[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 294, 3 ]. See Glossary for some
detail.
{4, 4}_[ 21, 7] = PS( 42, 7; 1) = PS( 21, 14; 1)
= PS( 42, 14; 1) = PS( 14, 21; 1) = PS( 7, 42; 1)
= PS( 14, 42; 1) = UG(ATD[294, 14]) = UG(ATD[294, 15])
= UG(ATD[294, 16]) = MG(Rmap(294, 15) { 14, 42| 14}_ 42) = DG(Rmap(294, 15) {
14, 42| 14}_ 42)
= MG(Rmap(294, 16) { 14, 42| 2}_ 42) = DG(Rmap(294, 16) { 14, 42| 2}_ 42) =
DG(Rmap(294, 18) { 42, 14| 2}_ 42)
= DG(Rmap(294, 19) { 42, 14| 14}_ 42) = DG(Rmap(147, 9) { 14, 21| 14}_ 42) =
XI(Rmap(147, 10) { 21, 14| 14}_ 42)
= XI(Rmap(147, 23) { 14, 42| 2}_ 21) = B({4, 4}_< 14, 7>) = BGCG({4, 4}_< 14,
7>; K1;1)
= AT[294, 6]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | - | 0 36 | - | - | - | - | 0 6 |
2 | 0 6 | - | 0 36 | - | - | - | - |
3 | - | 0 6 | - | 0 36 | - | - | - |
4 | - | - | 0 6 | - | 0 36 | - | - |
5 | - | - | - | 0 6 | - | 0 36 | - |
6 | - | - | - | - | 0 6 | - | 1 7 |
7 | 0 36 | - | - | - | - | 35 41 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | 0 | - | 0 |
2 | 0 | - | 0 | - | 9 | 0 | - |
3 | - | 0 | - | 34 | - | 9 | 34 |
4 | 0 | - | 8 | - | 9 | - | 9 |
5 | 0 | 33 | - | 33 | - | 0 | - |
6 | - | 0 | 33 | - | 0 | - | 34 |
7 | 0 | - | 8 | 33 | - | 8 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | 1 41 | 0 | - | - | - | - | 0 |
2 | 0 | 1 41 | 0 | - | - | - | - |
3 | - | 0 | 1 41 | 0 | - | - | - |
4 | - | - | 0 | 1 41 | 0 | - | - |
5 | - | - | - | 0 | 1 41 | 0 | - |
6 | - | - | - | - | 0 | 1 41 | 35 |
7 | 0 | - | - | - | - | 7 | 1 41 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | - | 0 | 0 |
2 | 0 | - | 1 | 0 | - | - | 1 |
3 | 0 | 41 | - | 0 | 41 | - | - |
4 | - | 0 | 0 | - | 0 | 4 | - |
5 | - | - | 1 | 0 | - | 5 | 5 |
6 | 0 | - | - | 38 | 37 | - | 1 |
7 | 0 | 41 | - | - | 37 | 41 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | 1 41 | 0 2 | - | - | - | - | - |
2 | 0 40 | - | 0 2 | - | - | - | - |
3 | - | 0 40 | - | 0 2 | - | - | - |
4 | - | - | 0 40 | - | 0 2 | - | - |
5 | - | - | - | 0 40 | - | 0 2 | - |
6 | - | - | - | - | 0 40 | - | 0 2 |
7 | - | - | - | - | - | 0 40 | 1 41 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | - | 0 8 | - | - | - | - | 0 8 |
2 | 0 34 | - | 0 8 | - | - | - | - |
3 | - | 0 34 | - | 0 8 | - | - | - |
4 | - | - | 0 34 | - | 0 8 | - | - |
5 | - | - | - | 0 34 | - | 0 8 | - |
6 | - | - | - | - | 0 34 | - | 1 9 |
7 | 0 34 | - | - | - | - | 33 41 | - |