110, 187}, {99, 182}, {31, 202}, {28, 201}, {19, 198}, {8, 222}, {109,
187}, {108, 186}, {56, 238}, {8, 223}, {98, 181}, {97, 182}, {57, 238}, {56,
239}, {9, 222}, {4, 220}, {53, 237}, {52, 236}, {5, 221}, {7, 221}, {55, 237},
{49, 235}, {5, 222}, {54, 237}, {53, 238}, {48, 235}, {6, 221}, {1, 221}, {1,
220}, {101, 184}, {2, 220}, {103, 185}, {50, 236}, {3, 220}, {103, 184}, {51,
236}, {50, 237}, {4, 219}, {75, 171}, {77, 173}, {46, 207}, {49, 208}, {74,
171}, {77, 172}, {72, 170}, {78, 172}, {73, 170}, {79, 172}, {27, 255}, {40,
205}, {55, 210}, {52, 209}, {43, 206}, {85, 176}, {24, 254}, {74, 172}, {87,
177}, {64, 167}, {76, 171}, {87, 176}, {21, 253}, {65, 169}, {88, 176}, {89,
177}, {91, 179}, {34, 203}, {58, 211}, {37, 204}, {61, 212}, {65, 168}, {91,
178}, {93, 180}, {66, 168}, {95, 181}, {11, 224}, {67, 168}, {89, 178}, {90,
177}, {95, 180}, {69, 169}, {71, 171}, {68, 169}, {71, 170}, {94, 179}, {14,
224}, {18, 252}, {68, 170}, {92, 178}, {93, 179}, {14, 225}, {15, 224}, {70,
169}, {9, 249}, {17, 225}, {16, 224}, {19, 225}, {17, 226}, {23, 228}, {18,
225}, {15, 251}, {23, 227}, {22, 226}, {2, 247}, {12, 250}, {20, 226}, {20,
227}, {21, 226}, {28, 228}, {29, 229}, {57, 192}, {86, 175}, {25, 227}, {31,
229}, {84, 174}, {85, 175}, {24, 227}, {30, 229}, {29, 230}, {81, 173}, {83,
175}, {60, 193}, {63, 194}, {80, 173}, {83, 174}, {6, 248}, {26, 228}, {80,
174}, {26, 229}, {27, 228}, {82, 173}, {13, 269}, {10, 268}, {22, 272}, {25,
273}, {3, 266}, {7, 267}, {31, 275}, {28, 274}, {19, 271}, {16, 270}, {30, 256},
{4, 292}, {33, 257}, {61, 285}, {39, 259}, {36, 258}, {58, 284}, {45, 261}, {49,
281}, {55, 283}, {42, 260}, {52, 282}, {37, 277}, {57, 265}, {51, 263}, {63,
267}, {34, 276}, {48, 262}, {46, 280}, {60, 266}, {43, 279}, {40, 278}, {54,
264}, {81, 273}, {75, 271}, {86, 275}, {72, 270}, {84, 274}, {69, 269}, {94,
279}, {92, 278}, {88, 276}, {66, 268}, {90, 277}, {112, 288}, {114, 289}, {118,
291}, {116, 290}, {67, 287}, {120, 292}, {64, 286}, {78, 272}, {99, 256}, {101,
257}, {101, 256}, {103, 258}, {70, 288}, {103, 257}, {102, 256}, {73, 289},
{109, 261}, {107, 259}, {106, 258}, {104, 257}, {111, 262}, {109, 260}, {105,
259}, {111, 261}, {110, 260}, {105, 258}, {79, 291}, {76, 290}, {127, 273},
{126, 272}, {107, 260}, {127, 272}, {108, 259}, {110, 287}, {126, 271}, {124,
269}, {122, 267}, {120, 265}, {108, 286}, {125, 271}, {124, 270}, {121, 267},
{116, 263}, {125, 270}, {121, 266}, {104, 284}, {115, 263}, {114, 262}, {112,
261}, {82, 292}, {123, 269}, {122, 268}, {113, 263}, {106, 285}, {123, 268},
{113, 262}, {96, 280}, {98, 281}, {115, 264}, {117, 265}, {102, 283}, {119,
266}, {117, 264}, {100, 282}, {119, 265}, {118, 264}, {128, 273}, {142, 287},
{140, 285}, {138, 283}, {136, 281}, {134, 279}, {132, 277}, {130, 275}, {128,
274}, {141, 287}, {140, 286}, {137, 283}, {136, 282}, {133, 279}, {132, 278},
{129, 275}, {129, 274}, {141, 286}, {137, 282}, {133, 278}, {130, 276}, {139,
285}, {138, 284}, {131, 277}, {131, 276}, {139, 284}, {134, 280}, {135, 281},
{135, 280}, {142, 288}, {143, 289}, {143, 288}, {144, 289}, {146, 291}, {144,
290}, {145, 291}, {145, 290}, {146, 292} }>;
