[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 293, 1 ] =
C_293(1,138).
(I) Following is a form readable by MAGMA:
g:=Graph<293|{ {2, 3}, {292, 293}, {290, 291}, {288, 289}, {286, 287}, {284,
285}, {282, 283}, {280, 281}, {278, 279}, {276, 277}, {274, 275}, {272, 273},
{270, 271}, {268, 269}, {266, 267}, {264, 265}, {262, 263}, {260, 261}, {258,
259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247},
{244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232,
233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221},
{218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206,
207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195},
{192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180,
181}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74,
75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58,
59}, {56, 57}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17},
{18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33},
{34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49},
{50, 51}, {52, 53}, {54, 55}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99},
{100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112,
113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125},
{126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138,
139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151},
{152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164,
165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177},
{178, 179}, {1, 2}, {289, 290}, {285, 286}, {281, 282}, {277, 278}, {273, 274},
{269, 270}, {265, 266}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245,
246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222},
{217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193,
194}, {189, 190}, {185, 186}, {181, 182}, {89, 90}, {85, 86}, {81, 82}, {77,
78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13,
14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45,
46}, {49, 50}, {53, 54}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110},
{113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137,
138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162},
{165, 166}, {169, 170}, {173, 174}, {177, 178}, {3, 4}, {291, 292}, {283, 284},
{275, 276}, {267, 268}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227,
228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180},
{83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36},
{43, 44}, {51, 52}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124},
{131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {7, 8},
{279, 280}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {183,
184}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {103, 104}, {119, 120},
{135, 136}, {151, 152}, {167, 168}, {15, 16}, {271, 272}, {239, 240}, {207,
208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {287,
288}, {223, 224}, {95, 96}, {159, 160}, {63, 64}, {191, 192}, {1, 139}, {85,
223}, {84, 222}, {81, 219}, {80, 218}, {69, 207}, {68, 206}, {65, 203}, {64,
202}, {4, 142}, {5, 143}, {16, 154}, {17, 155}, {20, 158}, {21, 159}, {32, 170},
{33, 171}, {36, 174}, {37, 175}, {48, 186}, {49, 187}, {52, 190}, {53, 191},
{96, 234}, {97, 235}, {100, 238}, {101, 239}, {112, 250}, {113, 251}, {116,
254}, {117, 255}, {2, 140}, {83, 221}, {82, 220}, {67, 205}, {66, 204}, {3,
