[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 294, 7 ] =
MSZ(42,7,13,2).
(I) Following is a form readable by MAGMA:
g:=Graph<294|{ {2, 3}, {292, 293}, {290, 291}, {288, 289}, {286, 287}, {284,
285}, {282, 283}, {280, 281}, {278, 279}, {276, 277}, {274, 275}, {272, 273},
{270, 271}, {268, 269}, {266, 267}, {264, 265}, {262, 263}, {260, 261}, {258,
259}, {256, 257}, {254, 255}, {250, 251}, {248, 249}, {246, 247}, {122, 123},
{120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {108,
109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94,
95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {82, 83}, {80, 81}, {78, 79}, {4,
5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21},
{22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37},
{38, 39}, {40, 41}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55},
{56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71},
{72, 73}, {74, 75}, {76, 77}, {124, 125}, {128, 129}, {130, 131}, {132, 133},
{134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146,
147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159},
{160, 161}, {162, 163}, {164, 165}, {166, 167}, {170, 171}, {172, 173}, {174,
175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187},
{188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198, 199}, {200,
201}, {202, 203}, {204, 205}, {206, 207}, {208, 209}, {212, 213}, {214, 215},
{216, 217}, {218, 219}, {220, 221}, {222, 223}, {224, 225}, {226, 227}, {228,
229}, {230, 231}, {232, 233}, {234, 235}, {236, 237}, {238, 239}, {240, 241},
{242, 243}, {244, 245}, {1, 2}, {293, 294}, {289, 290}, {285, 286}, {281, 282},
{277, 278}, {273, 274}, {269, 270}, {265, 266}, {261, 262}, {257, 258}, {253,
254}, {249, 250}, {245, 246}, {121, 122}, {117, 118}, {113, 114}, {109, 110},
{105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77,
78}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33,
34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65,
66}, {69, 70}, {73, 74}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141,
142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166},
{169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193,
194}, {197, 198}, {201, 202}, {205, 206}, {209, 210}, {213, 214}, {217, 218},
{221, 222}, {225, 226}, {229, 230}, {233, 234}, {237, 238}, {241, 242}, {3, 4},
{291, 292}, {283, 284}, {275, 276}, {267, 268}, {259, 260}, {251, 252}, {123,
124}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {83, 84}, {11, 12}, {19, 20},
{27, 28}, {35, 36}, {43, 44}, {51, 52}, {59, 60}, {67, 68}, {75, 76}, {131,
132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180},
{187, 188}, {195, 196}, {203, 204}, {211, 212}, {219, 220}, {227, 228}, {235,
236}, {243, 244}, {114, 127}, {162, 175}, {210, 223}, {240, 253}, {7, 8}, {279,
280}, {263, 264}, {247, 248}, {119, 120}, {103, 104}, {87, 88}, {81, 94}, {23,
24}, {33, 46}, {39, 40}, {55, 56}, {71, 72}, {135, 136}, {151, 152}, {167, 168},
