C4graphGraph forms for C4 [ 300, 13 ] = PS(4,75;7)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 300, 13 ] = PS(4,75;7).

(I) Following is a form readable by MAGMA:

g:=Graph<300|{ {75, 76}, {144, 151}, {145, 152}, {147, 154}, {149, 156}, {146, 153}, {150, 157}, {148, 155}, {224, 250}, {225, 251}, {206, 232}, {223, 249}, {222, 248}, {215, 241}, {214, 240}, {207, 233}, {200, 226}, {221, 247}, {220, 246}, {217, 243}, {216, 242}, {205, 231}, {204, 230}, {201, 227}, {202, 228}, {219, 245}, {218, 244}, {203, 229}, {192, 241}, {206, 255}, {204, 253}, {202, 251}, {200, 249}, {198, 247}, {196, 245}, {194, 243}, {193, 242}, {205, 254}, {201, 250}, {197, 246}, {195, 244}, {203, 252}, {208, 234}, {213, 239}, {212, 238}, {209, 235}, {210, 236}, {211, 237}, {199, 248}, {128, 196}, {129, 197}, {130, 198}, {131, 199}, {136, 204}, {137, 205}, {138, 206}, {139, 207}, {144, 212}, {145, 213}, {146, 214}, {147, 215}, {4, 78}, {53, 127}, {52, 126}, {49, 123}, {48, 122}, {5, 79}, {16, 90}, {17, 91}, {20, 94}, {21, 95}, {32, 106}, {33, 107}, {36, 110}, {37, 111}, {1, 77}, {51, 127}, {50, 126}, {49, 125}, {48, 124}, {2, 78}, {3, 79}, {16, 92}, {17, 93}, {18, 94}, {19, 95}, {32, 108}, {33, 109}, {34, 110}, {35, 111}, {132, 200}, {133, 201}, {134, 202}, {135, 203}, {148, 216}, {149, 217}, {150, 218}, {2, 76}, {51, 125}, {50, 124}, {3, 77}, {18, 92}, {19, 93}, {34, 108}, {35, 109}, {191, 240}, {178, 227}, {190, 239}, {188, 237}, {186, 235}, {184, 233}, {182, 231}, {180, 229}, {128, 210}, {129, 211}, {132, 214}, {133, 215}, {136, 218}, {137, 219}, {140, 222}, {141, 223}, {177, 226}, {189, 238}, {185, 234}, {181, 230}, {4, 80}, {47, 123}, {46, 122}, {45, 121}, {44, 120}, {5, 81}, {6, 82}, {7, 83}, {12, 88}, {13, 89}, {14, 90}, {15, 91}, {36, 112}, {37, 113}, {38, 114}, {39, 115}, {6, 80}, {47, 121}, {46, 120}, {7, 81}, {14, 88}, {15, 89}, {38, 112}, {39, 113}, {130, 212}, {131, 213}, {138, 220}, {139, 221}, {179, 228}, {187, 236}, {8, 82}, {45, 119}, {44, 118}, {41, 115}, {9, 83}, {12, 86}, {13, 87}, {40, 114}, {8, 84}, {43, 119}, {42, 118}, {41, 117}, {9, 85}, {10, 86}, {11, 87}, {40, 116}, {140, 208}, {141, 209}, {142, 210}, {143, 211}, {10, 84}, {43, 117}, {42, 116}, {11, 85}, {134, 216}, {135, 217}, {183, 232}, {152, 253}, {154, 255}, {153, 254}, {151, 252}, {142, 224}, {143, 225}, {20, 96}, {21, 97}, {22, 98}, {23, 99}, {28, 104}, {29, 105}, {30, 106}, {31, 107}, {22, 96}, {23, 97}, {30, 104}, {31, 105}, {24, 98}, {25, 99}, {28, 102}, {29, 103}, {24, 100}, {25, 101}, {26, 102}, {27, 103}, {26, 100}, {27, 101}, {80, 223}, {77, 220}, {79, 222}, {78, 221}, {1, 150}, {76, 219}, {110, 192}, {111, 193}, {126, 208}, {127, 