C4graphGraph forms for C4 [ 294, 12 ] = PL(ProjLR(3,7))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 294, 12 ] = PL(ProjLR(3,7)).

(I) Following is a form readable by MAGMA:

g:=Graph<294|{ {64, 66}, {12, 15}, {265, 266}, {50, 54}, {280, 284}, {219, 223}, {96, 100}, {25, 28}, {10, 12}, {147, 149}, {154, 156}, {24, 31}, {49, 56}, {117, 127}, {183, 189}, {19, 24}, {228, 239}, {193, 202}, {163, 175}, {196, 201}, {229, 232}, {103, 105}, {196, 202}, {114, 124}, {83, 92}, {279, 280}, {210, 221}, {182, 185}, {107, 123}, {195, 210}, {225, 240}, {197, 214}, {237, 254}, {232, 251}, {164, 176}, {172, 184}, {67, 86}, {47, 57}, {239, 249}, {128, 150}, {163, 181}, {258, 277}, {266, 285}, {36, 60}, {140, 148}, {78, 87}, {100, 127}, {261, 286}, {7, 26}, {235, 246}, {106, 119}, {9, 23}, {270, 272}, {261, 283}, {69, 91}, {68, 91}, {68, 100}, {70, 102}, {158, 190}, {87, 118}, {208, 241}, {95, 126}, {203, 233}, {13, 40}, {139, 174}, {154, 191}, {218, 252}, {79, 104}, {261, 290}, {223, 248}, {218, 253}, {132, 163}, {194, 229}, {14, 38}, {148, 188}, {22, 63}, {211, 250}, {81, 120}, {136, 161}, {8, 35}, {30, 50}, {69, 105}, {152, 181}, {13, 34}, {28, 44}, {222, 238}, {68, 117}, {72, 122}, {85, 103}, {22, 37}, {147, 167}, {85, 96}, {150, 161}, {31, 39}, {66, 122}, {18, 43}, {201, 240}, {194, 251}, {130, 184}, {221, 231}, {20, 47}, {26, 38}, {91, 103}, {7, 58}, {206, 243}, {81, 111}, {151, 168}, {176, 240}, {143, 206}, {159, 222}, {20, 86}, {170, 233}, {9, 77}, {53, 113}, {43, 111}, {156, 216}, {170, 238}, {173, 233}, {184, 252}, {27, 94}, {8, 78}, {51, 117}, {152, 222}, {5, 66}, {51, 123}, {156, 212}, {167, 239}, {55, 126}, {7, 77}, {22, 92}, {21, 95}, {172, 230}, {188, 246}, {144, 219}, {180, 255}, {5, 72}, {169, 231}, {172, 226}, {63, 112}, {142, 193}, {21, 68}, {164, 245}, {186, 235}, {58, 104}, {151, 197}, {58, 105}, {39, 114}, {45, 120}, {140, 217}, {40, 126}, {182, 224}, {1, 86}, {33, 120}, {2, 88}, {52, 110}, {2, 89}, {12, 80}, {48, 109}, {145, 204}, {175, 242}, {39, 121}, {1, 97}, {61, 93}, {158, 254}, {41, 72}, {178, 208}, {23, 116}, {61, 94}, {44, 79}, {6, 98}, {54, 82}, {61, 88}, {42, 76}, {48, 86}, {133, 227}, {174, 200}, {144, 247}, {160, 199}, {136, 225}, {11, 97}, {159, 245}, {167, 205}, {24, 116}, {176, 220}, {47, 65}, {137, 231}, {143, 224}, {143, 255}, {182, 198}, {13, 124}, {160, 209}, {165, 212}, {23, 101}, {129, 243}, {157, 239}, {17, 98}, {57, 74}, {154, 233}, {35, 87}, {50, 70}, {176, 196}, {191, 203}, {32, 85}, {41, 95}, {166, 208}, {15, 119}, {138, 242}, {149, 237}, {53, 76}, {160, 217}, {186, 195}, {5, 127}, {23, 108}, {30, 101}, {24, 99}, {171, 208}, {183, 204}, {14, 114}, {17, 109}, {177, 205}, {155, 230}, {165, 216}, {49, 79}, {138, 244}, {165, 219}, {33, 94}, {148, 235}, {62, 190}, {109, 237}, {99, 227}, {54, 