C4graphGraph forms for C4 [ 296, 9 ] = PL(MC3(4,37,1,36,6,0,1),[4^37,74^2])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 296, 9 ] = PL(MC3(4,37,1,36,6,0,1),[4^37,74^2]).

(I) Following is a form readable by MAGMA:

g:=Graph<296|{ {144, 156}, {146, 156}, {134, 157}, {146, 179}, {139, 169}, {145, 179}, {139, 175}, {128, 167}, {134, 172}, {145, 190}, {139, 186}, {129, 179}, {135, 179}, {142, 186}, {136, 190}, {131, 186}, {147, 169}, {129, 186}, {133, 185}, {147, 175}, {144, 172}, {135, 185}, {129, 190}, {144, 175}, {146, 210}, {142, 204}, {136, 195}, {133, 203}, {131, 204}, {134, 215}, {135, 210}, {142, 219}, {134, 208}, {144, 201}, {146, 201}, {133, 229}, {143, 238}, {137, 235}, {141, 239}, {141, 238}, {148, 240}, {131, 230}, {137, 239}, {148, 243}, {142, 231}, {132, 238}, {131, 232}, {130, 238}, {130, 239}, {133, 232}, {128, 240}, {138, 249}, {143, 248}, {132, 248}, {140, 240}, {138, 246}, {140, 243}, {46, 174}, {72, 200}, {92, 220}, {27, 154}, {120, 249}, {103, 230}, {61, 191}, {69, 198}, {107, 232}, {19, 151}, {118, 242}, {56, 188}, {50, 182}, {49, 181}, {74, 206}, {84, 209}, {55, 176}, {93, 218}, {34, 170}, {107, 227}, {41, 161}, {94, 214}, {52, 189}, {117, 252}, {115, 250}, {43, 161}, {121, 243}, {62, 180}, {56, 178}, {93, 215}, {102, 236}, {96, 235}, {84, 216}, {123, 247}, {94, 210}, {26, 151}, {38, 171}, {22, 152}, {121, 247}, {120, 246}, {107, 229}, {25, 151}, {76, 194}, {81, 223}, {39, 168}, {123, 244}, {117, 250}, {99, 236}, {103, 232}, {54, 166}, {119, 231}, {74, 218}, {80, 192}, {85, 197}, {101, 245}, {46, 191}, {68, 213}, {63, 174}, {91, 202}, {93, 207}, {116, 230}, {98, 240}, {4, 151}, {33, 178}, {37, 177}, {62, 170}, {73, 221}, {74, 222}, {102, 242}, {73, 220}, {92, 201}, {15, 153}, {34, 180}, {2, 149}, {37, 189}, {75, 211}, {12, 149}, {114, 235}, {57, 160}, {49, 168}, {73, 208}, {99, 250}, {65, 219}, {118, 236}, {87, 204}, {124, 231}, {104, 243}, {6, 154}, {60, 160}, {10, 150}, {72, 212}, {95, 195}, {101, 249}, {8, 149}, {114, 239}, {75, 214}, {105, 244}, {11, 149}, {88, 198}, {105, 247}, {45, 178}, {115, 236}, {65, 222}, {104, 247}, {3, 163}, {124, 220}, {54, 150}, {106, 202}, {26, 187}, {89, 248}, {19, 177}, {107, 201}, {63, 157}, {61, 159}, {52, 150}, {83, 241}, {89, 251}, {21, 182}, {108, 207}, {97, 194}, {59, 159}, {83, 246}, {5, 163}, {4, 163}, {18, 181}, {86, 241}, {72, 224}, {82, 250}, {24, 177}, {100, 205}, {15, 165}, {116, 223}, {125, 214}, {8, 164}, {119, 219}, {110, 194}, {25, 181}, {27, 182}, {125, 208}, {73, 228}, {19, 189}, {55, 153}, {82, 252}, {12, 163}, {125, 210}, {21, 165}, {46, 158}, {22, 166}, {25, 168}, {39, 150}, {79, 254}, {67, 241}, {113, 195}, {45, 153}, {67, 246}, {6, 176}, {112, 198}, {45, 155}, {18, 164}, {16, 166}, {13, 187}, {10, 188}, {106, 220}, {66, 