[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 300, 25 ] =
PL(Br(30,5;2)).
(I) Following is a form readable by MAGMA:
g:=Graph<300|{ {147, 151}, {146, 151}, {148, 181}, {146, 180}, {147, 181}, {147,
180}, {131, 178}, {131, 177}, {132, 177}, {132, 178}, {141, 180}, {136, 178},
{142, 180}, {137, 179}, {136, 179}, {137, 178}, {142, 179}, {141, 179}, {145,
209}, {144, 209}, {147, 210}, {144, 210}, {145, 210}, {148, 210}, {149, 211},
{148, 211}, {135, 207}, {134, 207}, {128, 206}, {128, 207}, {134, 208}, {135,
208}, {137, 209}, {137, 208}, {138, 208}, {138, 209}, {143, 239}, {142, 239},
{138, 238}, {149, 241}, {148, 240}, {139, 239}, {138, 239}, {149, 240}, {139,
238}, {150, 241}, {133, 237}, {132, 237}, {132, 238}, {133, 238}, {128, 236},
{129, 237}, {128, 237}, {129, 236}, {142, 240}, {143, 240}, {65, 193}, {67,
195}, {103, 231}, {31, 158}, {67, 194}, {64, 193}, {102, 231}, {31, 157}, {64,
194}, {65, 194}, {98, 230}, {109, 233}, {108, 232}, {99, 231}, {98, 231}, {109,
232}, {108, 233}, {99, 230}, {26, 156}, {68, 194}, {27, 157}, {26, 157}, {68,
195}, {27, 156}, {55, 191}, {75, 195}, {77, 197}, {21, 156}, {54, 191}, {41,
160}, {74, 195}, {77, 196}, {16, 154}, {42, 160}, {22, 156}, {17, 155}, {78,
196}, {16, 155}, {17, 154}, {78, 197}, {22, 155}, {21, 155}, {48, 190}, {47,
161}, {46, 160}, {74, 196}, {102, 232}, {46, 161}, {48, 191}, {47, 160}, {75,
196}, {103, 232}, {45, 189}, {123, 235}, {47, 191}, {85, 197}, {87, 199}, {11,
154}, {122, 235}, {51, 162}, {47, 190}, {44, 189}, {84, 197}, {87, 198}, {11,
153}, {51, 161}, {44, 190}, {84, 198}, {45, 190}, {85, 198}, {2, 151}, {52,
161}, {12, 153}, {1, 151}, {122, 236}, {52, 162}, {12, 154}, {94, 200}, {95,
200}, {123, 236}, {35, 187}, {113, 233}, {37, 189}, {95, 199}, {1, 152}, {112,
233}, {61, 164}, {37, 188}, {34, 187}, {94, 199}, {2, 152}, {112, 234}, {62,
164}, {57, 163}, {56, 162}, {38, 188}, {38, 189}, {113, 234}, {57, 162}, {56,
163}, {118, 234}, {119, 235}, {62, 163}, {119, 234}, {118, 235}, {6, 152}, {61,
163}, {34, 188}, {7, 153}, {88, 198}, {6, 153}, {35, 188}, {7, 152}, {88, 199},
{25, 185}, {107, 203}, {27, 187}, {105, 201}, {24, 185}, {107, 202}, {27, 186},
{104, 201}, {24, 186}, {104, 202}, {25, 186}, {105, 202}, {68, 224}, {69, 225},
{68, 225}, {69, 224}, {28, 186}, {108, 202}, {28, 187}, {108, 203}, {17, 185},
{73, 225}, {97, 201}, {17, 184}, {72, 225}, {97, 200}, {18, 184}, {72, 226},
{98, 200}, {18, 185}, {73, 226}, {98, 201}, {78, 226}, {79, 227}, {78, 227},
{79, 226}, {5, 181}, {127, 207}, {125, 205}, {7, 183}, {83, 227}, {4, 181},
{127, 206}, {124, 205}, {7, 182}, {82, 227}, {4, 182}, {124, 206}, {5, 182},