180}, {84, 215}, {88, 220}, {45, 168}, {52, 177}, {32, 166}, {3, 132}, {74, 205}, {58, 189}, {4, 131}, {111, 231}, {50, 187}, {11, 129}, {89, 211}, {46, 164}, {114, 248}, {14, 133}, {71, 204}, {2, 142}, {81, 221}, {93, 210}, {122, 245}, {87, 199}, {42, 187}, {73, 216}, {29, 143}, {84, 198}, {6, 149}, {69, 214}, {56, 171}, {25, 138}, {19, 128}, {57, 173}, {115, 230}, {7, 145}, {36, 179}, {95, 200}, {125, 234}, {25, 129}, {71, 223}, {125, 228}, {53, 175}, {36, 191}, {99, 248}, {1, 157}, {116, 232}, {71, 218}, {100, 250}, {124, 226}, {9, 169}, {16, 177}, {99, 194}, {64, 225}, {39, 134}, {27, 185}, {76, 238}, {59, 153}, {28, 191}, {110, 205}, {98, 193}, {73, 234}, {80, 244}, {107, 207}, {48, 149}, {67, 228}, {19, 187}, {75, 227}, {49, 153}, {29, 180}, {34, 139}, {125, 212}, {6, 172}, {45, 135}, {42, 128}, {30, 180}, {109, 193}, {48, 157}, {54, 152}, {120, 214}, {18, 189}, {89, 246}, {51, 131}, {62, 140}, {75, 248}, {106, 217}, {96, 211}, {112, 196}, {73, 252}, {75, 253}, {77, 251}, {4, 179}, {92, 235}, {10, 178}, {72, 240}, {10, 179}, {52, 141}, {43, 146}, {15, 182}, {119, 206}, {16, 170}, {64, 250}, {55, 139}, {16, 173}, {30, 163}, {20, 170}, {107, 213}, {82, 236}, {67, 253}, {11, 203}, {57, 249}, {18, 210}, {47, 238}, {90, 155}, {67, 130}, {63, 254}, {3, 192}, {35, 224}, {4, 199}, {38, 227}, {65, 132}, {84, 146}, {43, 236}, {64, 135}, {2, 202}, {41, 225}, {56, 241}, {75, 130}, {119, 190}, {1, 203}, {110, 164}, {66, 136}, {73, 130}, {115, 184}, {122, 177}, {101, 169}, {10, 199}, {40, 229}, {89, 151}, {108, 162}, {88, 151}, {102, 169}, {70, 150}, {101, 181}, {8, 217}, {59, 234}, {38, 247}, {19, 194}, {14, 223}, {55, 229}, {85, 135}, {111, 189}, {80, 131}, {127, 171}, {36, 241}, {60, 234}, {90, 140}, {118, 160}, {45, 250}, {27, 195}, {8, 209}, {74, 147}, {37, 254}, {27, 198}, {77, 144}, {104, 183}, {78, 174}, {125, 157}, {26, 251}, {33, 195}, {80, 178}, {51, 209}, {121, 155}, {69, 166}, {33, 197}, {90, 190}, {60, 216}, {16, 245}, {108, 137}, {102, 128}, {82, 181}, {93, 186}, {107, 131}, {62, 215}, {83, 186}, {113, 152}, {12, 224}, {65, 173}, {17, 253}, {17, 252}, {56, 213}, {35, 206}, {28, 241}, {118, 155}, {113, 159}, {59, 212}, {102, 137}, {4, 244}, {82, 162}, {20, 228}, {98, 147}, {110, 159}, {46, 220}, {42, 222}, {106, 158}, {63, 202}, {32, 214}, {84, 162}, {115, 133}, {31, 232}, {62, 198}, {105, 145}, {81, 168}, {124, 134}, {3, 255}, {15, 243}, {97, 156}, {116, 137}, {9, 247}, {108, 146}, {106, 148}, {18, 275}, {21, 279}, {31, 282}, {5, 259}, {37, 290}, {26, 275}, {29, 278}, {46, 291}, {21, 259}, {13, 282}, {6, 285}, {3, 287}, {22, 266}, {25, 260}, {11, 276}, {34, 262}, {44, 260}, {53, 287}, {44, 258}, {55, 262}, {34, 272}, {32, 277}, {41, 284}, {46, 281}, {40, 272}, {60, 260}, {59, 258}, {52, 270}, {37, 286}, {29, 