(II) A more general form is to represent the graph as the orbit of {128, 200}
under the group generated by the following permutations:
a: (168, 241) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (151, 224)
c: (158, 231)
d: (216, 289)
e: (201, 274)
f: (196, 269)
g: (172, 245)
h: (205, 278)
m: (159, 232)
n1: (175, 248)
a1: (206, 279)
b1: (165, 238)
c1: (199, 272)
d1: (155, 228)
e1: (150, 223)
f1: (189, 262)
g1: (190, 263)
h1: (194, 267)
m1: (188, 261)
n2: (161, 234)
a2: (179, 252)
b2: (195, 268)
c2: (200, 273)
d2: (177, 250)
e2: (178, 251)
f2: (170, 243)
g2: (152, 225)
h2: (213, 286)
m2: (202, 275)
n3: (157, 230)
a3: (219, 292)
b3: (217, 290)
c3: (149, 222)
d3: (212, 285)
e3: (191, 264)
f3: (214, 287)
g3: (167, 240)
h3: (1, 2, 83, 6)(3, 80, 86, 5)(4, 84, 85, 7)(8, 60, 77, 31)(9, 121, 82,
129)(10, 119, 81, 130)(11, 61, 74, 30)(12, 59, 79, 26)(13, 56, 78, 29)(14, 106,
71, 102)(15, 140, 76, 99)(16, 139, 75, 101)(17, 36, 68, 55)(18, 105, 73,
137)(19, 103, 72, 138)(20, 37, 65, 54)(21, 35, 70, 50)(22, 32, 69, 53)(23, 90,
62, 118)(24, 132, 67, 115)(25, 131, 66, 117)(27, 89, 64, 145)(28, 87, 63,
146)(33, 124, 58, 126)(34, 123, 57, 127)(38, 112, 47, 96)(39, 143, 52, 93)(40,
142, 51, 95)(41, 45, 44, 46)(42, 111, 49, 134)(43, 109, 48, 135)(88, 122, 120,
128)(91, 108, 144, 100)(92, 141, 116, 97)(94, 107, 114, 136)(98, 133, 110,
113)(104, 125)(147, 174, 175, 148)(149, 193, 173, 202)(150, 166, 172, 156)(151,
212, 171, 183)(152, 185, 170, 210)(153, 158, 169, 164)(154, 204, 168, 191)(155,
177, 167, 218)(157, 196, 165, 199)(159, 215, 163, 180)(160, 188, 162, 207)(176,
194, 219, 201)(178, 213, 217, 182)(179, 186, 216, 209)(181, 205, 214, 190)(184,
197, 211, 198)(187, 189, 208, 206)(192, 200, 203, 195)(220, 247, 248, 221)(222,
266, 246, 275)(223, 239, 245, 229)(224, 285, 244, 256)(225, 258, 243, 283)(226,
231, 242, 237)(227, 277, 241, 264)(228, 250, 240, 291)(230, 269, 238, 272)(232,
288, 236, 253)(233, 261, 235, 280)(249, 267, 292, 274)(251, 286, 290, 255)(252,
259, 289, 282)(254, 278, 287, 263)(257, 270, 284, 271)(260, 262, 281, 279)(265,
273, 276, 268)
m3: (156, 229)
n4: (153, 226)
a4: (193, 266)
b4: (208, 281)
c4: (2, 7)(3, 6)(4, 5)(8, 146)(9, 120)(10, 82)(11, 145)(12, 118)(13, 79)(14,
144)(15, 116)(16, 76)(17, 143)(18, 114)(19, 73)(20, 142)(21, 112)(22, 70)(23,
141)(24, 110)(25, 67)(26, 140)(27, 108)(28, 64)(29, 139)(30, 106)(31, 61)(32,
138)(33, 104)(34, 58)(35, 137)(36, 102)(37, 55)(38, 136)(39, 100)(40, 52)(41,
135)(42, 98)(43, 49)(44, 134)(45, 96)(47, 133)(48, 94)(50, 132)(51, 92)(53,
131)(54, 90)(56, 130)(57, 88)(59, 129)(60, 86)(62, 128)(63, 84)(65, 127)(66,
81)(68, 126)(69, 78)(71, 125)(72, 75)(74, 124)(77, 123)(80, 122)(83, 121)(85,
119)(87, 117)(89, 115)(91, 113)(93, 111)(95, 109)(97, 107)(99, 105)(101,
103)(147, 148)(149, 219)(150, 218)(151, 217)(152, 216)(153, 215)(154, 214)(155,
213)(156, 212)(157, 211)(158, 210)(159, 209)(160, 208)(161, 207)(162, 206)(163,
205)(164, 204)(165, 203)(166, 202)(167, 201)(168, 200)(169, 199)(170, 198)(171,
197)(172, 196)(173, 195)(174, 194)(175, 193)(176, 192)(177, 191)(178, 190)(179,
189)(180, 188)(181, 187)(182, 186)(183, 185)(220, 221)(222, 292)(223, 291)(224,
290)(225, 289)(226, 288)(227, 287)(228, 286)(229, 285)(230, 284)(231, 283)(232,