245}, {124, 203}, {106, 221}, {70, 241}, {81, 230}, {32, 152}, {2, 187}, {116, 205}, {15, 182}, {9, 176}, {90, 227}, {1, 187}, {109, 215}, {108, 214}, {28, 166}, {11, 177}, {79, 245}, {100, 222}, {7, 188}, {66, 249}, {22, 173}, {91, 224}, {92, 231}, {29, 161}, {71, 251}, {64, 252}, {34, 158}, {8, 181}, {127, 194}, {64, 253}, {16, 173}, {31, 161}, {91, 229}, {71, 248}, {108, 211}, {92, 227}, {100, 219}, {14, 206}, {31, 223}, {88, 152}, {20, 213}, {109, 172}, {3, 193}, {5, 199}, {90, 152}, {7, 196}, {30, 221}, {93, 158}, {110, 170}, {4, 193}, {124, 185}, {48, 245}, {40, 237}, {29, 216}, {13, 200}, {98, 167}, {1, 199}, {30, 217}, {126, 185}, {53, 242}, {42, 226}, {111, 167}, {97, 169}, {13, 196}, {113, 184}, {29, 212}, {42, 224}, {3, 200}, {31, 211}, {116, 184}, {7, 202}, {20, 217}, {10, 196}, {48, 254}, {84, 154}, {96, 174}, {113, 190}, {30, 207}, {126, 175}, {122, 171}, {47, 253}, {126, 172}, {54, 228}, {76, 159}, {78, 157}, {47, 251}, {63, 235}, {74, 159}, {112, 165}, {14, 216}, {127, 169}, {28, 202}, {35, 244}, {122, 173}, {36, 252}, {53, 237}, {36, 253}, {97, 184}, {14, 212}, {109, 183}, {58, 224}, {40, 242}, {29, 199}, {20, 206}, {16, 203}, {111, 180}, {50, 233}, {100, 184}, {28, 193}, {35, 254}, {106, 183}, {26, 196}, {68, 154}, {58, 228}, {58, 229}, {32, 192}, {125, 157}, {57, 217}, {80, 176}, {95, 191}, {39, 198}, {122, 155}, {51, 209}, {70, 164}, {2, 225}, {122, 153}, {65, 162}, {9, 234}, {77, 174}, {57, 221}, {59, 223}, {17, 244}, {42, 207}, {32, 197}, {4, 226}, {68, 162}, {60, 218}, {12, 234}, {11, 237}, {76, 170}, {90, 188}, {24, 255}, {1, 233}, {72, 160}, {59, 211}, {85, 189}, {90, 178}, {44, 197}, {78, 167}, {94, 183}, {23, 253}, {58, 208}, {2, 233}, {60, 215}, {51, 216}, {38, 205}, {75, 160}, {6, 234}, {119, 155}, {44, 192}, {23, 251}, {91, 183}, {12, 225}, {69, 168}, {33, 204}, {18, 255}, {10, 228}, {114, 156}, {41, 199}, {5, 234}, {68, 171}, {17, 254}, {14, 225}, {33, 209}, {41, 217}, {43, 218}, {57, 200}, {52, 197}, {27, 233}, {108, 158}, {77, 191}, {86, 164}, {38, 213}, {56, 203}, {81, 162}, {20, 225}, {59, 206}, {43, 222}, {24, 237}, {22, 227}, {84, 162}, {54, 193}, {55, 192}, {26, 226}, {5, 255}, {78, 180}, {87, 173}, {30, 226}, {45, 209}, {41, 213}, {87, 171}, {103, 155}, {88, 165}, {1, 255}, {61, 195}, {51, 205}, {42, 212}, {98, 156}, {23, 279}, {40, 296}, {36, 292}, {27, 283}, {37, 292}, {35, 289}, {16, 275}, {39, 290}, {17, 279}, {21, 274}, {40, 288}, {44, 295}, {28, 273}, {47, 289}, {9, 280}, {24, 266}, {3, 272}, {48, 292}, {15, 282}, {49, 292}, {7, 273}, {52, 290}, {18, 266}, {50, 296}, {17, 266}, {6, 283}, {31, 258}, {23, 266}, {13, 272}, {35, 259}, {9, 296}, {49, 272}, {34, 259}, {8, 289}, {62, 279}, {48, 281}, {43, 258}, {11, 289}, {50, 280}, {51, 280}, {56, 275}, {47, 259}, {46, 259}, {55, 