288}, {61, 256}, {49, 268}, {70, 262}, {74, 264}, {83, 273}, {78, 269}, {71, 257}, {79, 257}, {92, 265}, {112, 293}, {91, 259}, {121, 290}, {65, 287}, {76, 274}, {113, 274}, {121, 282}, {123, 284}, {118, 286}, {126, 279}, {97, 267}, {104, 258}, {123, 279}, {103, 277}, {117, 263}, {83, 293}, {90, 290}, {112, 264}, {96, 281}, {115, 266}, {93, 289}, {94, 289}, {165, 292}, {162, 289}, {167, 291}, {136, 270}, {139, 269}, {142, 264}, {134, 269}, {153, 277}, {168, 294}, {132, 267}, {154, 267}, {183, 294}, {141, 280}, {129, 278}, {158, 265}, {133, 285}, {150, 270}, {153, 257}, {188, 293}, {138, 278}, {134, 283}, {141, 272}, {135, 281}, {141, 274}, {175, 267}, {171, 259}, {185, 273}, {166, 268}, {142, 293}, {174, 261}, {188, 273}, {146, 288}, {161, 274}, {144, 292}, {185, 271}, {145, 294}, {179, 260}, {161, 280}, {187, 262}, {178, 268}, {207, 269}, {215, 273}, {207, 263}, {236, 288}, {236, 289}, {221, 275}, {192, 271}, {201, 281}, {213, 263}, {200, 283}, {211, 256}, {200, 284}, {207, 283}, {192, 278}, {209, 263}, {215, 271}, {213, 268}, {219, 257}, {249, 291}, {220, 256}, {192, 288}, {244, 276}, {197, 294}, {237, 265}, {247, 275}, {242, 276}, {243, 276}, {204, 292}, {201, 291}, {242, 287}, {255, 271}, {249, 264}, {246, 256}, {226, 282}, {230, 286}, {218, 292}, {226, 285} }>;

(II) A more general form is to represent the graph as the orbit of {64, 66} under the group generated by the following permutations:

a: (1, 2)(3, 85)(4, 221)(5, 152)(7, 35)(8, 77)(9, 209)(10, 18)(11, 151)(12, 189)(14, 155)(15, 183)(16, 164)(17, 237)(19, 200)(20, 196)(21, 50)(22, 130)(23, 263)(24, 283)(25, 33)(26, 87)(27, 44)(28, 94)(29, 69)(30, 68)(31, 134)(32, 192)(34, 40)(36, 93)(37, 75)(38, 118)(41, 42)(43, 178)(45, 242)(46, 173)(47, 201)(48, 193)(49, 84)(51, 169)(53, 64)(54, 259)(56, 162)(57, 291)(58, 224)(59, 273)(60, 186)(61, 191)(62, 257)(63, 67)(65, 281)(66, 113)(70, 279)(71, 190)(72, 222)(73, 92)(74, 167)(76, 225)(78, 251)(79, 198)(80, 111)(81, 244)(82, 171)(83, 234)(86, 202)(88, 203)(89, 97)(90, 223)(91, 180)(95, 187)(96, 132)(98, 149)(99, 261)(100, 163)(101, 117)(102, 123)(103, 255)(104, 182)(105, 143)(106, 292)(107, 137)(108, 213)(110, 177)(112, 228)(114, 121)(116, 207)(119, 204)(120, 138)(122, 159)(124, 282)(125, 293)(126, 262)(127, 181)(128, 284)(129, 197)(131, 231)(133, 230)(135, 287)(136, 274)(139, 229)(140, 219)(141, 270)(142, 157)(144, 217)(145, 206)(146, 268)(148, 165)(150, 280)(153, 215)(154, 256)(156, 246)(158, 218)(160, 247)(166, 288)(168, 276)(170, 176)(172, 285)(174, 194)(175, 250)(179, 210)(184, 266)(185, 258)(188, 212)(195, 260)(199, 275)(208, 236)(211, 267)(214, 278)(216, 235)(220, 233)(227, 286)(232, 269)(238, 240)(239, 264)(241, 289)(243, 294)(248, 290)(252, 265)(253, 254)(271, 277)
