C4graphGraph forms for C4 [ 294, 14 ] = SS[294,1]

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 294, 14 ] = SS[294,1].

(I) Following is a form readable by MAGMA:

g:=Graph<294|{ {182, 183}, {1, 3}, {1, 2}, {68, 71}, {69, 70}, {1, 5}, {280, 284}, {250, 254}, {1, 4}, {250, 255}, {249, 252}, {248, 253}, {178, 183}, {281, 286}, {282, 285}, {66, 74}, {279, 287}, {179, 186}, {65, 75}, {245, 255}, {182, 186}, {279, 283}, {247, 251}, {242, 254}, {64, 77}, {241, 252}, {240, 253}, {181, 184}, {180, 185}, {68, 73}, {69, 72}, {182, 184}, {67, 76}, {182, 185}, {70, 86}, {271, 287}, {270, 286}, {269, 285}, {268, 284}, {267, 283}, {73, 88}, {74, 88}, {164, 183}, {169, 189}, {239, 251}, {76, 89}, {168, 190}, {227, 251}, {263, 287}, {260, 284}, {259, 283}, {231, 255}, {228, 252}, {163, 186}, {77, 87}, {166, 188}, {162, 184}, {229, 254}, {262, 285}, {261, 286}, {230, 253}, {165, 185}, {167, 187}, {75, 86}, {71, 89}, {72, 87}, {160, 191}, {256, 292}, {257, 294}, {258, 293}, {264, 288}, {265, 290}, {266, 289}, {141, 189}, {276, 292}, {275, 291}, {272, 288}, {137, 187}, {76, 127}, {278, 293}, {277, 294}, {274, 289}, {273, 290}, {136, 188}, {75, 126}, {139, 190}, {138, 188}, {140, 187}, {134, 190}, {280, 288}, {135, 189}, {281, 290}, {282, 289}, {70, 120}, {71, 121}, {72, 118}, {73, 119}, {28, 92}, {165, 229}, {30, 94}, {140, 204}, {141, 205}, {151, 215}, {52, 117}, {153, 216}, {152, 217}, {138, 203}, {31, 93}, {152, 218}, {45, 111}, {44, 110}, {28, 95}, {157, 222}, {55, 116}, {43, 104}, {42, 105}, {147, 208}, {27, 95}, {149, 209}, {27, 94}, {175, 234}, {163, 230}, {54, 115}, {30, 91}, {139, 206}, {25, 95}, {162, 228}, {137, 207}, {148, 210}, {29, 90}, {164, 227}, {156, 219}, {155, 220}, {154, 221}, {53, 114}, {143, 200}, {23, 94}, {174, 231}, {159, 214}, {142, 199}, {171, 225}, {145, 221}, {146, 223}, {173, 224}, {158, 211}, {151, 218}, {40, 102}, {172, 226}, {153, 215}, {41, 103}, {144, 222}, {150, 216}, {150, 217}, {40, 121}, {44, 126}, {45, 127}, {142, 220}, {43, 120}, {143, 219}, {62, 104}, {161, 247}, {63, 105}, {134, 209}, {135, 208}, {145, 201}, {160, 248}, {36, 125}, {177, 232}, {176, 233}, {38, 124}, {60, 102}, {61, 103}, {136, 210}, {144, 202}, {56, 99}, {57, 98}, {39, 122}, {159, 194}, {42, 119}, {146, 207}, {37, 123}, {158, 192}, {58, 100}, {59, 101}, {41, 118}, {47, 112}, {46, 113}, {10, 106}, {180, 212}, {177, 209}, {170, 202}, {161, 193}, {49, 81}, {20, 116}, {13, 109}, {11, 107}, {11, 106}, {167, 198}, {46, 79}, {19, 114}, {13, 108}, {12, 109}, {12, 110}, {169, 203}, {166, 196}, {50, 80}, {13, 111}, {129, 227}, {45, 