209}, {81, 224}, {112, 194}, {113, 195}, {116, 198}, {117, 199}, {120, 202}, {121, 203}, {124, 206}, {125, 207}, {82, 225}, {52, 128}, {63, 139}, {62, 138}, {61, 137}, {60, 136}, {55, 131}, {54, 130}, {53, 129}, {54, 128}, {65, 247}, {64, 246}, {63, 137}, {62, 136}, {55, 129}, {72, 254}, {73, 255}, {114, 196}, {115, 197}, {122, 204}, {123, 205}, {56, 130}, {67, 249}, {66, 248}, {61, 135}, {60, 134}, {57, 131}, {70, 252}, {71, 253}, {56, 132}, {59, 135}, {58, 134}, {57, 133}, {124, 192}, {125, 193}, {126, 194}, {127, 195}, {58, 132}, {69, 251}, {68, 250}, {59, 133}, {118, 200}, {119, 201}, {34, 227}, {62, 255}, {60, 253}, {58, 251}, {56, 249}, {54, 247}, {52, 245}, {50, 243}, {48, 241}, {46, 239}, {44, 237}, {42, 235}, {36, 229}, {38, 231}, {40, 233}, {33, 226}, {61, 254}, {57, 250}, {53, 246}, {49, 242}, {45, 238}, {41, 234}, {37, 230}, {83, 151}, {88, 156}, {89, 157}, {90, 158}, {91, 159}, {96, 164}, {97, 165}, {98, 166}, {99, 167}, {104, 172}, {105, 173}, {106, 174}, {107, 175}, {112, 180}, {113, 181}, {114, 182}, {115, 183}, {120, 188}, {121, 189}, {122, 190}, {123, 191}, {35, 228}, {59, 252}, {51, 244}, {43, 236}, {46, 228}, {69, 143}, {68, 142}, {65, 139}, {64, 138}, {63, 245}, {62, 244}, {59, 241}, {58, 240}, {47, 229}, {64, 140}, {67, 143}, {66, 142}, {65, 141}, {84, 152}, {85, 153}, {86, 154}, {87, 155}, {100, 168}, {101, 169}, {102, 170}, {103, 171}, {116, 184}, {117, 185}, {118, 186}, {119, 187}, {44, 226}, {67, 141}, {66, 140}, {61, 243}, {60, 242}, {45, 227}, {39, 232}, {55, 248}, {76, 158}, {77, 159}, {96, 178}, {97, 179}, {100, 182}, {101, 183}, {104, 186}, {105, 187}, {108, 190}, {109, 191}, {68, 144}, {69, 145}, {70, 146}, {71, 147}, {48, 230}, {57, 239}, {56, 238}, {49, 231}, {70, 144}, {71, 145}, {98, 180}, {99, 181}, {106, 188}, {107, 189}, {50, 232}, {55, 237}, {54, 236}, {51, 233}, {72, 146}, {73, 147}, {72, 148}, {73, 149}, {74, 150}, {108, 176}, {109, 177}, {110, 178}, {111, 179}, {52, 234}, {53, 235}, {74, 148}, {75, 149}, {102, 184}, {103, 185}, {47, 240}, {78, 160}, {79, 161}, {94, 176}, {95, 177}, {80, 162}, {81, 163}, {84, 166}, {85, 167}, {88, 170}, {89, 171}, {92, 174}, {93, 175}, {82, 164}, {83, 165}, {90, 172}, {91, 173}, {92, 160}, {93, 161}, {94, 162}, {95, 163}, {86, 168}, {87, 169}, {2, 259}, {42, 299}, {40, 297}, {4, 261}, {6, 263}, {8, 265}, {10, 267}, {12, 269}, {14, 271}, {16, 273}, {18, 275}, {20, 277}, {22, 279}, {24, 281}, {26, 283}, {28, 285}, {30, 287}, {32, 289}, {34, 291}, {36, 293}, {38, 295}, {1, 258}, {41, 298}, {5, 262}, {9, 266}, {13, 270}, {17, 274}, {21, 278}, {25, 282}, {29, 286}, {33, 290}, {37, 294}, {3, 260}, {43, 300}, {11, 268}, {19, 276}, {27, 