{183, 184}, {199, 200}, {215, 216}, {231, 232}, {39, 52}, {75, 88}, {207, 220},
{36, 49}, {78, 91}, {198, 211}, {204, 217}, {165, 178}, {42, 55}, {72, 85},
{168, 181}, {15, 16}, {271, 272}, {111, 112}, {79, 80}, {47, 48}, {143, 144},
{175, 176}, {201, 214}, {207, 208}, {239, 240}, {1, 42}, {85, 126}, {211, 252},
{159, 172}, {30, 43}, {84, 97}, {156, 169}, {192, 247}, {3, 58}, {69, 124},
{129, 184}, {135, 190}, {195, 250}, {199, 254}, {6, 61}, {66, 121}, {31, 32},
{287, 288}, {95, 96}, {132, 187}, {159, 160}, {223, 224}, {9, 64}, {15, 70},
{27, 82}, {31, 86}, {45, 100}, {57, 112}, {63, 118}, {141, 196}, {153, 208},
{157, 212}, {171, 226}, {189, 244}, {138, 193}, {174, 229}, {186, 241}, {12,
67}, {60, 115}, {24, 79}, {48, 103}, {144, 199}, {21, 76}, {51, 106}, {147,
202}, {177, 232}, {183, 238}, {18, 73}, {54, 109}, {150, 205}, {180, 235}, {4,
101}, {10, 107}, {16, 113}, {22, 119}, {28, 125}, {130, 227}, {136, 233}, {142,
239}, {148, 245}, {154, 251}, {1, 98}, {13, 110}, {25, 122}, {133, 230}, {145,
242}, {19, 116}, {139, 236}, {7, 104}, {151, 248}, {141, 254}, {40, 95}, {160,
215}, {37, 92}, {163, 218}, {34, 89}, {166, 221}, {169, 210}, {43, 84}, {63,
64}, {191, 192}, {32, 171}, {116, 255}, {80, 219}, {35, 174}, {83, 222}, {15,
128}, {111, 224}, {63, 176}, {18, 131}, {120, 233}, {114, 227}, {84, 197}, {24,
137}, {30, 143}, {60, 173}, {126, 239}, {21, 134}, {117, 230}, {81, 194}, {57,
170}, {77, 216}, {27, 140}, {38, 177}, {123, 236}, {96, 251}, {3, 158}, {41,
180}, {74, 213}, {127, 224}, {46, 143}, {112, 209}, {106, 203}, {100, 197}, {52,
149}, {58, 155}, {49, 146}, {109, 206}, {97, 194}, {61, 158}, {87, 242}, {93,
248}, {6, 161}, {43, 140}, {12, 167}, {9, 164}, {55, 152}, {103, 200}, {90,
245}, {36, 149}, {108, 221}, {102, 215}, {42, 155}, {33, 146}, {105, 218}, {2,
183}, {8, 189}, {65, 246}, {99, 212}, {71, 252}, {68, 249}, {5, 186}, {39, 152},
{26, 223}, {32, 229}, {56, 253}, {17, 214}, {41, 238}, {73, 128}, {121, 176},
{111, 166}, {105, 160}, {93, 148}, {79, 134}, {11, 192}, {90, 145}, {23, 220},
{35, 232}, {47, 228}, {59, 240}, {14, 195}, {20, 217}, {38, 235}, {44, 225},
{62, 243}, {29, 210}, {108, 163}, {76, 131}, {124, 179}, {26, 207}, {50, 231},
{56, 237}, {17, 198}, {127, 168}, {87, 142}, {115, 170}, {23, 204}, {118, 173},
{82, 137}, {14, 211}, {20, 201}, {53, 234}, {64, 161}, {94, 191}, {88, 185},
{70, 167}, {85, 182}, {45, 200}, {54, 209}, {91, 188}, {67, 164}, {16, 255}, {5,
244}, {78, 191}, {11, 250}, {66, 179}, {72, 185}, {2, 241}, {69, 182}, {123,
136}, {126, 139}, {75, 188}, {117, 130}, {96, 151}, {99, 154}, {48, 203}, {102,
157}, {51, 206}, {120, 133}, {8, 247}, {29, 226}, {127, 128}, {19, 258}, {25,
264}, {31, 270}, {53, 292}, {22, 261}, {50, 289}, {28, 267}, {4, 285}, {1, 282},
{7, 288}, {10, 291}, {13, 294}, {37, 276}, {47, 286}, {34, 273}, {44, 283}, {59,
256}, {62, 259}, {40, 279}, {74, 271}, {80, 277}, {65, 262}, {71, 268}, {107,
288}, {95, 276}, {83, 280}, {68, 265}, {110, 291}, {92, 273}, {89, 270}, {113,