141}, {18, 156}, {19, 157}, {34, 172}, {35, 173}, {50, 188}, {51, 189}, {98,
236}, {99, 237}, {114, 252}, {115, 253}, {6, 144}, {79, 217}, {78, 216}, {71,
209}, {70, 208}, {7, 145}, {14, 152}, {15, 153}, {38, 176}, {39, 177}, {46,
184}, {47, 185}, {102, 240}, {103, 241}, {110, 248}, {111, 249}, {8, 146}, {77,
215}, {76, 214}, {73, 211}, {72, 210}, {9, 147}, {12, 150}, {13, 151}, {40,
178}, {41, 179}, {44, 182}, {45, 183}, {104, 242}, {105, 243}, {108, 246}, {109,
247}, {4, 159}, {68, 223}, {64, 219}, {32, 187}, {36, 191}, {96, 251}, {100,
255}, {1, 156}, {67, 222}, {65, 220}, {3, 158}, {33, 188}, {35, 190}, {97, 252},
{99, 254}, {10, 148}, {75, 213}, {74, 212}, {11, 149}, {42, 180}, {43, 181},
{106, 244}, {107, 245}, {2, 157}, {66, 221}, {34, 189}, {98, 253}, {5, 160},
{87, 242}, {85, 240}, {79, 234}, {77, 232}, {71, 226}, {69, 224}, {7, 162}, {13,
168}, {15, 170}, {21, 176}, {23, 178}, {29, 184}, {31, 186}, {93, 248}, {95,
250}, {6, 161}, {86, 241}, {78, 233}, {70, 225}, {14, 169}, {22, 177}, {30,
185}, {94, 249}, {8, 163}, {88, 243}, {76, 231}, {72, 227}, {12, 167}, {24,
179}, {28, 183}, {92, 247}, {9, 164}, {89, 244}, {75, 230}, {73, 228}, {11,
166}, {25, 180}, {27, 182}, {91, 246}, {10, 165}, {74, 229}, {26, 181}, {90,
245}, {22, 160}, {87, 225}, {86, 224}, {23, 161}, {30, 168}, {31, 169}, {94,
232}, {95, 233}, {24, 162}, {89, 227}, {88, 226}, {25, 163}, {28, 166}, {29,
167}, {92, 230}, {93, 231}, {16, 171}, {84, 239}, {80, 235}, {20, 175}, {17,
172}, {83, 238}, {81, 236}, {19, 174}, {26, 164}, {27, 165}, {90, 228}, {91,
229}, {18, 173}, {82, 237}, {37, 192}, {63, 218}, {61, 216}, {55, 210}, {39,
194}, {45, 200}, {47, 202}, {53, 208}, {38, 193}, {62, 217}, {46, 201}, {54,
209}, {40, 195}, {60, 215}, {56, 211}, {44, 199}, {41, 196}, {59, 214}, {57,
212}, {43, 198}, {42, 197}, {58, 213}, {54, 192}, {63, 201}, {62, 200}, {55,
193}, {56, 194}, {61, 199}, {60, 198}, {57, 195}, {48, 203}, {52, 207}, {49,
204}, {51, 206}, {58, 196}, {59, 197}, {50, 205}, {127, 128}, {1, 293}, {101,
256}, {103, 258}, {109, 264}, {111, 266}, {117, 272}, {119, 274}, {125, 280},
{127, 282}, {102, 257}, {110, 265}, {118, 273}, {126, 281}, {104, 259}, {108,
263}, {120, 275}, {124, 279}, {105, 260}, {107, 262}, {121, 276}, {123, 278},
{106, 261}, {122, 277}, {118, 256}, {119, 257}, {126, 264}, {127, 265}, {120,
258}, {121, 259}, {124, 262}, {125, 263}, {112, 267}, {116, 271}, {113, 268},
{115, 270}, {122, 260}, {123, 261}, {114, 269}, {128, 266}, {129, 267}, {132,
270}, {133, 271}, {144, 282}, {145, 283}, {148, 286}, {149, 287}, {130, 268},
{131, 269}, {146, 284}, {147, 285}, {134, 272}, {135, 273}, {142, 280}, {143,
281}, {136, 274}, {137, 275}, {140, 278}, {141, 279}, {128, 283}, {132, 287},
{129, 284}, {131, 286}, {138, 276}, {139, 277}, {130, 285}, {133, 288}, {135,
290}, {134, 289}, {136, 291}, {137, 292}, {138, 293}, {150, 288}, {151, 289},
{152, 290}, {153, 291}, {154, 292}, {155, 293}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 156, 293, 139)(3, 18, 292, 277)(4, 173, 291, 122)(5, 35, 290, 260)(6,
190, 289, 105)(7, 52, 288, 243)(8, 207, 287, 88)(9, 69, 286, 226)(10, 224, 285,
71)(11, 86, 284, 209)(12, 241, 283, 54)(13, 103, 282, 192)(14, 258, 281, 37)(15,
120, 280, 175)(16, 275, 279, 20)(17, 137, 278, 158)(19, 154, 276, 141)(21, 171,
274, 124)(22, 33, 273, 262)(23, 188, 272, 107)(24, 50, 271, 245)(25, 205, 270,