78}, {50, 86}, {168, 204}, {158, 250}, {51, 87}, {131, 231}, {172, 201}, {179, 214}, {173, 200}, {10, 108}, {181, 211}, {159, 249}, {31, 121}, {30, 120}, {21, 115}, {128, 230}, {12, 107}, {178, 213}, {18, 117}, {18, 122}, {166, 206}, {19, 123}, {20, 125}, {175, 198}, {172, 197}, {50, 91}, {49, 88}, {48, 89}, {27, 114}, {26, 115}, {25, 112}, {24, 113}, {21, 124}, {28, 118}, {167, 205}, {59, 81}, {58, 80}, {29, 119}, {14, 101}, {168, 195}, {49, 90}, {130, 233}, {169, 197}, {171, 199}, {15, 98}, {174, 195}, {171, 198}, {48, 93}, {130, 239}, {133, 232}, {26, 116}, {173, 195}, {170, 196}, {27, 117}, {132, 234}, {51, 92}, {18, 98}, {35, 83}, {34, 82}, {131, 243}, {132, 244}, {133, 245}, {14, 127}, {37, 84}, {20, 101}, {15, 126}, {9, 123}, {39, 85}, {17, 99}, {20, 103}, {31, 108}, {30, 109}, {131, 240}, {147, 224}, {16, 100}, {177, 197}, {176, 196}, {38, 82}, {18, 102}, {130, 246}, {8, 125}, {170, 223}, {161, 212}, {160, 213}, {33, 84}, {32, 85}, {132, 241}, {148, 225}, {21, 99}, {57, 79}, {56, 78}, {55, 65}, {54, 64}, {53, 67}, {52, 66}, {29, 107}, {28, 106}, {22, 96}, {19, 100}, {36, 83}, {133, 242}, {149, 226}, {22, 110}, {181, 205}, {157, 229}, {59, 67}, {57, 65}, {42, 82}, {23, 111}, {60, 68}, {61, 69}, {24, 97}, {19, 105}, {58, 64}, {56, 66}, {26, 96}, {7, 124}, {40, 83}, {26, 97}, {11, 112}, {10, 113}, {62, 69}, {63, 68}, {6, 122}, {178, 206}, {51, 79}, {44, 80}, {60, 64}, {21, 104}, {175, 210}, {155, 230}, {41, 84}, {29, 96}, {62, 67}, {31, 97}, {174, 208}, {154, 228}, {48, 78}, {47, 81}, {43, 85}, {63, 65}, {61, 66}, {180, 203}, {179, 204}, {176, 207}, {156, 227}, {6, 134}, {8, 137}, {6, 142}, {7, 143}, {40, 163}, {41, 162}, {35, 175}, {9, 135}, {32, 174}, {7, 136}, {43, 164}, {42, 165}, {111, 224}, {11, 155}, {33, 177}, {22, 134}, {15, 159}, {14, 158}, {13, 157}, {113, 225}, {16, 129}, {25, 136}, {17, 128}, {59, 170}, {7, 149}, {34, 176}, {112, 226}, {56, 171}, {123, 232}, {6, 146}, {57, 172}, {124, 233}, {10, 156}, {49, 167}, {48, 166}, {12, 154}, {58, 173}, {125, 234}, {8, 145}, {9, 144}, {126, 228}, {127, 229}, {8, 147}, {51, 168}, {50, 169}, {9, 148}, {122, 231}, {23, 137}, {94, 192}, {24, 135}, {97, 193}, {115, 211}, {54, 151}, {55, 150}, {91, 250}, {116, 213}, {117, 212}, {96, 194}, {44, 143}, {45, 142}, {90, 249}, {22, 178}, {23, 179}, {81, 245}, {92, 248}, {114, 214}, {98, 199}, {120, 221}, {80, 246}, {102, 192}, {103, 193}, {121, 222}, {34, 139}, {93, 247}, {104, 194}, {33, 138}, {91, 240}, {99, 200}, {119, 220}, {14, 162}, {32, 140}, {15, 163}, {93, 241}, {101, 201}, {24, 181}, {53, 152}, {52, 153}, {25, 