294}, {86, 267}, {77, 274}, {98, 279}, {119, 258}, {104, 285}, {125, 264}, {101,
282}, {122, 261}, {159, 272}, {144, 257}, {150, 263}, {156, 269}, {153, 266},
{147, 260}, {132, 287}, {129, 284}, {172, 269}, {178, 275}, {184, 281}, {190,
287}, {169, 266}, {181, 278}, {135, 290}, {187, 284}, {138, 293}, {162, 275},
{168, 281}, {165, 278}, {175, 272}, {205, 260}, {219, 274}, {237, 292}, {202,
257}, {222, 277}, {234, 289}, {208, 263}, {216, 271}, {213, 268}, {253, 294},
{196, 293}, {193, 290}, {243, 256}, {246, 259}, {252, 265}, {225, 280}, {231,
286}, {228, 283}, {255, 256}, {249, 262} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 98)(3, 279)(4, 40)(5, 95)(6, 276)(7, 37)(8, 92)(9, 273)(10, 34)(11,
89)(12, 270)(13, 31)(14, 86)(15, 267)(16, 28)(17, 125)(18, 264)(19, 25)(20,
122)(21, 261)(23, 119)(24, 258)(26, 116)(27, 255)(29, 113)(30, 294)(32, 110)(33,
291)(35, 107)(36, 288)(38, 104)(39, 285)(41, 101)(42, 282)(43, 253)(44, 56)(45,
237)(46, 292)(47, 53)(48, 234)(49, 289)(51, 231)(52, 286)(54, 228)(55, 283)(57,
225)(58, 280)(59, 83)(60, 222)(61, 277)(62, 80)(63, 219)(64, 274)(65, 77)(66,
216)(67, 271)(68, 74)(69, 213)(70, 268)(72, 252)(73, 265)(75, 249)(76, 262)(78,
246)(79, 259)(81, 243)(82, 256)(84, 240)(85, 211)(87, 195)(88, 250)(90, 192)(91,
247)(93, 189)(94, 244)(96, 186)(97, 241)(99, 183)(100, 238)(102, 180)(103,
235)(105, 177)(106, 232)(108, 174)(109, 229)(111, 171)(112, 226)(114, 210)(115,
223)(117, 207)(118, 220)(120, 204)(121, 217)(123, 201)(124, 214)(126, 198)(127,
169)(128, 266)(129, 153)(130, 208)(131, 263)(132, 150)(133, 205)(134, 260)(135,
147)(136, 202)(137, 257)(138, 144)(139, 199)(140, 254)(142, 196)(143, 293)(145,
193)(146, 290)(148, 190)(149, 287)(151, 187)(152, 284)(154, 184)(155, 281)(156,
168)(157, 181)(158, 278)(159, 165)(160, 178)(161, 275)(163, 175)(164, 272)(166,
172)(167, 269)(170, 224)(173, 221)(176, 218)(179, 215)(182, 212)(185, 251)(188,
248)(191, 245)(194, 242)(197, 239)(200, 236)(203, 233)(206, 230)(209, 227) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42)(43, 86, 171, 46, 89, 174, 49, 92, 177, 52, 95, 180, 55, 98, 183, 58, 101,
186, 61, 104, 189, 64, 107, 192, 67, 110, 195, 70, 113, 198, 73, 116, 201, 76,
119, 204, 79, 122, 207, 82, 125, 210)(44, 87, 172, 47, 90, 175, 50, 93, 178, 53,
96, 181, 56, 99, 184, 59, 102, 187, 62, 105, 190, 65, 108, 193, 68, 111, 196,
71, 114, 199, 74, 117, 202, 77, 120, 205, 80, 123, 208, 83, 126, 169)(45, 88,
173, 48, 91, 176, 51, 94, 179, 54, 97, 182, 57, 100, 185, 60, 103, 188, 63, 106,
191, 66, 109, 194, 69, 112, 197, 72, 115, 200, 75, 118, 203, 78, 121, 206, 81,
124, 209, 84, 85, 170)(127, 254, 213, 130, 257, 216, 133, 260, 219, 136, 263,
222, 139, 266, 225, 142, 269, 228, 145, 272, 231, 148, 275, 234, 151, 278, 237,
154, 281, 240, 157, 284, 243, 160, 287, 246, 163, 290, 249, 166, 293, 252)(128,
255, 214, 131, 258, 217, 134, 261, 220, 137, 264, 223, 140, 267, 226, 143, 270,
229, 146, 273, 232, 149, 276, 235, 152, 279, 238, 155, 282, 241, 158, 285, 244,
