C4graphGraph forms for C4 [ 298, 1 ] = W(149,2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 298, 1 ] = W(149,2).

(I) Following is a form readable by MAGMA:

g:=Graph<298|{ {2, 3}, {296, 297}, {294, 295}, {292, 293}, {290, 291}, {288, 289}, {286, 287}, {284, 285}, {282, 283}, {280, 281}, {278, 279}, {276, 277}, {274, 275}, {272, 273}, {270, 271}, {268, 269}, {266, 267}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {1, 2}, {297, 298}, {293, 294}, {289, 290}, {285, 286}, {281, 282}, {277, 278}, {273, 274}, {269, 270}, {265, 266}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {3, 4}, {291, 292}, {283, 284}, {275, 276}, {267, 268}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {7, 8}, {295, 296}, {279, 280}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {15, 16}, {271, 272}, {239, 240}, {207, 208}, {175, 176}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {31, 32}, {287, 288}, {223, 224}, {95, 96}, {159, 160}, {63, 64}, {191, 192}, {1, 149}, {75, 223}, {74, 222}, {73, 221}, {72, 220}, {67, 215}, {66, 214}, {65, 213}, {64, 212}, {2, 150}, {3, 151}, {8, 156}, {9, 157}, {10, 158}, {11, 159}, {32, 180}, {33, 181}, {34, 182}, {35, 183}, {40, 188}, {41, 189}, {42, 190}, {43, 191}, {96, 244}, {97, 245}, {98, 246}, {99, 247}, {104, 252}, {105, 253}, {106, 254}, {107, 255}, {1, 151}, {73, 223}, {72, 222}, {65, 215}, {64, 214}, {8, 158}, {9, 159}, {32, 182}, {33, 183}, {40, 190}, {41, 191}, {96, 246}, {97, 247}, {104, 254}, {105, 255}, {2, 152}, {71, 221}, {70, 220}, {67, 217}, {66, 216}, {3, 153}, {6, 156}, {7, 157}, {34, 184}, {35, 185}, {38, 188}, {39, 189}, {98, 248}, {99, 249}, {102, 252}, {103, 253}, {4, 152}, {71, 219}, {70, 218}, {69, 217}, {68, 216}, {5, 153}, {6, 154}, {7, 155}, {36, 184}, {37, 185}, {38, 186}, {39, 187}, {100, 248}, {101, 249}, {102, 250}, {103, 251}, {4, 154}, {69, 219}, {68, 218}, {5, 155}, {36, 186}, {37, 187}, {100, 250}, {101, 251}, {10, 160}, {79, 229}, {78, 228}, {75, 225}, {74, 224}, {11, 161}, {14, 164}, {15, 165}, {26, 176}, {27, 177}, {30, 180}, {31, 181}, {90, 240}, {91, 241}, {94, 244}, {95, 245}, {12, 160}, {79, 227}, {78, 226}, {77, 225}, {76, 224}, {13, 161}, {14, 162}, {15, 163}, {28, 176}, {29, 177}, {30, 178}, {31, 179}, {92, 240}, {93, 241}, {94, 242}, {95, 243}, {12, 162}, {77, 227}, {76, 226}, {13, 163}, {28, 178}, {29, 179}, {92, 242}, {93, 243}, {16, 164}, {83, 231}, {82, 230}, {81, 229}, {80, 228}, {17, 165}, {18, 166}, {19, 167}, {24, 172}, {25, 173}, {26, 174}, {27, 175}, {88, 236}, {89, 237}, {90, 238}, {91, 239}, {16, 166}, {81, 231}, {80, 230}, {17, 167}, {24, 174}, {25, 175}, {88, 238}, {89, 239}, {18, 168}, {86, 236}, {83, 233}, {82, 232}, {19, 169}, {22, 172}, {23, 173}, {87, 237}, {20, 168}, {86, 234}, {85, 233}, {84, 232}, {21, 169}, {22, 