90)(26, 67, 269, 228)(27, 222, 268, 73)(28, 84, 267, 211)(29, 239, 266, 56)(30,
101, 265, 194)(31, 256, 264, 39)(32, 118, 263, 177)(34, 135, 261, 160)(36, 152,
259, 143)(38, 169, 257, 126)(40, 186, 255, 109)(41, 48, 254, 247)(42, 203, 253,
92)(43, 65, 252, 230)(44, 220, 251, 75)(45, 82, 250, 213)(46, 237, 249, 58)(47,
99, 248, 196)(49, 116, 246, 179)(51, 133, 244, 162)(53, 150, 242, 145)(55, 167,
240, 128)(57, 184, 238, 111)(59, 201, 236, 94)(60, 63, 235, 232)(61, 218, 234,
77)(62, 80, 233, 215)(64, 97, 231, 198)(66, 114, 229, 181)(68, 131, 227,
164)(70, 148, 225, 147)(72, 165, 223, 130)(74, 182, 221, 113)(76, 199, 219,
96)(78, 216, 217, 79)(81, 95, 214, 200)(83, 112, 212, 183)(85, 129, 210,
166)(87, 146, 208, 149)(89, 163, 206, 132)(91, 180, 204, 115)(93, 197, 202,
98)(100, 110, 195, 185)(102, 127, 193, 168)(104, 144, 191, 151)(106, 161, 189,
134)(108, 178, 187, 117)(119, 125, 176, 170)(121, 142, 174, 153)(123, 159, 172,
136)(138, 140, 157, 155) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292,
293)
C4[ 293, 1 ]
293
-1 2 156 139 293
-2 1 3 157 140
-3 2 4 158 141
-4 3 5 159 142
-5 143 4 6 160
-6 144 5 7 161
-7 145 6 8 162
-8 146 7 9 163
-9 147 8 10 164
-10 11 165 148 9
-11 12 166 149 10
-12 11 13 167 150
-13 12 14 168 151
-14 13 15 169 152
-15 14 16 170 153
-16 154 15 17 171
-17 155 16 18 172
-18 156 17 19 173
-19 157 18 20 174
-20 158 19 21 175
-21 22 176 159 20
-22 23 177 160 21
-23 22 24 178 161
-24 23 25 179 162
-25 24 26 180 163
-26 25 27 181 164
-27 165 26 28 182
-28 166 27 29 183
-29 167 28 30 184
-30 168 29 31 185
-31 169 30 32 186
-32 33 187 170 31
-33 34 188 171 32
-34 33 35 189 172
-35 34 36 190 173
-36 35 37 191 174
-37 36 38 192 175
-38 176 37 39 193
-39 177 38 40 194
-40 178 39 41 195
-41 179 40 42 196
-42 180 41 43 197
-43 44 198 181 42
-44 45 199 182 43
-45 44 46 200 183
-46 45 47 201 184
-47 46 48 202 185
-48 47 49 203 186
-49 187 48 50 204
-50 188 49 51 205
-51 189 50 52 206
-52 190 51 53 207
-53 191 52 54 208
-54 55 209 192 53
-55 56 210 193 54
-56 55 57 211 194
-57 56 58 212 195
-58 57 59 213 196
-59 58 60 214 197
-60 198 59 61 215
-61 199 60 62 216
-62 200 61 63 217
-63 201 62 64 218
-64 202 63 65 219
-65 66 220 203 64
-66 67 221 204 65
-67 66 68 222 205
-68 67 69 223 206
-69 68 70 224 207
-70 69 71 225 208
-71 209 70 72 226
-72 210 71 73 227
-73 211 72 74 228
-74 212 73 75 229
-75 213 74 76 230
-76 77 231 214 75
-77 78 232 215 76
-78 77 79 233 216
-79 78 80 234 217
-80 79 81 235 218
-81 80 82 236 219
-82 220 81 83 237
-83 221 82 84 238
-84 222 83 85 239
-85 223 84 86 240
-86 224 85 87 241
-87 88 242 225 86
-88 89 243 226 87
-89 88 90 244 227
-90 89 91 245 228
-91 90 92 246 229
-92 91 93 247 230
-93 231 92 94 248
-94 232 93 95 249
-95 233 94 96 250
-96 234 95 97 251
-97 235 96 98 252
-98 99 253 236 97
-99 100 254 237 98
-100 99 101 255 238
-101 100 102 256 239
-102 101 103 257 240
-103 102 104 258 241
-104 242 103 105 259
-105 243 104 106 260
-106 244 105 107 261
-107 245 106 108 262
-108 246 107 109 263
-109 110 264 247 108
-110 111 265 248 109
-111 110 112 266 249
-112 111 113 267 250
-113 112 114 268 251
-114 113 115 269 252
-115 253 114 116 270
-116 254 115 117 271
-117 255 116 118 272
-118 256 117 119 273
-119 257 118 120 274
-120 121 275 258 119
-121 122 276 259 120
-122 121 123 277 260
-123 122 124 278 261