180}, {118, 219}, {35, 141}, {92, 242}, {100, 202}, {46, 129}, {47, 128}, {53, 133}, {16, 161}, {17, 160}, {110, 223}, {38, 148}, {39, 149}, {55, 132}, {62, 141}, {63, 140}, {88, 235}, {107, 216}, {54, 130}, {89, 237}, {109, 217}, {16, 165}, {17, 164}, {90, 239}, {32, 150}, {37, 147}, {36, 146}, {33, 151}, {60, 138}, {61, 139}, {108, 218}, {52, 131}, {85, 237}, {87, 238}, {86, 236}, {34, 153}, {39, 156}, {38, 157}, {35, 152}, {79, 244}, {78, 243}, {83, 238}, {106, 215}, {82, 236}, {36, 155}, {47, 144}, {46, 145}, {37, 154}, {84, 235}, {74, 128}, {77, 129}, {105, 191}, {95, 191}, {3, 283}, {4, 285}, {5, 286}, {2, 287}, {2, 284}, {3, 290}, {5, 294}, {4, 288}, {5, 289}, {2, 293}, {4, 291}, {3, 292}, {73, 281}, {70, 279}, {72, 282}, {75, 280}, {77, 281}, {76, 282}, {74, 279}, {71, 280}, {183, 275}, {184, 276}, {185, 278}, {186, 277}, {189, 261}, {191, 262}, {190, 260}, {187, 262}, {188, 259}, {200, 264}, {201, 265}, {192, 259}, {208, 275}, {195, 263}, {193, 260}, {209, 276}, {194, 261}, {210, 277}, {220, 272}, {196, 265}, {202, 263}, {199, 266}, {198, 264}, {197, 266}, {222, 273}, {221, 274}, {223, 271}, {216, 268}, {219, 271}, {218, 270}, {217, 269}, {203, 275}, {252, 292}, {251, 291}, {214, 270}, {213, 269}, {212, 268}, {211, 267}, {204, 276}, {207, 278}, {205, 278}, {254, 293}, {253, 294}, {206, 277}, {215, 267}, {255, 291}, {237, 268}, {238, 269}, {235, 271}, {235, 270}, {236, 267}, {232, 256}, {239, 262}, {233, 258}, {234, 257}, {224, 272}, {241, 259}, {225, 274}, {244, 263}, {243, 256}, {226, 273}, {240, 261}, {242, 260}, {247, 257}, {244, 258}, {246, 257}, {248, 256}, {243, 265}, {249, 258}, {236, 272}, {246, 266}, {245, 264}, {237, 274}, {238, 273} }>;

(II) A more general form is to represent the graph as the orbit of {182, 183} under the group generated by the following permutations:

a: (1, 6, 24)(2, 134, 181)(3, 146, 97)(4, 122, 135)(5, 142, 113)(7, 62, 75)(8, 247, 243)(9, 285, 18)(10, 286, 220)(11, 218, 73)(12, 54, 74)(13, 77, 230)(14, 244, 206)(15, 38, 72)(16, 248, 23)(17, 30, 58)(19, 191, 27)(20, 241, 196)(21, 70, 44)(22, 211, 287)(25, 53, 63)(26, 283, 223)(28, 214, 42)(29, 215, 235)(31, 290, 36)(32, 203, 245)(33, 49, 216)(34, 41, 249)(35, 71, 226)(37, 239, 52)(39, 189, 288)(40, 222, 238)(43, 50, 200)(45, 46, 294)(47, 217, 60)(48, 201, 234)(51, 186, 229)(55, 188, 59)(56, 221, 246)(57, 210, 76)(61, 228, 233)(64, 128, 109)(65, 136, 67)(66, 154, 130)(68, 112, 152)(69, 126, 124)(78, 145, 257)(79, 277, 127)(80, 99, 120)(81, 150, 138)(82, 118, 159)(83, 121, 273)(84, 90, 153)(85, 169, 264)(86, 143, 104)(87, 163, 157)(88, 