284}, {35, 292}, {1, 269}, {2, 270}, {3, 271}, {16, 284}, {17, 285}, {18, 286}, {19, 287}, {32, 300}, {7, 264}, {23, 280}, {39, 296}, {4, 272}, {5, 273}, {6, 274}, {7, 275}, {12, 280}, {13, 281}, {14, 282}, {15, 283}, {8, 276}, {9, 277}, {10, 278}, {11, 279}, {15, 272}, {20, 288}, {21, 289}, {22, 290}, {23, 291}, {28, 296}, {29, 297}, {30, 298}, {31, 299}, {24, 292}, {25, 293}, {26, 294}, {27, 295}, {31, 288}, {63, 256}, {64, 257}, {68, 261}, {66, 259}, {70, 263}, {72, 265}, {74, 267}, {65, 258}, {69, 262}, {73, 266}, {67, 260}, {75, 268}, {74, 256}, {75, 257}, {71, 264}, {151, 275}, {175, 299}, {174, 298}, {173, 297}, {172, 296}, {156, 280}, {157, 281}, {158, 282}, {159, 283}, {164, 288}, {165, 289}, {166, 290}, {167, 291}, {152, 276}, {171, 295}, {153, 277}, {154, 278}, {155, 279}, {168, 292}, {169, 293}, {170, 294}, {155, 256}, {191, 292}, {187, 288}, {159, 260}, {176, 300}, {156, 257}, {190, 291}, {188, 289}, {158, 259}, {157, 258}, {189, 290}, {160, 261}, {186, 287}, {184, 285}, {178, 279}, {176, 277}, {162, 263}, {168, 269}, {170, 271}, {161, 262}, {185, 286}, {177, 278}, {169, 270}, {163, 264}, {183, 284}, {179, 280}, {167, 268}, {164, 265}, {182, 283}, {180, 281}, {166, 267}, {165, 266}, {181, 282}, {171, 272}, {175, 276}, {160, 284}, {161, 285}, {162, 286}, {163, 287}, {172, 273}, {174, 275}, {173, 274}, {207, 256}, {223, 272}, {208, 257}, {222, 271}, {220, 269}, {218, 267}, {216, 265}, {214, 263}, {212, 261}, {210, 259}, {209, 258}, {221, 270}, {217, 266}, {213, 262}, {211, 260}, {219, 268}, {215, 264}, {192, 293}, {194, 295}, {193, 294}, {195, 296}, {199, 300}, {196, 297}, {198, 299}, {197, 298}, {224, 273}, {225, 274} }>;

(II) A more general form is to represent the graph as the orbit of {75, 76} under the group generated by the following permutations:

a: (2, 75)(3, 74)(4, 73)(5, 72)(6, 71)(7, 70)(8, 69)(9, 68)(10, 67)(11, 66)(12, 65)(13, 64)(14, 63)(15, 62)(16, 61)(17, 60)(18, 59)(19, 58)(20, 57)(21, 56)(22, 55)(23, 54)(24, 53)(25, 52)(26, 51)(27, 50)(28, 49)(29, 48)(30, 47)(31, 46)(32, 45)(33, 44)(34, 43)(35, 42)(36, 41)(37, 40)(38, 39)(77, 150)(78, 149)(79, 148)(80, 147)(81, 146)(82, 145)(83, 144)(84, 143)(85, 142)(86, 141)(87, 140)(88, 139)(89, 138)(90, 137)(91, 136)(92, 135)(93, 134)(94, 133)(95, 132)(96, 131)(97, 130)(98, 129)(99, 128)(100, 127)(101, 126)(102, 125)(103, 124)(104, 123)(105, 122)(106, 121)(107, 120)(108, 119)(109, 118)(110, 117)(111, 116)(112, 115)(113, 114)(152, 225)(153, 224)(154, 223)(155, 222)(156, 221)(157, 220)(158, 219)(159, 218)(160, 217)(161, 216)(162, 215)(163, 214)(164, 213)(165, 212)(166, 211)(167, 210)(168, 209)(169, 208)(170, 207)(171, 206)(172, 205)(173, 