170}, {23, 171}, {87, 235}, {20, 170}, {85, 235}, {84, 234}, {21, 171}, {42, 192}, {63, 213}, {62, 212}, {59, 209}, {58, 208}, {43, 193}, {46, 196}, {47, 197}, {44, 192}, {63, 211}, {62, 210}, {61, 209}, {60, 208}, {45, 193}, {46, 194}, {47, 195}, {44, 194}, {61, 211}, {60, 210}, {45, 195}, {48, 196}, {59, 207}, {58, 206}, {57, 205}, {56, 204}, {49, 197}, {50, 198}, {51, 199}, {48, 198}, {57, 207}, {56, 206}, {49, 199}, {50, 200}, {55, 205}, {54, 204}, {51, 201}, {52, 200}, {55, 203}, {54, 202}, {53, 201}, {52, 202}, {53, 203}, {127, 128}, {1, 298}, {106, 256}, {107, 257}, {110, 260}, {111, 261}, {122, 272}, {123, 273}, {126, 276}, {127, 277}, {108, 256}, {109, 257}, {110, 258}, {111, 259}, {124, 272}, {125, 273}, {126, 274}, {127, 275}, {108, 258}, {109, 259}, {124, 274}, {125, 275}, {112, 260}, {113, 261}, {114, 262}, {115, 263}, {120, 268}, {121, 269}, {122, 270}, {123, 271}, {112, 262}, {113, 263}, {120, 270}, {121, 271}, {114, 264}, {115, 265}, {118, 268}, {119, 269}, {116, 264}, {117, 265}, {118, 266}, {119, 267}, {116, 266}, {117, 267}, {128, 276}, {129, 277}, {130, 278}, {131, 279}, {136, 284}, {137, 285}, {138, 286}, {139, 287}, {128, 278}, {129, 279}, {136, 286}, {137, 287}, {130, 280}, {131, 281}, {134, 284}, {135, 285}, {132, 280}, {133, 281}, {134, 282}, {135, 283}, {132, 282}, {133, 283}, {138, 288}, {139, 289}, {142, 292}, {143, 293}, {140, 288}, {141, 289}, {142, 290}, {143, 291}, {140, 290}, {141, 291}, {144, 292}, {145, 293}, {146, 294}, {147, 295}, {144, 294}, {145, 295}, {146, 296}, {147, 297}, {148, 296}, {149, 297}, {150, 298}, {148, 298}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (128, 277)
b: (9, 158)
c: (73, 222)
d: (143, 292)
e: (134, 283)
f: (52, 201)
g: (122, 271)
h: (54, 203)
m: (21, 170)
n1: (85, 234)
a1: (139, 288)
b1: (37, 186)
c1: (101, 250)
d1: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149)(150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298)
e1: (43, 192)
f1: (107, 256)
g1: (11, 160)
h1: (75, 224)
m1: (126, 275)
n2: (34, 183)
a2: (98, 247)
b2: (58, 207)
c2: (3, 152)
d2: (67, 216)
e2: (38, 187)
f2: (102, 251)
g2: (40, 189)
h2: (104, 253)
m2: (44, 193)
n3: (141, 290)
a3: (29, 178)
b3: (93, 242)
c3: (32, 181)
d3: (96, 245)
e3: (147, 296)
f3: (5, 154)
g3: (112, 261)
h3: (69, 218)
m3: (66, 215)
n4: (2, 151)
a4: (27, 176)
b4: (121, 270)
c4: (91, 240)
d4: (42, 191)
e4: (106, 255)
f4: (15, 164)
g4: (79, 228)
h4: (45, 194)
m4: (20, 169)
n5: (84, 233)
a5: (19, 168)
b5: (95, 244)
c5: (31, 180)
d5: (125, 274)
e5: (83, 232)
f5: (13, 162)
g5: (77, 226)
h5: (116, 265)
m5: (35, 184)
n6: (145, 294)
a6: (99, 248)
b6: (120, 269)
c6: (30, 179)
d6: (131, 280)
e6: (94, 243)
f6: (12, 161)
g6: (76, 225)
h6: (51, 200)
m6: (64, 213)
n7: (114, 263)
a7: (110, 259)
b7: (57, 206)
c7: (62, 211)