107, 151)(89, 172, 175)(91, 173, 164)(92, 179, 165)(93, 265, 125)(94, 100, 160)(95, 114, 105)(96, 267, 271)(98, 148, 282)(101, 132, 166)(102, 144, 269)(103, 252, 176)(106, 270, 119)(108, 281, 155)(110, 115, 279)(111, 129, 253)(116, 259, 170)(117, 123, 262)(131, 147, 251)(133, 140, 180)(137, 161, 256)(139, 162, 258)(141, 280, 149)(156, 261, 272)(158, 263, 178)(167, 268, 177)(168, 182, 254)(171, 274, 266)(174, 275, 255)(183, 250, 195)(184, 293, 190)(185, 242, 204)(187, 212, 232)(192, 202, 213)(193, 292, 207)(194, 236, 219)(197, 198, 237)(199, 225, 289)(205, 284, 209)(208, 291, 231)(224, 227, 240)(260, 276, 278)
b: (2, 3, 5, 4)(6, 7, 9, 8)(10, 13, 12, 11)(14, 15, 17, 16)(18, 21, 19, 20)(22, 25, 24, 23)(26, 27)(28, 31, 30, 29)(32, 34, 33, 35)(36, 39, 38, 37)(40, 43, 42, 41)(44, 47, 46, 45)(48, 50, 49, 51)(52, 54, 53, 55)(56, 58, 59, 57)(60, 62, 63, 61)(64, 67, 65, 66)(68, 69)(70, 73, 72, 71)(74, 77, 76, 75)(78, 80, 81, 79)(82, 84, 83, 85)(86, 88, 87, 89)(90, 92, 93, 91)(94, 96, 95, 97)(98, 99, 100, 101)(102, 104, 105, 103)(106, 108, 109, 107)(110, 112, 113, 111)(114, 116, 117, 115)(118, 121, 120, 119)(122, 124, 123, 125)(126, 128, 129, 127)(130, 133, 132, 131)(134, 136, 135, 137)(138, 141, 140, 139)(142, 143, 144, 145)(146, 149, 148, 147)(150, 153, 151, 152)(154, 155, 156, 157)(158, 159, 160, 161)(162, 163, 164, 165)(166, 169, 167, 168)(170, 172, 171, 173)(174, 176, 177, 175)(178, 180, 181, 179)(183, 185, 184, 186)(187, 190, 188, 189)(191, 193, 192, 194)(195, 196, 197, 198)(199, 200, 202, 201)(203, 205, 204, 206)(207, 209, 210, 208)(211, 214, 213, 212)(215, 218, 217, 216)(219, 222, 221, 220)(223, 226, 225, 224)(227, 229, 228, 230)(231, 233, 232, 234)(235, 238, 237, 236)(239, 242, 241, 240)(243, 246, 245, 244)(247, 250, 249, 248)(251, 254, 252, 253)(255, 258, 256, 257)(259, 261, 262, 260)(263, 265, 266, 264)(267, 270, 269, 268)(271, 273, 274, 272)(275, 278, 276, 277)(279, 281, 282, 280)(283, 286, 285, 284)(287, 290, 289, 288)(291, 293, 292, 294)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 294, 14 ]
294
-1 2 3 4 5
-2 1 287 293 284
-3 1 290 292 283
-4 1 288 291 285
-5 286 1 289 294
-6 122 134 146 142
-7 143 124 136 149
-8 145 125 147 137
-9 144 123 135 148
-10 156 113 106 108
-11 155 112 106 107
-12 110 154 107 109
-13 111 157 108 109
-14 101 158 127 162
-15 126 159 163 98
-16 165 100 161 129
-17 99 160 128 164
-18 122 102 117 98
-19 100 123 114 105
-20 101 103 125 116
-21 99 124 104 115
-22 110 134 178 96
-23 111 179 137 94
-24 113 135 181 97
-25 112 136 180 95
-26 115 116 96 97
-27 114 94 95 117
-28 92 95 106 118