204)(174, 203)(175, 202)(176, 201)(177, 200)(178, 199)(179, 198)(180, 197)(181, 196)(182, 195)(183, 194)(184, 193)(185, 192)(186, 191)(187, 190)(188, 189)(227, 300)(228, 299)(229, 298)(230, 297)(231, 296)(232, 295)(233, 294)(234, 293)(235, 292)(236, 291)(237, 290)(238, 289)(239, 288)(240, 287)(241, 286)(242, 285)(243, 284)(244, 283)(245, 282)(246, 281)(247, 280)(248, 279)(249, 278)(250, 277)(251, 276)(252, 275)(253, 274)(254, 273)(255, 272)(256, 271)(257, 270)(258, 269)(259, 268)(260, 267)(261, 266)(262, 265)(263, 264)
b: (1, 76, 151, 226)(2, 144, 200, 258)(3, 137, 174, 290)(4, 130, 223, 247)(5, 123, 197, 279)(6, 116, 171, 236)(7, 109, 220, 268)(8, 102, 194, 300)(9, 95, 168, 257)(10, 88, 217, 289)(11, 81, 191, 246)(12, 149, 165, 278)(13, 142, 214, 235)(14, 135, 188, 267)(15, 128, 162, 299)(16, 121, 211, 256)(17, 114, 185, 288)(18, 107, 159, 245)(19, 100, 208, 277)(20, 93, 182, 234)(21, 86, 156, 266)(22, 79, 205, 298)(23, 147, 179, 255)(24, 140, 153, 287)(25, 133, 202, 244)(26, 126, 176, 276)(27, 119, 225, 233)(28, 112, 199, 265)(29, 105, 173, 297)(30, 98, 222, 254)(31, 91, 196, 286)(32, 84, 170, 243)(33, 77, 219, 275)(34, 145, 193, 232)(35, 138, 167, 264)(36, 131, 216, 296)(37, 124, 190, 253)(38, 117, 164, 285)(39, 110, 213, 242)(40, 103, 187, 274)(41, 96, 161, 231)(42, 89, 210, 263)(43, 82, 184, 295)(44, 150, 158, 252)(45, 143, 207, 284)(46, 136, 181, 241)(47, 129, 155, 273)(48, 122, 204, 230)(49, 115, 178, 262)(50, 108, 152, 294)(51, 101, 201, 251)(52, 94, 175, 283)(53, 87, 224, 240)(54, 80, 198, 272)(55, 148, 172, 229)(56, 141, 221, 261)(57, 134, 195, 293)(58, 127, 169, 250)(59, 120, 218, 282)(60, 113, 192, 239)(61, 106, 166, 271)(62, 99, 215, 228)(63, 92, 189, 260)(64, 85, 163, 292)(65, 78, 212, 249)(66, 146, 186, 281)(67, 139, 160, 238)(68, 132, 209, 270)(69, 125, 183, 227)(70, 118, 157, 259)(71, 111, 206, 291)(72, 104, 180, 248)(73, 97, 154, 280)(74, 90, 203, 237)(75, 83, 177, 269)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75)(76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150)(151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225)(226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 300, 13 ]
300
-1 77 258 269 150
-2 78 259 270 76
-3 77 79 260 271
-4 78 80 261 272
-5 79 81 262 273
-6 80 82 263 274
-7 264 275 81 83
-8 265 276 82 84
-9 266 277 83 85
-10 267 278 84 86
-11 268 279 85 87
-12 88 269 280 86
-13 89 270 281 87
-14 88 90 271 282
-15 89 91 272 283
-16 90 92 273 284
-17 91 93 274 285
-18 275 286 92 94
-19 276 287 93 95
-20 277 288 94 96
-21 278 289 95 97
-22 279 290 96 98
-23 99 280 291 97
-24 100 281 292 98
-25 99 101 282 293
-26 100 102 283 294
-27 101 103 284 295