282}, {53, 283}, {19, 291}, {21, 294}, {61, 270}, {33, 274}, {37, 272}, {62, 262}, {25, 291}, {60, 262}, {32, 284}, {53, 265}, {36, 281}, {38, 280}, {63, 257}, {44, 275}, {102, 294}, {64, 257}, {76, 270}, {80, 274}, {85, 273}, {88, 284}, {99, 295}, {65, 260}, {87, 274}, {101, 290}, {83, 282}, {95, 277}, {77, 262}, {75, 262}, {86, 283}, {71, 265}, {79, 257}, {78, 257}, {82, 285}, {71, 277}, {69, 273}, {81, 260}, {89, 270}, {117, 290}, {112, 295}, {77, 279}, {83, 264}, {123, 288}, {94, 261}, {67, 287}, {95, 258}, {66, 285}, {120, 295}, {86, 265}, {69, 293}, {104, 264}, {105, 265}, {64, 291}, {112, 275}, {67, 294}, {96, 261}, {70, 288}, {121, 287}, {120, 286}, {66, 293}, {103, 256}, {109, 261}, {127, 278}, {101, 271}, {111, 261}, {79, 291}, {118, 282}, {110, 258}, {97, 269}, {98, 271}, {70, 296}, {115, 284}, {85, 293}, {115, 263}, {121, 269}, {123, 270}, {126, 267}, {80, 294}, {111, 281}, {82, 293}, {119, 256}, {89, 288}, {96, 281}, {102, 287}, {117, 271}, {110, 277}, {127, 260}, {105, 277}, {113, 269}, {99, 286}, {114, 271}, {104, 278}, {118, 264}, {141, 268}, {137, 267}, {143, 269}, {130, 263}, {145, 276}, {139, 268}, {147, 276}, {148, 286}, {128, 267}, {140, 263}, {132, 264}, {136, 260}, {135, 267}, {129, 268}, {138, 263}, {143, 287}, {145, 256}, {132, 278}, {141, 286}, {147, 256}, {137, 285}, {130, 276}, {138, 284}, {140, 276}, {148, 268}, {128, 285}, {136, 278} }>;

(II) A more general form is to represent the graph as the orbit of {144, 156} under the group generated by the following permutations:

a: (1, 2)(3, 4)(5, 12)(6, 9)(7, 10)(8, 18)(11, 24)(13, 26)(14, 29)(15, 21)(16, 22)(17, 35)(19, 37)(20, 41)(23, 47)(25, 49)(27, 50)(28, 54)(30, 57)(31, 59)(32, 44)(33, 45)(34, 62)(36, 64)(38, 68)(39, 69)(40, 53)(42, 72)(43, 74)(46, 77)(48, 79)(51, 84)(52, 85)(55, 80)(56, 90)(58, 91)(60, 93)(61, 95)(63, 96)(65, 100)(66, 101)(67, 83)(70, 86)(71, 89)(73, 106)(75, 108)(76, 110)(78, 111)(81, 116)(82, 117)(87, 122)(88, 112)(92, 124)(94, 125)(97, 127)(98, 128)(99, 115)(102, 118)(103, 131)(104, 121)(105, 123)(107, 133)(109, 134)(113, 136)(114, 137)(119, 142)(120, 138)(126, 144)(129, 145)(130, 141)(132, 143)(135, 146)(139, 147)(140, 148)(149, 255)(150, 273)(151, 272)(152, 275)(153, 274)(154, 280)(155, 204)(156, 267)(157, 261)(158, 262)(159, 258)(160, 207)(161, 206)(162, 205)(183, 208)(184, 260)(185, 201)(186, 256)(199, 225)(200, 226)(202, 228)(203, 227)(257, 281)(259, 279)(263, 286)(264, 287)(265, 288)(266, 289)(268, 276)(269, 278)(270, 277)(271, 285)(282, 294)(283, 296)(284, 295)(290, 293)(291, 292)