b: (2, 131)(3, 184)(4, 142)(5, 85)(6, 278)(7, 150)(8, 235)(9, 19)(10, 112)(11, 48)(12, 63)(13, 43)(14, 54)(15, 254)(16, 59)(17, 242)(18, 34)(20, 156)(21, 45)(22, 224)(23, 24)(25, 147)(26, 70)(27, 261)(28, 167)(29, 285)(30, 227)(31, 108)(32, 72)(33, 200)(35, 92)(36, 249)(37, 182)(38, 50)(39, 162)(40, 111)(41, 214)(42, 144)(44, 205)(46, 56)(47, 216)(49, 164)(51, 89)(52, 104)(53, 218)(55, 221)(57, 60)(58, 270)(61, 207)(62, 90)(64, 91)(65, 73)(66, 103)(67, 267)(68, 250)(69, 225)(71, 113)(74, 260)(75, 163)(76, 292)(77, 128)(78, 186)(79, 110)(80, 202)(81, 126)(82, 114)(83, 87)(84, 121)(86, 97)(88, 107)(93, 269)(94, 283)(95, 120)(96, 127)(98, 138)(99, 101)(102, 251)(105, 136)(109, 276)(115, 255)(117, 211)(118, 273)(119, 158)(122, 277)(123, 151)(124, 236)(125, 233)(129, 149)(130, 132)(133, 180)(134, 289)(135, 259)(137, 232)(139, 210)(141, 183)(143, 266)(145, 161)(146, 282)(148, 217)(152, 223)(153, 245)(154, 228)(155, 215)(157, 203)(159, 257)(160, 188)(165, 238)(166, 240)(168, 279)(169, 194)(170, 212)(171, 281)(172, 192)(173, 234)(174, 195)(175, 253)(176, 268)(177, 258)(178, 196)(179, 264)(181, 248)(185, 286)(187, 247)(189, 272)(191, 239)(193, 244)(197, 284)(198, 290)(199, 293)(201, 208)(204, 274)(206, 265)(209, 246)(213, 220)(219, 222)(226, 288)(229, 231)(230, 271)(237, 243)(241, 291)(252, 287)(256, 263)(262, 275)(280, 294)
c: (2, 288)(3, 264)(4, 172)(5, 19)(6, 244)(7, 105)(8, 290)(9, 85)(10, 115)(11, 48)(12, 266)(13, 123)(14, 268)(15, 265)(16, 238)(17, 25)(18, 197)(20, 233)(21, 229)(22, 224)(23, 96)(24, 127)(26, 69)(27, 186)(28, 253)(29, 202)(30, 201)(31, 117)(32, 247)(33, 210)(34, 284)(35, 37)(36, 130)(38, 166)(39, 263)(40, 279)(41, 262)(42, 122)(43, 151)(44, 218)(45, 231)(46, 181)(47, 173)(49, 223)(50, 240)(51, 282)(52, 274)(53, 205)(54, 176)(55, 95)(56, 248)(57, 65)(58, 145)(59, 165)(60, 73)(61, 289)(62, 148)(63, 143)(64, 102)(66, 128)(67, 191)(68, 232)(70, 225)(71, 79)(72, 187)(74, 287)(75, 241)(76, 177)(77, 103)(78, 261)(80, 285)(82, 220)(83, 185)(84, 246)(86, 203)(87, 286)(88, 236)(89, 146)(90, 217)(91, 251)(92, 182)(93, 94)(97, 157)(98, 138)(99, 171)(100, 116)(101, 281)(104, 204)(106, 190)(107, 124)(108, 211)(109, 129)(110, 113)(111, 168)(112, 255)(114, 213)(119, 158)(120, 221)(121, 209)(125, 156)(131, 226)(132, 249)(133, 178)(134, 207)(135, 169)(136, 150)(137, 250)(139, 200)(142, 192)(144, 277)(147, 242)(149, 276)(152, 164)(153, 219)(154, 228)(155, 160)(161, 270)(162, 256)(163, 291)(167, 175)(179, 184)(180, 196)(188, 215)(189, 294)(193, 278)(194, 259)(198, 235)(199, 230)(206, 254)(208, 227)(214, 275)(216, 234)(222, 245)(237, 243)(239, 267)(252, 260)(258, 292)(269, 283)(271, 293)(272, 280)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 294, 12 ]
294
-1 157 203 86 97
-2 88 89 202 142
-3 132 287 255 192
-4 199 244 179 131
-5 66 72 127 259
-6 149 172 98 285