d7: (144, 293)
e7: (65, 214)
f7: (56, 205)
g7: (7, 156)
h7: (71, 220)
m7: (136, 285)
n8: (4, 153)
a8: (68, 217)
b8: (123, 272)
c8: (137, 286)
d8: (59, 208)
e8: (132, 281)
f8: (46, 195)
g8: (100, 249)
h8: (36, 185)
m8: (16, 165)
n9: (80, 229)
a9: (41, 190)
b9: (105, 254)
c9: (23, 172)
d9: (115, 264)
e9: (103, 252)
f9: (39, 188)
g9: (87, 236)
h9: (8, 157)
m9: (72, 221)
n10: (26, 175)
a10: (90, 239)
b10: (133, 282)
c10: (2, 149)(3, 148)(4, 147)(5, 146)(6, 145)(7, 144)(8, 143)(9, 142)(10, 141)(11, 140)(12, 139)(13, 138)(14, 137)(15, 136)(16, 135)(17, 134)(18, 133)(19, 132)(20, 131)(21, 130)(22, 129)(23, 128)(24, 127)(25, 126)(26, 125)(27, 124)(28, 123)(29, 122)(30, 121)(31, 120)(32, 119)(33, 118)(34, 117)(35, 116)(36, 115)(37, 114)(38, 113)(39, 112)(40, 111)(41, 110)(42, 109)(43, 108)(44, 107)(45, 106)(46, 105)(47, 104)(48, 103)(49, 102)(50, 101)(51, 100)(52, 99)(53, 98)(54, 97)(55, 96)(56, 95)(57, 94)(58, 93)(59, 92)(60, 91)(61, 90)(62, 89)(63, 88)(64, 87)(65, 86)(66, 85)(67, 84)(68, 83)(69, 82)(70, 81)(71, 80)(72, 79)(73, 78)(74, 77)(75, 76)(151, 298)(152, 297)(153, 296)(154, 295)(155, 294)(156, 293)(157, 292)(158, 291)(159, 290)(160, 289)(161, 288)(162, 287)(163, 286)(164, 285)(165, 284)(166, 283)(167, 282)(168, 281)(169, 280)(170, 279)(171, 278)(172, 277)(173, 276)(174, 275)(175, 274)(176, 273)(177, 272)(178, 271)(179, 270)(180, 269)(181, 268)(182, 267)(183, 266)(184, 265)(185, 264)(186, 263)(187, 262)(188, 261)(189, 260)(190, 259)(191, 258)(192, 257)(193, 256)(194, 255)(195, 254)(196, 253)(197, 252)(198, 251)(199, 250)(200, 249)(201, 248)(202, 247)(203, 246)(204, 245)(205, 244)(206, 243)(207, 242)(208, 241)(209, 240)(210, 239)(211, 238)(212, 237)(213, 236)(214, 235)(215, 234)(216, 233)(217, 232)(218, 231)(219, 230)(220, 229)(221, 228)(222, 227)(223, 226)(224, 225)
d10: (149, 298)
e10: (109, 258)
f10: (48, 197)
g10: (113, 262)
h10: (10, 159)
m10: (55, 204)
n11: (135, 284)
a11: (28, 177)
b11: (92, 241)
c11: (14, 163)
d11: (78, 227)
e11: (18, 167)
f11: (82, 231)
g11: (148, 297)
h11: (25, 174)
m11: (89, 238)
n12: (108, 257)
a12: (111, 260)
b12: (17, 166)
c12: (81, 230)
d12: (63, 212)
e12: (142, 291)
f12: (130, 279)
g12: (50, 199)
h12: (129, 278)
m12: (118, 267)
n13: (22, 171)
a13: (86, 235)
b13: (146, 295)
c13: (61, 210)
d13: (117, 266)
e13: (24, 173)
f13: (88, 237)
g13: (127, 276)
h13: (140, 289)
m13: (138, 287)
n14: (47, 196)
a14: (70, 219)
b14: (6, 155)
c14: (53, 202)
d14: (33, 182)
e14: (97, 246)
f14: (49, 198)
g14: (124, 273)
h14: (60, 209)
m14: (119, 268)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 298, 1 ]
298
-1 298 2 149 151
-2 1 3 150 152
-3 2 4 151 153
-4 154 3 5 152
-5 155 4 6 153
-6 154 156 5 7
-7 155 157 6 8
-8 156 158 7 9
-9 157 159 8 10
-10 11 158 160 9
-11 12 159 161 10
-12 11 13 160 162