b: (2, 5)(3, 14, 6, 8)(4, 20, 9, 11)(7, 31, 15, 17)(10, 43, 21, 23)(13, 29, 27, 18)(16, 61, 32, 34)(19, 30, 38, 40)(22, 76, 44, 46)(24, 26, 41, 50)(25, 57, 51, 53)(28, 59, 55, 35)(33, 71, 39, 60)(36, 58, 65, 67)(37, 42, 68, 70)(45, 105, 69, 75)(47, 54, 74, 80)(48, 91, 81, 83)(49, 72, 84, 86)(52, 93, 87, 89)(56, 95, 88, 62)(63, 92, 97, 99)(64, 73, 100, 102)(66, 94, 103, 104)(77, 90, 110, 112)(78, 124, 113, 115)(79, 106, 116, 118)(82, 125, 119, 121)(85, 108, 122, 123)(96, 107, 127, 120)(98, 126, 129, 130)(101, 109, 131, 132)(111, 133, 136, 138)(114, 144, 139, 141)(117, 134, 142, 143)(128, 135, 145, 140)(137, 146, 147, 148)(149, 163, 225, 234)(150, 218, 274, 251)(151, 217, 280, 237)(152, 170, 275, 191)(153, 244, 273, 211)(154, 164, 272, 212)(155, 247, 293, 214)(156, 175, 268, 239)(157, 231, 269, 250)(158, 173, 270, 197)(159, 192, 259, 166)(160, 209, 265, 168)(161, 182, 266, 196)(162, 241, 292, 224)(165, 279, 188, 258)(167, 185, 190, 263)(169, 286, 235, 201)(171, 288, 189, 207)(172, 186, 238, 271)(174, 227, 194, 295)(176, 289, 193, 206)(177, 226, 213, 296)(178, 277, 198, 262)(179, 276, 240, 267)(180, 203, 195, 284)(181, 200, 216, 283)(183, 230, 264, 245)(184, 236, 257, 220)(187, 199, 233, 255)(202, 223, 282, 254)(204, 248, 290, 215)(205, 242, 291, 221)(208, 219, 287, 252)(210, 256, 243, 285)(222, 294, 253, 228)(229, 260, 246, 281)(232, 278, 249, 261)
c: (1, 3, 7, 16, 33, 38, 14, 30, 58, 92, 103, 65, 31, 60, 94, 126, 129, 97, 61, 34, 63, 98, 130, 104, 71, 17, 36, 66, 99, 67, 40, 8, 19, 39, 32, 15, 6)(2, 4, 10, 22, 45, 68, 29, 57, 91, 124, 131, 100, 59, 93, 125, 144, 145, 127, 95, 62, 96, 128, 141, 121, 89, 35, 64, 101, 115, 83, 53, 18, 37, 69, 44, 21, 9)(5, 13, 28, 56, 87, 51, 20, 42, 73, 107, 119, 81, 43, 75, 109, 135, 139, 113, 76, 46, 78, 114, 140, 132, 105, 23, 48, 82, 120, 102, 70, 11, 25, 52, 88, 55, 27)(12, 26, 54, 90, 122, 84, 41, 72, 106, 133, 142, 116, 74, 108, 134, 146, 147, 136, 110, 77, 111, 137, 148, 143, 123, 47, 79, 117, 138, 118, 86, 24, 49, 85, 112, 80, 50)(149, 151, 150, 152, 153, 154, 199, 200, 202, 203, 204, 205, 206, 207, 208, 201, 256, 260, 258, 262, 261, 267, 268, 269, 270, 259, 257, 271, 263, 264, 265, 266, 292, 293, 295, 294, 296)(155, 162, 161, 160, 183, 185, 186, 184, 159, 158, 157, 156, 276, 278, 277, 279, 281, 285, 286, 287, 288, 289, 291, 290, 284, 282, 283, 255, 272, 273, 275, 274, 280, 225, 226, 228, 227)(163, 196, 166, 178, 171, 216, 217, 224, 220, 232, 219, 223, 218, 214, 172, 179, 169, 195, 170, 174, 167, 239, 243, 248, 244, 253, 245, 250, 246, 242, 164, 177, 168, 197, 165, 176, 233)(173, 209, 213, 212, 221, 229, 231, 230, 222, 211, 215, 210, 175, 190, 194, 191, 180, 235, 240, 238, 247, 251, 254, 252, 249, 236, 241, 237, 181, 189, 198, 192, 182, 234, 187, 193, 188)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 296, 9 ]
296
-1 187 199 233 255
-2 187 233 225 149
-3 200 193 272 163
-4 193 226 151 163
-5 199 255 234 163
-6 154 176 234 283
-7 188 202 196 273
-8 289 181 149 164
-9 176 234 280 296