-28 102 104 285 296
-29 286 297 103 105
-30 287 298 104 106
-31 288 299 105 107
-32 289 300 106 108
-33 290 226 107 109
-34 110 291 227 108
-35 111 292 228 109
-36 110 112 293 229
-37 111 113 294 230
-38 231 112 114 295
-39 232 113 115 296
-40 297 233 114 116
-41 298 234 115 117
-42 299 235 116 118
-43 300 236 117 119
-44 226 237 118 120
-45 121 227 238 119
-46 122 228 239 120
-47 121 123 229 240
-48 122 124 230 241
-49 231 242 123 125
-50 232 243 124 126
-51 233 244 125 127
-52 234 245 126 128
-53 235 246 127 129
-54 236 247 128 130
-55 237 248 129 131
-56 132 238 249 130
-57 133 239 250 131
-58 132 134 240 251
-59 133 135 241 252
-60 242 253 134 136
-61 243 254 135 137
-62 244 255 136 138
-63 245 256 137 139
-64 246 257 138 140
-65 247 258 139 141
-66 248 259 140 142
-67 143 249 260 141
-68 144 250 261 142
-69 143 145 251 262
-70 144 146 252 263
-71 253 264 145 147
-72 254 265 146 148
-73 255 266 147 149
-74 256 267 148 150
-75 257 268 149 76
-76 2 158 75 219
-77 220 1 3 159
-78 221 2 4 160
-79 222 3 5 161
-80 223 4 6 162
-81 224 5 7 163
-82 225 6 8 164
-83 165 7 151 9
-84 166 8 152 10
-85 11 167 9 153
-86 154 12 168 10
-87 11 155 13 169
-88 12 156 14 170
-89 13 157 15 171
-90 14 158 16 172
-91 15 159 17 173
-92 16 160 18 174
-93 17 161 19 175
-94 176 18 162 20
-95 177 19 163 21
-96 22 178 20 164
-97 165 23 179 21
-98 22 166 24 180
-99 23 167 25 181
-100 24 168 26 182
-101 25 169 27 183
-102 26 170 28 184
-103 27 171 29 185
-104 28 172 30 186
-105 187 29 173 31
-106 188 30 174 32
-107 33 189 31 175
-108 176 34 190 32
-109 33 177 35 191
-110 34 178 36 192
-111 35 179 37 193
-112 36 180 38 194
-113 37 181 39 195
-114 38 182 40 196
-115 39 183 41 197
-116 198 40 184 42
-117 199 41 185 43
-118 44 200 42 186
-119 187 45 201 43
-120 44 188 46 202
-121 45 189 47 203
-122 46 190 48 204
-123 47 191 49 205
-124 48 192 50 206
-125 49 193 51 207
-126 50 194 52 208
-127 209 51 195 53
-128 210 52 196 54
-129 55 211 53 197
-130 198 56 212 54
-131 55 199 57 213
-132 56 200 58 214
-133 57 201 59 215
-134 58 202 60 216
-135 59 203 61 217
-136 60 204 62 218
-137 61 205 63 219
-138 220 62 206 64
-139 221 63 207 65
-140 66 222 64 208
-141 209 67 223 65
-142 66 210 68 224
-143 67 211 69 225
-144 68 212 70 151
-145 69 213 71 152
-146 70 214 72 153
-147 154 71 215 73
-148 155 72 216 74
-149 156 73 217 75
-150 1 157 74 218
-151 275 144 83 252
-152 253 276 145 84
-153 254 277 146 85
-154 255 278 147 86
-155 256 279 148 87
-156 88 257 280 149
-157 89 258 281 150
-158 90 259 282 76
-159 77 91 260 283
-160 78 92 261 284
-161 79 93 262 285
-162 286 80 94 263
-163 264 287 81 95
-164 265 288 82 96
-165 266 289 83 97
-166 267 290 84 98