161, 288, 247, 164, 291, 250, 167, 294, 211)(129, 256, 215, 132, 259, 218, 135,
262, 221, 138, 265, 224, 141, 268, 227, 144, 271, 230, 147, 274, 233, 150, 277,
236, 153, 280, 239, 156, 283, 242, 159, 286, 245, 162, 289, 248, 165, 292, 251,
168, 253, 212)
C4[ 294, 7 ]
294
-1 2 282 42 98
-2 1 3 183 241
-3 2 58 4 158
-4 101 3 5 285
-5 244 4 6 186
-6 5 61 7 161
-7 288 104 6 8
-8 189 247 7 9
-9 8 64 10 164
-10 11 291 107 9
-11 12 192 250 10
-12 11 67 13 167
-13 110 12 14 294
-14 13 211 15 195
-15 14 70 16 128
-16 255 113 15 17
-17 198 16 214 18
-18 17 73 19 131
-19 258 116 18 20
-20 201 19 217 21
-21 22 134 20 76
-22 23 261 119 21
-23 22 220 24 204
-24 23 79 25 137
-25 264 122 24 26
-26 25 223 27 207
-27 26 82 28 140
-28 267 125 27 29
-29 210 28 226 30
-30 143 29 31 43
-31 270 30 86 32
-32 33 171 31 229
-33 34 46 146 32
-34 33 89 35 273
-35 34 232 36 174
-36 35 37 49 149
-37 276 36 92 38
-38 177 37 235 39
-39 38 40 52 152
-40 279 39 95 41
-41 180 40 238 42
-42 55 1 155 41
-43 44 84 30 140
-44 45 225 283 43
-45 44 100 46 200
-46 33 143 45 47
-47 286 46 48 228
-48 47 103 49 203
-49 36 146 48 50
-50 231 289 49 51
-51 50 106 52 206
-52 39 149 51 53
-53 234 292 52 54
-54 55 209 53 109
-55 56 42 152 54
-56 55 253 57 237
-57 56 112 58 170
-58 155 57 3 59
-59 58 256 60 240
-60 59 115 61 173
-61 158 60 6 62
-62 243 61 259 63
-63 176 62 118 64
-64 161 63 9 65
-65 66 246 64 262
-66 121 67 179 65
-67 66 12 68 164
-68 67 265 69 249
-69 68 124 70 182
-70 167 69 15 71
-71 70 268 72 252
-72 71 73 85 185
-73 72 18 128 74
-74 213 73 271 75
-75 88 188 74 76
-76 77 75 21 131
-77 78 216 76 274
-78 77 79 91 191
-79 78 24 134 80
-80 79 277 81 219
-81 80 82 94 194
-82 81 27 137 83
-83 222 82 280 84
-84 83 97 43 197
-85 126 72 182 86
-86 267 85 31 87
-87 88 242 86 142
-88 89 75 185 87
-89 88 34 90 270
-90 89 145 91 245
-91 78 188 90 92
-92 91 37 93 273
-93 92 148 94 248
-94 81 191 93 95
-95 276 94 40 96
-96 95 151 97 251
-97 84 194 96 98
-98 99 1 279 97
-99 154 100 212 98
-100 99 45 101 197
-101 100 102 4 282
-102 101 157 103 215
-103 200 102 48 104
-104 103 105 7 285
-105 104 160 106 218
-106 203 105 51 107
-107 288 106 108 10
-108 221 107 163 109
-109 110 206 108 54
-110 111 13 291 109
-111 110 166 112 224
-112 209 111 57 113
-113 112 114 16 294
-114 113 115 127 227
-115 114 60 170 116
-116 255 115 117 19
-117 116 118 130 230
-118 117 63 173 119
-119 22 258 118 120
-120 121 133 233 119
-121 66 176 122 120
-122 121 123 25 261
-123 122 124 136 236
-124 123 69 179 125
-125 264 124 126 28
-126 125 139 85 239
-127 168 114 224 128
-128 15 127 73 129
-129 128 184 130 284
-130 117 227 129 131
-131 132 18 130 76
-132 187 133 287 131
-133 132 134 120 230
-134 133 79 135 21
-135 134 190 136 290
-136 123 233 135 137
-137 24 136 82 138
-138 137 193 139 293
-139 126 236 138 140
-140 27 139 141 43
-141 254 140 196 142
-142 143 239 141 87
-143 144 46 30 142
-144 143 199 145 257
-145 242 144 90 146
-146 33 145 147 49
-147 146 202 148 260