-29 90 96 107 119
-30 91 94 109 120
-31 121 93 97 108
-32 150 85 140 174
-33 177 138 84 151
-34 176 82 139 153
-35 83 141 152 175
-36 155 146 125 83
-37 154 123 147 84
-38 124 157 82 148
-39 122 156 149 85
-40 121 102 83 163
-41 103 84 118 162
-42 165 82 105 119
-43 104 85 120 164
-44 110 143 80 126
-45 78 111 127 142
-46 79 145 113 129
-47 144 112 81 128
-48 78 89 166 93
-49 88 90 167 81
-50 80 91 169 86
-51 79 168 92 87
-52 66 117 131 153
-53 67 133 114 152
-54 115 151 64 130
-55 132 116 150 65
-56 66 99 78 171
-57 79 172 65 98
-58 100 80 173 64
-59 67 101 81 170
-60 68 102 138 64
-61 66 69 103 139
-62 67 69 104 141
-63 68 105 140 65
-64 77 58 60 54
-65 55 57 63 75
-66 56 61 52 74
-67 59 62 53 76
-68 60 71 73 63
-69 70 61 72 62
-70 69 279 86 120
-71 121 89 68 280
-72 69 282 118 87
-73 88 68 281 119
-74 66 88 279 128
-75 126 280 86 65
-76 67 89 127 282
-77 281 129 64 87
-78 45 56 243 48
-79 46 57 244 51
-80 44 58 246 50
-81 47 245 59 49
-82 34 38 236 42
-83 35 36 40 238
-84 33 37 235 41
-85 39 237 32 43
-86 70 236 50 75
-87 77 72 51 238
-88 235 49 73 74
-89 48 71 237 76
-90 49 29 249 239
-91 50 30 250 240
-92 242 28 248 51
-93 48 247 31 241
-94 23 27 192 30
-95 25 191 27 28
-96 22 26 29 194
-97 24 26 193 31
-98 199 57 15 18
-99 56 200 17 21
-100 58 202 16 19
-101 14 201 59 20
-102 60 192 18 40
-103 61 193 41 20
-104 62 194 21 43
-105 191 19 63 42
-106 11 28 215 10
-107 11 12 29 216
-108 13 31 218 10
-109 12 13 30 217
-110 22 44 12 223
-111 23 45 13 224
-112 11 25 47 226
-113 24 46 225 10
-114 27 214 19 53
-115 211 26 21 54
-116 55 26 213 20
-117 212 27 18 52
-118 28 72 41 219
-119 220 29 73 42
-120 221 70 30 43
-121 222 71 40 31
-122 231 6 39 18
-123 232 37 19 9
-124 233 38 7 21
-125 36 234 8 20
-126 44 15 228 75
-127 45 14 229 76
-128 47 17 74 230
-129 77 46 16 227
-130 233 246 239 54
-131 231 243 52 240
-132 55 244 234 241
-133 242 232 245 53
-134 22 209 190 6
-135 24 189 9 208
-136 188 210 25 7
-137 187 23 8 207
-138 33 188 60 203
-139 34 190 61 206
-140 187 204 63 32
-141 35 189 62 205
-142 220 45 199 6
-143 44 200 7 219
-144 222 47 202 9
-145 221 46 201 8
-146 36 223 6 207
-147 37 224 8 208
-148 210 38 225 9
-149 209 39 226 7
-150 55 216 217 32
-151 33 215 218 54
-152 35 217 53 218
-153 34 215 216 52
-154 12 221 37 228
-155 11 220 36 230
-156 39 227 10 219
-157 13 222 38 229
-158 211 14 192 250
-159 15 214 194 249
-160 191 213 17 248
-161 212 16 247 193
-162 14 41 184 228
-163 15 40 186 230
-164 17 183 227 43
-165 16 42 185 229
-166 188 48 206 196
-167 187 198 49 205
-168 190 204 51 195
-169 189 203 50 197
