C4graphConstructions for C4[ 294, 3 ] = {4,4}_[21,7]

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 294, 3 ]. See Glossary for some detail.

{4, 4}_[ 21, 7] = PS( 42, 7; 1) = PS( 21, 14; 1)

      = PS( 42, 14; 1) = PS( 14, 21; 1) = PS( 7, 42; 1)

      = PS( 14, 42; 1) = UG(ATD[294, 14]) = UG(ATD[294, 15])

      = UG(ATD[294, 16]) = MG(Rmap(294, 15) { 14, 42| 14}_ 42) = DG(Rmap(294, 15) { 14, 42| 14}_ 42)

      = MG(Rmap(294, 16) { 14, 42| 2}_ 42) = DG(Rmap(294, 16) { 14, 42| 2}_ 42) = DG(Rmap(294, 18) { 42, 14| 2}_ 42)

      = DG(Rmap(294, 19) { 42, 14| 14}_ 42) = DG(Rmap(147, 9) { 14, 21| 14}_ 42) = XI(Rmap(147, 10) { 21, 14| 14}_ 42)

      = XI(Rmap(147, 23) { 14, 42| 2}_ 21) = B({4, 4}_< 14, 7>) = BGCG({4, 4}_< 14, 7>; K1;1)

      = AT[294, 6]

Cyclic coverings

mod 42:
1234567
1 - 0 36 - - - - 0 6
2 0 6 - 0 36 - - - -
3 - 0 6 - 0 36 - - -
4 - - 0 6 - 0 36 - -
5 - - - 0 6 - 0 36 -
6 - - - - 0 6 - 1 7
7 0 36 - - - - 35 41 -

mod 42:
1234567
1 - 0 - 0 0 - 0
2 0 - 0 - 9 0 -
3 - 0 - 34 - 9 34
4 0 - 8 - 9 - 9
5 0 33 - 33 - 0 -
6 - 0 33 - 0 - 34
7 0 - 8 33 - 8 -

mod 42:
1234567
1 1 41 0 - - - - 0
2 0 1 41 0 - - - -
3 - 0 1 41 0 - - -
4 - - 0 1 41 0 - -
5 - - - 0 1 41 0 -
6 - - - - 0 1 41 35
7 0 - - - - 7 1 41

mod 42:
1234567
1 - 0 0 - - 0 0
2 0 - 1 0 - - 1
3 0 41 - 0 41 - -
4 - 0 0 - 0 4 -
5 - - 1 0 - 5 5
6 0 - - 38 37 - 1
7 0 41 - - 37 41 -

mod 42:
1234567
1 1 41 0 2 - - - - -
2 0 40 - 0 2 - - - -
3 - 0 40 - 0 2 - - -
4 - - 0 40 - 0 2 - -
5 - - - 0 40 - 0 2 -
6 - - - - 0 40 - 0 2
7 - - - - - 0 40 1 41

mod 42:
1234567
1 - 0 8 - - - - 0 8
2 0 34 - 0 8 - - - -
3 - 0 34 - 0 8 - - -
4 - - 0 34 - 0 8 - -
5 - - - 0 34 - 0 8 -
6 - - - - 0 34 - 1 9
7 0 34 - - - - 33 41 -