-13 12 14 161 163
-14 13 15 162 164
-15 165 14 16 163
-16 166 15 17 164
-17 165 167 16 18
-18 166 168 17 19
-19 167 169 18 20
-20 168 170 19 21
-21 22 169 171 20
-22 23 170 172 21
-23 22 24 171 173
-24 23 25 172 174
-25 24 26 173 175
-26 176 25 27 174
-27 177 26 28 175
-28 176 178 27 29
-29 177 179 28 30
-30 178 180 29 31
-31 179 181 30 32
-32 33 180 182 31
-33 34 181 183 32
-34 33 35 182 184
-35 34 36 183 185
-36 35 37 184 186
-37 187 36 38 185
-38 188 37 39 186
-39 187 189 38 40
-40 188 190 39 41
-41 189 191 40 42
-42 190 192 41 43
-43 44 191 193 42
-44 45 192 194 43
-45 44 46 193 195
-46 45 47 194 196
-47 46 48 195 197
-48 198 47 49 196
-49 199 48 50 197
-50 198 200 49 51
-51 199 201 50 52
-52 200 202 51 53
-53 201 203 52 54
-54 55 202 204 53
-55 56 203 205 54
-56 55 57 204 206
-57 56 58 205 207
-58 57 59 206 208
-59 209 58 60 207
-60 210 59 61 208
-61 209 211 60 62
-62 210 212 61 63
-63 211 213 62 64
-64 212 214 63 65
-65 66 213 215 64
-66 67 214 216 65
-67 66 68 215 217
-68 67 69 216 218
-69 68 70 217 219
-70 220 69 71 218
-71 221 70 72 219
-72 220 222 71 73
-73 221 223 72 74
-74 222 224 73 75
-75 223 225 74 76
-76 77 224 226 75
-77 78 225 227 76
-78 77 79 226 228
-79 78 80 227 229
-80 79 81 228 230
-81 231 80 82 229
-82 232 81 83 230
-83 231 233 82 84
-84 232 234 83 85
-85 233 235 84 86
-86 234 236 85 87
-87 88 235 237 86
-88 89 236 238 87
-89 88 90 237 239
-90 89 91 238 240
-91 90 92 239 241
-92 242 91 93 240
-93 243 92 94 241
-94 242 244 93 95
-95 243 245 94 96
-96 244 246 95 97
-97 245 247 96 98
-98 99 246 248 97
-99 100 247 249 98
-100 99 101 248 250
-101 100 102 249 251
-102 101 103 250 252
-103 253 102 104 251
-104 254 103 105 252
-105 253 255 104 106
-106 254 256 105 107
-107 255 257 106 108
-108 256 258 107 109
-109 110 257 259 108
-110 111 258 260 109
-111 110 112 259 261
-112 111 113 260 262
-113 112 114 261 263
-114 264 113 115 262
-115 265 114 116 263
-116 264 266 115 117
-117 265 267 116 118
-118 266 268 117 119
-119 267 269 118 120
-120 121 268 270 119
-121 122 269 271 120
-122 121 123 270 272
-123 122 124 271 273
-124 123 125 272 274
-125 275 124 126 273
-126 276 125 127 274
-127 275 277 126 128
-128 276 278 127 129
-129 277 279 128 130
-130 278 280 129 131
-131 132 279 281 130
-132 133 280 282 131
-133 132 134 281 283
-134 133 135 282 284
-135 134 136 283 285
-136 286 135 137 284
-137 287 136 138 285
-138 286 288 137 139
-139 287 289 138 140
-140 288 290 139 141
-141 289 291 140 142
-142 143 290 292 141
-143 144 291 293 142
-144 143 145 292 294
-145 144 146 293 295
-146 145 147 294 296
-147 297 146 148 295
-148 298 147 149 296
-149 297 1 148 150
-150 298 2 149 151
-151 1 3 150 152
-152 2 4 151 153
-153 154 3 5 152
-154 155 4 6 153
-155 154 156 5 7
-156 155 157 6 8
-157 156 158 7 9
-158 157 159 8 10