-170 223 59 202 196
-171 198 56 199 225
-172 57 201 226 197
-173 200 58 224 195
-174 231 195 32 208
-175 198 210 35 234
-176 34 233 196 207
-177 33 209 232 197
-178 22 213 183 206
-179 23 214 204 186
-180 25 212 203 185
-181 24 211 205 184
-182 183 184 185 186
-183 275 178 182 164
-184 276 181 182 162
-185 165 278 180 182
-186 277 179 182 163
-187 167 137 140 262
-188 166 136 138 259
-189 135 169 261 141
-190 134 168 139 260
-191 105 160 95 262
-192 102 158 94 259
-193 103 161 260 97
-194 104 159 96 261
-195 168 173 174 263
-196 176 166 265 170
-197 177 266 169 172
-198 264 167 171 175
-199 266 171 98 142
-200 99 143 264 173
-201 265 101 145 172
-202 100 144 170 263
-203 275 169 180 138
-204 276 168 179 140
-205 167 278 181 141
-206 166 178 277 139
-207 176 146 278 137
-208 275 135 147 174
-209 177 276 134 149
-210 277 136 148 175
-211 267 158 115 181
-212 180 268 117 161
-213 178 269 116 160
-214 179 114 159 270
-215 267 106 151 153
-216 268 150 107 153
-217 269 150 152 109
-218 270 151 108 152
-219 143 156 271 118
-220 155 272 119 142
-221 154 145 120 274
-222 121 144 157 273
-223 110 146 170 271
-224 111 147 173 272
-225 113 148 171 274
-226 112 149 172 273
-227 156 129 251 164
-228 154 126 162 252
-229 165 254 157 127
-230 253 155 128 163
-231 122 255 174 131
-232 133 177 123 256
-233 176 124 258 130
-234 132 125 257 175
-235 88 270 84 271
-236 267 82 272 86
-237 89 268 85 274
-238 269 83 273 87
-239 90 130 251 262
-240 253 91 261 131
-241 132 93 259 252
-242 133 254 92 260
-243 78 265 256 131
-244 132 79 258 263
-245 264 133 255 81
-246 266 80 257 130
-247 257 93 161 251
-248 253 256 92 160
-249 90 159 258 252
-250 254 255 91 158
-251 247 291 227 239
-252 292 249 228 241
-253 248 294 240 230
-254 242 293 250 229
-255 231 245 291 250
-256 232 243 248 292
-257 234 246 247 294
-258 233 244 249 293
-259 188 192 283 241
-260 242 190 193 284
-261 286 189 194 240
-262 187 191 239 285
-263 287 244 202 195
-264 198 200 288 245
-265 243 201 290 196
-266 199 289 246 197
-267 211 236 215 283
-268 212 237 216 284
-269 213 238 217 285
-270 286 235 214 218
-271 287 223 235 219
-272 220 288 224 236
-273 222 290 226 238
-274 221 289 225 237
-275 203 291 183 208
-276 209 204 292 184
-277 210 206 294 186
-278 205 293 185 207
-279 287 70 74 283
-280 288 71 75 284
-281 77 286 290 73
-282 289 72 76 285
-283 3 267 279 259
-284 2 268 280 260
-285 4 269 282 262
-286 5 270 281 261
-287 2 279 271 263
-288 264 4 280 272
-289 266 5 282 274
-290 265 3 281 273
-291 275 255 4 251
-292 276 3 256 252
-293 254 2 278 258
-294 253 277 257 5
0

**************