-10 188 150 228 196
-11 177 289 149 237
-12 234 225 149 163
-13 187 200 272 196
-14 212 225 216 206
-15 165 182 282 153
-16 275 166 203 173
-17 254 244 266 279
-18 255 266 181 164
-19 177 189 291 151
-20 213 225 206 217
-21 165 182 294 274
-22 166 227 173 152
-23 253 266 279 251
-24 177 255 266 237
-25 168 181 291 151
-26 187 226 151 196
-27 154 233 182 283
-28 166 202 193 273
-29 199 212 161 216
-30 221 226 217 207
-31 211 223 258 161
-32 192 152 284 197
-33 209 178 204 274
-34 158 180 170 259
-35 254 244 289 259
-36 253 281 292 252
-37 177 189 292 272
-38 213 280 171 205
-39 198 168 290 150
-40 242 288 237 296
-41 199 213 161 217
-42 212 224 226 207
-43 222 258 161 218
-44 275 192 295 197
-45 209 155 178 153
-46 158 191 259 174
-47 253 289 259 251
-48 254 245 281 292
-49 168 181 292 272
-50 233 280 182 296
-51 209 280 205 216
-52 189 290 150 197
-53 242 265 237 283
-54 166 193 150 228
-55 176 192 282 153
-56 275 188 178 203
-57 221 200 160 217
-58 224 228 229 208
-59 211 223 159 206
-60 160 215 218 262
-61 191 159 270 195
-62 180 279 170 262
-63 157 235 257 174
-64 253 257 291 252
-65 222 260 162 219
-66 245 249 293 285
-67 287 246 294 241
-68 154 213 171 162
-69 198 168 293 273
-70 288 164 241 296
-71 265 277 248 251
-72 200 212 224 160
-73 220 221 228 208
-74 222 159 206 218
-75 211 214 160 262
-76 159 170 270 194
-77 191 279 174 262
-78 167 157 180 257
-79 254 245 257 291
-80 176 192 294 274
-81 223 260 162 230
-82 293 250 252 285
-83 264 246 282 241
-84 154 209 216 162
-85 189 293 273 197
-86 265 283 164 241
-87 171 204 173 274
-88 165 198 152 284
-89 288 248 270 251
-90 188 178 227 152
-91 202 224 183 229
-92 220 231 201 227
-93 158 215 207 218
-94 210 214 183 261
-95 277 191 258 195
-96 235 281 261 174
-97 169 269 194 184
-98 156 167 271 240
-99 286 236 250 295
-100 222 205 184 219
-101 245 290 249 271
-102 242 287 236 294
-103 155 232 256 230
-104 264 243 278 247
-105 265 244 277 247
-106 220 221 202 183
-107 232 201 227 229
-108 211 158 214 207
-109 215 172 183 261
-110 277 170 258 194
-111 167 180 281 261
-112 165 198 275 295
-113 190 269 184 195
-114 156 235 271 239
-115 236 250 284 263
-116 223 205 184 230
-117 290 271 250 252
-118 242 264 236 282
-119 231 155 256 219
-120 286 246 249 295
-121 243 287 247 269
-122 155 171 173 153
-123 244 288 247 270
-124 220 231 203 185
-125 210 157 214 208
-126 267 172 185 175
-127 278 169 194 260
-128 167 267 240 285
-129 179 190 268 186
-130 276 238 239 263
-131 232 204 186 230
-132 264 278 248 238
-133 232 203 185 229
-134 157 215 172 208
-135 210 179 267 185
-136 190 278 260 195
-137 267 235 239 285
-138 246 249 284 263
-139 169 268 175 186
-140 243 276 240 263
-141 286 268 238 239
-142 231 204 186 219
-143 287 269 248 238
-144 156 201 172 175
-145 276 179 190 256