-124 123 125 279 262
-125 124 126 280 263
-126 264 125 127 281
-127 265 126 128 282
-128 266 127 129 283
-129 267 128 130 284
-130 268 129 131 285
-131 132 286 269 130
-132 133 287 270 131
-133 132 134 288 271
-134 133 135 289 272
-135 134 136 290 273
-136 135 137 291 274
-137 275 136 138 292
-138 276 137 139 293
-139 1 277 138 140
-140 2 278 139 141
-141 3 279 140 142
-142 143 4 280 141
-143 144 5 281 142
-144 143 145 6 282
-145 144 146 7 283
-146 145 147 8 284
-147 146 148 9 285
-148 286 147 149 10
-149 11 287 148 150
-150 12 288 149 151
-151 13 289 150 152
-152 14 290 151 153
-153 154 15 291 152
-154 155 16 292 153
-155 154 156 17 293
-156 1 155 157 18
-157 2 156 158 19
-158 3 157 159 20
-159 4 158 160 21
-160 22 5 159 161
-161 23 6 160 162
-162 24 7 161 163
-163 25 8 162 164
-164 165 26 9 163
-165 166 27 10 164
-166 11 165 167 28
-167 12 166 168 29
-168 13 167 169 30
-169 14 168 170 31
-170 15 169 171 32
-171 33 16 170 172
-172 34 17 171 173
-173 35 18 172 174
-174 36 19 173 175
-175 176 37 20 174
-176 177 38 21 175
-177 22 176 178 39
-178 23 177 179 40
-179 24 178 180 41
-180 25 179 181 42
-181 26 180 182 43
-182 44 27 181 183
-183 45 28 182 184
-184 46 29 183 185
-185 47 30 184 186
-186 187 48 31 185
-187 188 49 32 186
-188 33 187 189 50
-189 34 188 190 51
-190 35 189 191 52
-191 36 190 192 53
-192 37 191 193 54
-193 55 38 192 194
-194 56 39 193 195
-195 57 40 194 196
-196 58 41 195 197
-197 198 59 42 196
-198 199 60 43 197
-199 44 198 200 61
-200 45 199 201 62
-201 46 200 202 63
-202 47 201 203 64
-203 48 202 204 65
-204 66 49 203 205
-205 67 50 204 206
-206 68 51 205 207
-207 69 52 206 208
-208 209 70 53 207
-209 210 71 54 208
-210 55 209 211 72
-211 56 210 212 73
-212 57 211 213 74
-213 58 212 214 75
-214 59 213 215 76
-215 77 60 214 216
-216 78 61 215 217
-217 79 62 216 218
-218 80 63 217 219
-219 220 81 64 218
-220 221 82 65 219
-221 66 220 222 83
-222 67 221 223 84
-223 68 222 224 85
-224 69 223 225 86
-225 70 224 226 87
-226 88 71 225 227
-227 89 72 226 228
-228 90 73 227 229
-229 91 74 228 230
-230 231 92 75 229
-231 232 93 76 230
-232 77 231 233 94
-233 78 232 234 95
-234 79 233 235 96
-235 80 234 236 97
-236 81 235 237 98
-237 99 82 236 238
-238 100 83 237 239
-239 101 84 238 240
-240 102 85 239 241
-241 242 103 86 240
-242 243 104 87 241
-243 88 242 244 105
-244 89 243 245 106
-245 90 244 246 107
-246 91 245 247 108
-247 92 246 248 109
-248 110 93 247 249
-249 111 94 248 250
-250 112 95 249 251
-251 113 96 250 252
-252 253 114 97 251
-253 254 115 98 252
-254 99 253 255 116
-255 100 254 256 117
-256 101 255 257 118
-257 102 256 258 119
-258 103 257 259 120
-259 121 104 258 260
-260 122 105 259 261
-261 123 106 260 262
-262 124 107 261 263
-263 264 125 108 262
-264 265 126 109 263
-265 110 264 266 127
-266 111 265 267 128
-267 112 266 268 129
-268 113 267 269 130
-269 114 268 270 131
-270 132 115 269 271
-271 133 116 270 272
-272 134 117 271 273
-273 135 118 272 274
-274 275 136 119 273
-275 276 137 120 274
-276 121 275 277 138
-277 122 276 278 139
-278 123 277 279 140
-279 124 278 280 141
-280 125 279 281 142
-281 143 126 280 282
-282 144 127 281 283
-283 145 128 282 284
-284 146 129 283 285
-285 286 147 130 284
-286 287 148 131 285
-287 132 286 288 149
-288 133 287 289 150
-289 134 288 290 151
-290 135 289 291 152
-291 136 290 292 153
-292 154 137 291 293
-293 1 155 138 292
0