-7 77 145 58 26
-8 209 78 35 217
-9 77 23 169 247
-10 12 199 178 179
-11 276 203 129 97
-12 80 15 224 10
-13 34 124 40 282
-14 133 223 114 38
-15 12 243 182 119
-16 177 245 170 173
-17 253 98 109 252
-18 275 210 189 43
-19 187 24 128 194
-20 47 170 228 86
-21 68 279 259 95
-22 266 37 92 63
-23 101 116 9 108
-24 99 116 19 31
-25 28 138 260 129
-26 275 38 7 251
-27 198 94 195 185
-28 44 25 191 241
-29 143 288 278 180
-30 101 180 50 163
-31 232 24 39 282
-32 166 277 214 85
-33 94 195 120 197
-34 13 139 272 262
-35 224 8 206 87
-36 179 191 60 241
-37 22 286 254 290
-38 14 26 247 227
-39 121 134 114 31
-40 13 126 272 229
-41 225 72 95 284
-42 187 222 128 76
-43 111 146 236 18
-44 79 258 28 260
-45 135 168 250 120
-46 220 291 281 164
-47 57 238 20 65
-48 157 149 86 109
-49 56 79 268 153
-50 187 70 30 54
-51 209 123 117 131
-52 110 177 270 141
-53 287 113 76 175
-54 180 82 50 152
-55 126 139 229 262
-56 213 49 171 241
-57 47 249 74 173
-58 189 104 105 7
-59 212 234 258 153
-60 36 234 216 260
-61 88 256 93 94
-62 198 190 215 140
-63 22 254 112 202
-64 66 135 225 250
-65 132 287 47 173
-66 122 136 5 64
-67 253 228 86 130
-68 100 91 117 21
-69 166 91 214 105
-70 102 50 150 262
-71 223 257 204 218
-72 122 5 41 240
-73 234 216 130 252
-74 264 57 147 205
-75 253 248 227 130
-76 238 42 53 274
-77 144 7 9 251
-78 269 8 174 87
-79 44 257 49 104
-80 12 178 244 131
-81 111 221 168 120
-82 181 236 162 54
-83 92 293 273 186
-84 198 146 215 162
-85 135 103 96 32
-86 1 67 48 20
-87 78 199 35 118
-88 220 2 61 151
-89 2 211 246 151
-90 155 190 290 140
-91 68 69 103 259
-92 22 265 235 83
-93 210 289 61 186
-94 33 289 27 61
-95 200 126 41 21
-96 100 211 281 85
-97 11 1 156 267
-98 147 6 17 193
-99 24 248 194 227
-100 68 127 96 250
-101 23 169 181 30
-102 70 169 137 128
-103 277 91 105 85
-104 79 58 258 183
-105 145 58 69 103
-106 158 148 217 119
-107 123 213 207 131
-108 23 146 137 162
-109 48 17 193 237
-110 159 205 52 164
-111 231 189 81 43
-112 264 293 63 196
-113 159 53 152 274
-114 14 124 39 248
-115 133 266 184 230
-116 23 232 24 137
-117 68 127 51 263
-118 286 155 160 87
-119 190 15 106 206
-120 33 45 81 214
-121 155 290 39 282
-122 66 177 245 72
-123 279 51 107 284
-124 13 134 114 226
-125 157 212 234 228
-126 55 279 40 95
-127 100 5 171 117
-128 102 150 19 42
-129 11 243 25 278
-130 67 73 184 75
-131 80 4 51 107
-132 3 267 163 65
-133 14 115 227 285
-134 124 269 39 283
-135 45 281 85 64
-136 66 225 270 161
-137 231 102 116 108
-138 242 244 25 278
-139 55 34 269 174
-140 90 148 62 217
-141 280 52 272 274
-142 264 2 193 293
-143 255 224 29 206
-144 77 247 292 219
-145 105 204 7 294
-146 288 84 108 43
-147 167 149 74 98
-148 188 235 106 140
-149 48 147 6 237
-150 70 270 128 161
-151 88 89 168 197
-152 222 113 181 54
-153 277 59 257 49