-148 245 147 93 149
-149 36 148 150 52
-150 149 205 151 263
-151 248 150 96 152
-152 55 39 151 153
-153 154 266 152 208
-154 99 155 251 153
-155 154 156 58 42
-156 155 157 169 269
-157 156 102 212 158
-158 3 157 159 61
-159 158 160 172 272
-160 159 105 215 161
-161 6 160 162 64
-162 275 161 163 175
-163 162 108 218 164
-164 165 67 9 163
-165 166 178 278 164
-166 165 111 221 167
-167 12 166 168 70
-168 167 181 127 281
-169 210 156 266 170
-170 57 169 115 171
-171 170 226 172 32
-172 159 269 171 173
-173 60 172 118 174
-174 35 173 229 175
-175 176 162 272 174
-176 121 177 63 175
-177 176 232 178 38
-178 165 275 177 179
-179 66 178 124 180
-180 179 235 181 41
-181 168 278 180 182
-182 69 181 183 85
-183 2 182 238 184
-184 281 183 129 185
-185 88 72 184 186
-186 187 5 185 241
-187 132 188 284 186
-188 187 189 91 75
-189 188 244 190 8
-190 287 189 135 191
-191 78 190 192 94
-192 11 191 247 193
-193 290 192 138 194
-194 81 193 195 97
-195 14 194 250 196
-196 293 195 141 197
-197 198 100 84 196
-198 199 211 17 197
-199 198 144 254 200
-200 45 199 201 103
-201 200 202 214 20
-202 201 147 257 203
-203 48 202 204 106
-204 23 203 205 217
-205 204 150 260 206
-206 51 205 207 109
-207 220 26 206 208
-208 209 207 153 263
-209 210 112 54 208
-210 209 223 169 29
-211 198 14 212 252
-212 99 211 157 213
-213 212 268 214 74
-214 201 213 17 215
-215 102 214 160 216
-216 77 215 271 217
-217 204 216 20 218
-218 105 217 163 219
-219 220 80 218 274
-220 23 221 207 219
-221 220 166 222 108
-222 221 277 223 83
-223 210 222 26 224
-224 111 223 225 127
-225 44 224 280 226
-226 225 171 29 227
-227 114 226 228 130
-228 47 227 283 229
-229 228 174 32 230
-230 231 133 117 229
-231 286 232 50 230
-232 231 177 35 233
-233 232 234 136 120
-234 233 289 235 53
-235 234 180 38 236
-236 123 235 237 139
-237 56 236 292 238
-238 237 183 41 239
-239 126 238 240 142
-240 253 59 239 241
-241 242 2 240 186
-242 243 145 87 241
-243 242 244 256 62
-244 243 189 245 5
-245 90 244 246 148
-246 245 247 259 65
-247 246 192 248 8
-248 93 247 249 151
-249 68 248 250 262
-250 11 249 195 251
-251 154 96 250 252
-252 265 211 71 251
-253 56 254 294 240
-254 253 199 255 141
-255 254 256 16 116
-256 243 255 59 257
-257 144 256 202 258
-258 257 259 19 119
-259 246 258 62 260
-260 147 259 205 261
-261 22 122 260 262
-262 249 261 65 263
-263 264 150 262 208
-264 265 25 125 263
-265 264 68 266 252
-266 265 267 169 153
-267 266 268 28 86
-268 267 213 71 269
-269 156 268 270 172
-270 89 269 271 31
-271 270 216 74 272
-272 159 271 273 175
-273 34 92 272 274
-274 77 275 273 219
-275 276 178 162 274
-276 275 277 37 95
-277 276 222 80 278
-278 165 277 279 181
-279 278 280 40 98
-280 279 225 83 281
-281 168 280 282 184
-282 1 101 281 283
-283 44 282 228 284
-284 187 129 283 285
-285 286 4 104 284
-286 231 287 47 285
-287 132 286 288 190
-288 287 289 7 107
-289 288 234 290 50
-290 135 289 291 193
-291 110 290 292 10
-292 291 237 293 53
-293 138 292 294 196
-294 253 13 113 293
0