-167 99 268 291 85
-168 100 269 292 86
-169 101 270 293 87
-170 88 102 271 294
-171 89 103 272 295
-172 90 104 273 296
-173 297 91 105 274
-174 275 298 92 106
-175 276 299 93 107
-176 277 300 94 108
-177 278 226 95 109
-178 110 279 227 96
-179 111 280 228 97
-180 112 281 229 98
-181 99 113 282 230
-182 231 100 114 283
-183 232 101 115 284
-184 233 102 116 285
-185 286 234 103 117
-186 287 235 104 118
-187 288 236 105 119
-188 289 237 106 120
-189 121 290 238 107
-190 122 291 239 108
-191 123 292 240 109
-192 110 124 293 241
-193 242 111 125 294
-194 243 112 126 295
-195 244 113 127 296
-196 297 245 114 128
-197 298 246 115 129
-198 299 247 116 130
-199 300 248 117 131
-200 132 226 249 118
-201 133 227 250 119
-202 134 228 251 120
-203 121 135 229 252
-204 253 122 136 230
-205 231 254 123 137
-206 232 255 124 138
-207 233 256 125 139
-208 234 257 126 140
-209 235 258 127 141
-210 236 259 128 142
-211 143 237 260 129
-212 144 238 261 130
-213 145 239 262 131
-214 132 146 240 263
-215 264 133 147 241
-216 242 265 134 148
-217 243 266 135 149
-218 244 267 136 150
-219 245 268 137 76
-220 77 246 269 138
-221 78 247 270 139
-222 79 248 271 140
-223 80 249 272 141
-224 81 250 273 142
-225 143 82 251 274
-226 33 44 177 200
-227 34 45 178 201
-228 35 46 179 202
-229 36 47 180 203
-230 37 48 181 204
-231 38 49 182 205
-232 39 50 183 206
-233 40 51 184 207
-234 41 52 185 208
-235 209 42 53 186
-236 187 210 43 54
-237 44 55 188 211
-238 45 56 189 212
-239 46 57 190 213
-240 47 58 191 214
-241 48 59 192 215
-242 49 60 193 216
-243 50 61 194 217
-244 51 62 195 218
-245 52 63 196 219
-246 220 53 64 197
-247 198 221 54 65
-248 55 66 199 222
-249 56 67 200 223
-250 57 68 201 224
-251 58 69 202 225
-252 59 70 203 151
-253 60 71 204 152
-254 61 72 205 153
-255 154 62 73 206
-256 155 63 74 207
-257 156 64 75 208
-258 209 1 157 65
-259 66 210 2 158
-260 67 211 3 159
-261 68 212 4 160
-262 69 213 5 161
-263 70 214 6 162
-264 71 215 7 163
-265 72 216 8 164
-266 165 73 217 9
-267 166 74 218 10
-268 11 167 75 219
-269 220 1 12 168
-270 221 2 13 169
-271 222 3 14 170
-272 223 4 15 171
-273 224 5 16 172
-274 225 6 17 173
-275 7 18 151 174
-276 8 19 152 175
-277 176 9 20 153
-278 154 177 10 21
-279 11 22 155 178
-280 12 23 156 179
-281 13 24 157 180
-282 14 25 158 181
-283 15 26 159 182
-284 16 27 160 183
-285 17 28 161 184
-286 18 29 162 185
-287 19 30 163 186
-288 187 20 31 164
-289 165 188 21 32
-290 22 33 166 189
-291 23 34 167 190
-292 24 35 168 191
-293 25 36 169 192
-294 26 37 170 193
-295 27 38 171 194
-296 28 39 172 195
-297 29 40 173 196
-298 30 41 174 197
-299 198 31 42 175
-300 176 199 32 43
0

**************