282)(233, 281)(234, 280)(235, 279)(236, 278)(237, 277)(238, 276)(239, 275)(240,
274)(241, 273)(242, 272)(243, 271)(244, 270)(245, 269)(246, 268)(247, 267)(248,
266)(249, 265)(250, 264)(251, 263)(252, 262)(253, 261)(254, 260)(255, 259)(256,
258)
d4: (215, 288)
e4: (173, 246)
f4: (166, 239)
g4: (148, 221)
h4: (198, 271)
m4: (207, 280)
n5: (160, 233)
a5: (147, 220)
b5: (176, 249)
c5: (218, 291)
d5: (181, 254)
e5: (180, 253)
f5: (154, 227)
g5: (211, 284)
h5: (187, 260)
m5: (169, 242)
n6: (203, 276)
a6: (204, 277)
b6: (209, 282)
c6: (183, 256)
d6: (171, 244)
e6: (164, 237)
f6: (192, 265)
g6: (210, 283)
h6: (186, 259)
m6: (174, 247)
n7: (197, 270)
a7: (185, 258)
b7: (184, 257)
c7: (182, 255)
d7: (162, 235)
C4[ 292, 5 ]
292
-1 220 221 147 148
-2 220 147 247 174
-3 220 266 147 193
-4 220 147 292 219
-5 221 222 148 149
-6 221 148 248 175
-7 221 267 148 194
-8 222 223 149 150
-9 176 222 149 249
-10 222 268 149 195
-11 223 224 150 151
-12 177 223 150 250
-13 223 269 150 196
-14 224 225 151 152
-15 178 224 151 251
-16 224 270 151 197
-17 225 226 152 153
-18 179 225 152 252
-19 198 225 271 152
-20 154 226 227 153
-21 253 180 226 153
-22 199 226 272 153
-23 154 155 227 228
-24 154 254 181 227
-25 154 200 227 273
-26 155 156 228 229
-27 155 255 182 228
-28 155 201 228 274
-29 156 157 229 230
-30 156 256 183 229
-31 275 156 202 229
-32 231 157 158 230
-33 157 257 184 230
-34 276 157 203 230
-35 231 232 158 159
-36 231 158 258 185
-37 231 277 158 204
-38 232 233 159 160
-39 232 159 259 186
-40 232 278 159 205
-41 233 234 160 161
-42 187 233 160 260
-43 233 279 160 206
-44 234 235 161 162
-45 188 234 161 261
-46 234 280 161 207
-47 235 236 162 163
-48 189 235 162 262
-49 235 281 162 208
-50 236 237 163 164
-51 190 236 163 263
-52 209 236 282 163
-53 165 237 238 164
-54 264 191 237 164
-55 210 237 283 164
-56 165 166 238 239
-57 165 265 192 238
-58 165 211 238 284
-59 166 167 239 240
-60 166 266 193 239
-61 166 212 239 285
-62 167 168 240 241
-63 167 267 194 240
-64 286 167 213 240
-65 242 168 169 241
-66 168 268 195 241
-67 287 168 214 241
-68 242 243 169 170
-69 242 169 269 196
-70 242 288 169 215
-71 243 244 170 171
-72 243 170 270 197
-73 243 289 170 216
-74 244 245 171 172
-75 198 244 171 271
-76 244 290 171 217
-77 245 246 172 173
-78 199 245 172 272
-79 245 291 172 218
-80 246 247 173 174
-81 200 246 173 273
-82 246 292 173 219
-83 247 248 174 175
-84 201 247 174 274
-85 176 248 249 175
-86 275 202 248 175
-87 176 177 249 250
-88 176 276 203 249
-89 177 178 250 251
-90 177 277 204 250
-91 178 179 251 252
-92 178 278 205 251
-93 253 179 180 252
-94 179 279 206 252
-95 253 254 180 181
-96 253 180 280 207
-97 254 255 181 182
-98 254 181 281 208
-99 255 256 182 183
-100 209 255 182 282
-101 256 257 183 184
-102 210 256 183 283
-103 257 258 184 185
-104 211 257 184 284
-105 258 259 185 186
-106 212 258 185 285
-107 187 259 260 186
-108 286 213 259 186
-109 187 188 260 261
-110 187 287 214 260
-111 188 189 261 262
-112 188 288 215 261
-113 189 190 262 263
-114 189 289 216 262
-115 264 190 191 263
-116 190 290 217 263
-117 264 265 191 192
-118 264 191 291 218
-119 265 266 192 193
-120 265 192 292 219