-159 11 158 160 9
-160 12 159 161 10
-161 11 13 160 162
-162 12 14 161 163
-163 13 15 162 164
-164 165 14 16 163
-165 166 15 17 164
-166 165 167 16 18
-167 166 168 17 19
-168 167 169 18 20
-169 168 170 19 21
-170 22 169 171 20
-171 23 170 172 21
-172 22 24 171 173
-173 23 25 172 174
-174 24 26 173 175
-175 176 25 27 174
-176 177 26 28 175
-177 176 178 27 29
-178 177 179 28 30
-179 178 180 29 31
-180 179 181 30 32
-181 33 180 182 31
-182 34 181 183 32
-183 33 35 182 184
-184 34 36 183 185
-185 35 37 184 186
-186 187 36 38 185
-187 188 37 39 186
-188 187 189 38 40
-189 188 190 39 41
-190 189 191 40 42
-191 190 192 41 43
-192 44 191 193 42
-193 45 192 194 43
-194 44 46 193 195
-195 45 47 194 196
-196 46 48 195 197
-197 198 47 49 196
-198 199 48 50 197
-199 198 200 49 51
-200 199 201 50 52
-201 200 202 51 53
-202 201 203 52 54
-203 55 202 204 53
-204 56 203 205 54
-205 55 57 204 206
-206 56 58 205 207
-207 57 59 206 208
-208 209 58 60 207
-209 210 59 61 208
-210 209 211 60 62
-211 210 212 61 63
-212 211 213 62 64
-213 212 214 63 65
-214 66 213 215 64
-215 67 214 216 65
-216 66 68 215 217
-217 67 69 216 218
-218 68 70 217 219
-219 220 69 71 218
-220 221 70 72 219
-221 220 222 71 73
-222 221 223 72 74
-223 222 224 73 75
-224 223 225 74 76
-225 77 224 226 75
-226 78 225 227 76
-227 77 79 226 228
-228 78 80 227 229
-229 79 81 228 230
-230 231 80 82 229
-231 232 81 83 230
-232 231 233 82 84
-233 232 234 83 85
-234 233 235 84 86
-235 234 236 85 87
-236 88 235 237 86
-237 89 236 238 87
-238 88 90 237 239
-239 89 91 238 240
-240 90 92 239 241
-241 242 91 93 240
-242 243 92 94 241
-243 242 244 93 95
-244 243 245 94 96
-245 244 246 95 97
-246 245 247 96 98
-247 99 246 248 97
-248 100 247 249 98
-249 99 101 248 250
-250 100 102 249 251
-251 101 103 250 252
-252 253 102 104 251
-253 254 103 105 252
-254 253 255 104 106
-255 254 256 105 107
-256 255 257 106 108
-257 256 258 107 109
-258 110 257 259 108
-259 111 258 260 109
-260 110 112 259 261
-261 111 113 260 262
-262 112 114 261 263
-263 264 113 115 262
-264 265 114 116 263
-265 264 266 115 117
-266 265 267 116 118
-267 266 268 117 119
-268 267 269 118 120
-269 121 268 270 119
-270 122 269 271 120
-271 121 123 270 272
-272 122 124 271 273
-273 123 125 272 274
-274 275 124 126 273
-275 276 125 127 274
-276 275 277 126 128
-277 276 278 127 129
-278 277 279 128 130
-279 278 280 129 131
-280 132 279 281 130
-281 133 280 282 131
-282 132 134 281 283
-283 133 135 282 284
-284 134 136 283 285
-285 286 135 137 284
-286 287 136 138 285
-287 286 288 137 139
-288 287 289 138 140
-289 288 290 139 141
-290 289 291 140 142
-291 143 290 292 141
-292 144 291 293 142
-293 143 145 292 294
-294 144 146 293 295
-295 145 147 294 296
-296 297 146 148 295
-297 298 147 149 296
-298 297 1 148 150
0

**************