-154 156 233 267 191
-155 121 90 118 230
-156 154 212 216 97
-157 1 48 125 239
-158 254 265 190 106
-159 110 222 113 245
-160 209 199 118 217
-161 136 280 150 274
-162 289 82 84 108
-163 132 181 30 175
-164 110 176 46 245
-165 212 292 216 219
-166 69 268 32 208
-167 147 291 205 239
-168 45 81 151 294
-169 231 101 102 9
-170 233 16 238 20
-171 56 127 259 208
-172 6 226 184 230
-173 57 233 16 65
-174 78 200 139 261
-175 242 267 53 163
-176 220 196 240 164
-177 122 16 205 52
-178 80 268 10 208
-179 36 4 260 10
-180 255 29 30 54
-181 101 82 152 163
-182 198 15 224 185
-183 189 104 204 294
-184 115 172 130 252
-185 27 182 271 273
-186 235 93 83 195
-187 50 19 42 262
-188 246 148 293 273
-189 111 58 18 183
-190 90 158 62 119
-191 154 36 203 28
-192 288 3 278 271
-193 202 98 109 142
-194 99 19 229 251
-195 33 210 27 186
-196 176 112 201 202
-197 33 214 151 294
-198 27 182 62 84
-199 4 160 10 87
-200 95 283 174 284
-201 291 281 196 240
-202 2 193 63 196
-203 11 1 233 191
-204 145 71 292 183
-205 110 177 167 74
-206 143 243 35 119
-207 269 107 283 263
-208 166 178 171 241
-209 160 51 8 263
-210 221 93 18 195
-211 89 256 96 250
-212 165 156 59 125
-213 56 268 107 263
-214 69 32 120 197
-215 62 84 271 273
-216 165 156 60 73
-217 160 106 8 140
-218 253 71 292 252
-219 165 144 223 257
-220 88 176 46 256
-221 231 275 210 81
-222 159 238 42 152
-223 14 71 248 219
-224 143 12 35 182
-225 136 41 64 240
-226 124 172 282 285
-227 99 133 38 75
-228 67 125 239 20
-229 55 232 40 194
-230 286 155 115 172
-231 111 221 169 137
-232 116 31 229 251
-233 154 170 203 173
-234 59 125 60 73
-235 92 246 148 186
-236 288 289 82 43
-237 254 265 149 109
-238 222 47 170 76
-239 167 157 249 228
-240 176 201 225 72
-241 56 36 28 208
-242 276 287 138 175
-243 276 15 129 206
-244 276 80 4 138
-245 122 16 159 164
-246 89 188 256 235
-247 275 144 38 9
-248 99 223 114 75
-249 264 57 291 239
-250 45 100 211 64
-251 77 232 26 194
-252 17 73 184 218
-253 67 17 75 218
-254 37 158 237 63
-255 143 3 180 271
-256 220 211 246 61
-257 79 71 153 219
-258 44 277 59 104
-259 91 5 171 21
-260 44 25 179 60
-261 286 290 283 174
-262 55 187 34 70
-263 209 213 117 207
-264 112 249 74 142
-265 266 92 158 237
-266 22 265 115 285
-267 132 154 97 175
-268 166 178 213 49
-269 78 134 139 207
-270 136 150 52 272
-271 255 192 215 185
-272 34 270 40 141
-273 188 83 215 185
-274 113 161 141 76
-275 221 26 247 18
-276 11 242 243 244
-277 103 258 32 153
-278 192 138 29 129
-279 123 126 280 21
-280 279 161 141 284
-281 46 135 201 96
-282 121 13 226 31
-283 134 200 261 207
-284 123 200 280 41
-285 133 266 6 226
-286 37 118 261 230
-287 242 3 53 65
-288 146 192 236 29
-289 93 236 94 162
-290 121 90 37 261
-291 46 167 201 249
-292 165 144 204 218
-293 188 112 83 142
-294 145 168 183 197
0

**************