-121 266 267 193 194
-122 267 268 194 195
-123 268 269 195 196
-124 269 270 196 197
-125 198 270 271 197
-126 198 199 271 272
-127 199 200 272 273
-128 200 201 273 274
-129 275 201 202 274
-130 275 276 202 203
-131 276 277 203 204
-132 277 278 204 205
-133 278 279 205 206
-134 279 280 206 207
-135 280 281 207 208
-136 209 281 282 208
-137 209 210 282 283
-138 210 211 283 284
-139 211 212 284 285
-140 286 212 213 285
-141 286 287 213 214
-142 287 288 214 215
-143 288 289 215 216
-144 289 290 216 217
-145 290 291 217 218
-146 291 292 218 219
-147 1 2 3 4
-148 1 5 6 7
-149 5 8 9 10
-150 11 12 13 8
-151 11 14 15 16
-152 14 17 18 19
-153 22 17 20 21
-154 23 24 25 20
-155 23 26 27 28
-156 26 29 30 31
-157 33 34 29 32
-158 35 36 37 32
-159 35 38 39 40
-160 38 41 42 43
-161 44 45 46 41
-162 44 47 48 49
-163 47 50 51 52
-164 55 50 53 54
-165 56 57 58 53
-166 56 59 60 61
-167 59 62 63 64
-168 66 67 62 65
-169 68 69 70 65
-170 68 71 72 73
-171 71 74 75 76
-172 77 78 79 74
-173 77 80 81 82
-174 2 80 83 84
-175 6 83 85 86
-176 88 85 9 87
-177 12 89 90 87
-178 89 91 15 92
-179 91 93 94 18
-180 93 95 96 21
-181 24 95 97 98
-182 99 100 27 97
-183 99 101 102 30
-184 33 101 103 104
-185 36 103 105 106
-186 39 105 107 108
-187 110 107 42 109
-188 45 111 112 109
-189 111 113 48 114
-190 113 115 116 51
-191 115 117 118 54
-192 57 117 119 120
-193 121 3 60 119
-194 121 122 7 63
-195 66 122 123 10
-196 13 123 69 124
-197 124 125 16 72
-198 125 126 19 75
-199 22 78 126 127
-200 25 81 127 128
-201 28 84 128 129
-202 129 31 86 130
-203 88 34 130 131
-204 132 90 37 131
-205 132 133 92 40
-206 133 134 94 43
-207 46 134 135 96
-208 135 136 49 98
-209 100 136 137 52
-210 55 102 137 138
-211 58 104 138 139
-212 61 106 139 140
-213 140 64 108 141
-214 110 67 141 142
-215 143 112 70 142
-216 143 144 114 73
-217 144 145 116 76
-218 79 145 146 118
-219 146 4 82 120
-220 1 2 3 4
-221 1 5 6 7
-222 5 8 9 10
-223 11 12 13 8
-224 11 14 15 16
-225 14 17 18 19
-226 22 17 20 21
-227 23 24 25 20
-228 23 26 27 28
-229 26 29 30 31
-230 33 34 29 32
-231 35 36 37 32
-232 35 38 39 40
-233 38 41 42 43
-234 44 45 46 41
-235 44 47 48 49
-236 47 50 51 52
-237 55 50 53 54
-238 56 57 58 53
-239 56 59 60 61
-240 59 62 63 64
-241 66 67 62 65
-242 68 69 70 65
-243 68 71 72 73
-244 71 74 75 76
-245 77 78 79 74
-246 77 80 81 82
-247 2 80 83 84
-248 6 83 85 86
-249 88 85 9 87
-250 12 89 90 87
-251 89 91 15 92
-252 91 93 94 18
-253 93 95 96 21
-254 24 95 97 98
-255 99 100 27 97
-256 99 101 102 30
-257 33 101 103 104
-258 36 103 105 106
-259 39 105 107 108
-260 110 107 42 109
-261 45 111 112 109
-262 111 113 48 114
-263 113 115 116 51
-264 115 117 118 54
-265 57 117 119 120
-266 121 3 60 119
-267 121 122 7 63
-268 66 122 123 10
-269 13 123 69 124
-270 124 125 16 72
-271 125 126 19 75
-272 22 78 126 127
-273 25 81 127 128
-274 28 84 128 129
-275 129 31 86 130
-276 88 34 130 131
-277 132 90 37 131
-278 132 133 92 40
-279 133 134 94 43
-280 46 134 135 96
-281 135 136 49 98
-282 100 136 137 52
-283 55 102 137 138
-284 58 104 138 139
-285 61 106 139 140
-286 140 64 108 141
-287 110 67 141 142
-288 143 112 70 142
-289 143 144 114 73
-290 144 145 116 76
-291 79 145 146 118
-292 146 4 82 120
0