-146 210 156 179 201
-147 276 256 169 175
-148 286 243 268 240
-149 11 12 2 8
-150 39 52 10 54
-151 25 4 26 19
-152 22 88 90 32
-153 55 45 122 15
-154 68 27 6 84
-155 45 122 103 119
-156 144 146 114 98
-157 78 134 125 63
-158 34 46 93 108
-159 59 61 74 76
-160 57 60 72 75
-161 29 41 31 43
-162 68 81 84 65
-163 12 3 4 5
-164 70 18 8 86
-165 88 112 15 21
-166 22 16 28 54
-167 78 111 128 98
-168 25 69 49 39
-169 147 127 139 97
-170 110 34 62 76
-171 122 68 38 87
-172 144 134 126 109
-173 22 122 16 87
-174 77 46 63 96
-175 144 147 126 139
-176 55 80 6 9
-177 11 24 37 19
-178 33 45 56 90
-179 145 135 146 129
-180 34 78 111 62
-181 25 49 18 8
-182 15 27 50 21
-183 91 94 106 109
-184 100 113 116 97
-185 133 124 135 126
-186 139 129 131 142
-187 1 2 13 26
-188 56 90 7 10
-189 37 19 52 85
-190 145 113 136 129
-191 77 46 61 95
-192 44 55 80 32
-193 3 4 28 54
-194 110 127 97 76
-195 113 136 61 95
-196 13 26 7 10
-197 44 52 85 32
-198 88 112 69 39
-199 1 5 29 41
-200 13 57 3 72
-201 144 146 92 107
-202 91 28 7 106
-203 56 133 124 16
-204 33 87 131 142
-205 100 38 116 51
-206 14 59 74 20
-207 93 30 42 108
-208 134 58 125 73
-209 33 45 51 84
-210 135 146 125 94
-211 59 31 75 108
-212 14 72 29 42
-213 68 38 41 20
-214 125 94 75 108
-215 134 60 93 109
-216 14 29 51 84
-217 57 30 41 20
-218 60 93 74 43
-219 100 119 65 142
-220 124 92 73 106
-221 57 73 106 30
-222 100 74 43 65
-223 59 81 116 31
-224 58 91 72 42
-225 12 2 14 20
-226 4 26 30 42
-227 22 90 92 107
-228 58 73 10 54
-229 133 58 91 107
-230 81 103 116 131
-231 124 92 119 142
-232 133 103 107 131
-233 1 2 27 50
-234 12 5 6 9
-235 114 137 63 96
-236 99 102 115 118
-237 11 24 40 53
-238 132 143 130 141
-239 114 137 130 141
-240 148 128 140 98
-241 67 70 83 86
-242 102 40 118 53
-243 121 104 148 140
-244 35 123 17 105
-245 66 79 101 48
-246 67 83 138 120
-247 121 123 104 105
-248 132 143 89 71
-249 66 101 138 120
-250 99 82 115 117
-251 23 89 47 71
-252 36 82 117 64
-253 23 36 47 64
-254 35 79 48 17
-255 1 24 5 18
-256 145 103 147 119
-257 78 79 63 64
-258 110 95 31 43
-259 34 35 46 47
-260 81 136 127 65
-261 111 94 96 109
-262 77 60 62 75
-263 115 138 140 130
-264 132 104 83 118
-265 71 105 53 86
-266 23 24 17 18
-267 135 126 137 128
-268 148 139 129 141
-269 121 143 113 97
-270 89 123 61 76
-271 101 114 117 98
-272 13 3 37 49
-273 69 28 7 85
-274 33 80 21 87
-275 44 56 112 16
-276 145 147 140 130
-277 110 71 105 95
-278 132 136 104 127
-279 77 23 17 62
-280 38 50 51 9
-281 111 36 48 96
-282 55 15 83 118
-283 27 6 53 86
-284 88 115 138 32
-285 66 82 137 128
-286 99 148 141 120
-287 121 143 67 102
-288 89 123 70 40
-289 11 35 47 8
-290 101 39 117 52
-291 79 25 19 64
-292 36 37 48 49
-293 66 69 82 85
-294 67 80 102 21
-295 44 99 112 120
-296 70 50 40 9
0

**************