{125, 206}, {75, 255}, {42, 159}, {14, 184}, {41, 159}, {82, 228}, {15, 184},
{83, 228}, {15, 183}, {117, 205}, {115, 203}, {70, 254}, {71, 255}, {93, 229},
{14, 183}, {117, 204}, {114, 203}, {70, 255}, {92, 229}, {36, 158}, {118, 204},
{69, 255}, {37, 159}, {92, 230}, {36, 159}, {118, 205}, {69, 254}, {37, 158},
{93, 230}, {65, 253}, {88, 228}, {89, 229}, {32, 157}, {88, 229}, {89, 228}, {8,
182}, {114, 204}, {32, 158}, {8, 183}, {115, 204}, {65, 254}, {23, 215}, {61,
253}, {60, 252}, {22, 215}, {111, 174}, {60, 253}, {111, 173}, {61, 254}, {18,
214}, {29, 217}, {28, 216}, {19, 215}, {18, 215}, {29, 216}, {28, 217}, {19,
214}, {59, 253}, {107, 173}, {106, 172}, {59, 252}, {107, 172}, {106, 173}, {50,
250}, {51, 251}, {50, 251}, {121, 176}, {101, 172}, {49, 251}, {122, 176}, {96,
170}, {97, 171}, {102, 172}, {49, 250}, {55, 252}, {96, 171}, {97, 170}, {55,
251}, {102, 171}, {22, 216}, {127, 177}, {126, 176}, {101, 171}, {23, 216},
{127, 176}, {126, 177}, {51, 252}, {3, 211}, {41, 249}, {40, 248}, {2, 211},
{40, 249}, {41, 250}, {35, 247}, {45, 249}, {122, 175}, {2, 212}, {121, 175},
{3, 212}, {45, 250}, {13, 213}, {12, 213}, {12, 214}, {117, 175}, {116, 174},
{13, 214}, {117, 174}, {116, 175}, {35, 248}, {8, 212}, {9, 213}, {8, 213},
{112, 173}, {9, 212}, {39, 249}, {112, 174}, {62, 224}, {39, 248}, {63, 224},
{20, 244}, {63, 223}, {21, 245}, {20, 245}, {62, 223}, {71, 166}, {71, 165},
{21, 246}, {58, 222}, {59, 223}, {58, 223}, {59, 222}, {19, 245}, {67, 165},
{66, 164}, {19, 244}, {67, 164}, {66, 165}, {31, 248}, {30, 246}, {53, 221},
{31, 247}, {30, 247}, {52, 221}, {29, 247}, {52, 222}, {76, 166}, {77, 167},
{29, 246}, {53, 222}, {76, 167}, {77, 166}, {25, 245}, {49, 221}, {48, 220},
{48, 221}, {49, 220}, {72, 165}, {72, 166}, {25, 246}, {1, 241}, {43, 219}, {42,
219}, {91, 170}, {91, 169}, {1, 242}, {5, 241}, {82, 167}, {92, 169}, {42, 220},
{54, 192}, {81, 167}, {92, 170}, {5, 242}, {55, 192}, {43, 220}, {10, 242}, {57,
193}, {33, 217}, {11, 243}, {10, 243}, {57, 192}, {32, 217}, {81, 168}, {9,
243}, {58, 192}, {32, 218}, {82, 168}, {9, 242}, {58, 193}, {33, 218}, {15,
244}, {15, 243}, {39, 219}, {38, 218}, {38, 219}, {39, 218}, {86, 168}, {87,
169}, {11, 244}, {86, 169}, {87, 168}, {16, 274}, {16, 275}, {23, 276}, {23,
275}, {20, 274}, {20, 275}, {30, 276}, {4, 271}, {30, 277}, {24, 275}, {3, 271},
{24, 276}, {26, 276}, {26, 277}, {3, 272}, {4, 272}, {6, 272}, {6, 273}, {10,
272}, {10, 273}, {13, 273}, {14, 274}, {13, 274}, {14, 273}, {56, 282}, {56,
283}, {63, 284}, {63, 283}, {60, 282}, {60, 283}, {50, 280}, {50, 281}, {53,
281}, {54, 282}, {53, 282}, {54, 281}, {36, 278}, {36, 279}, {43, 280}, {33,
277}, {44, 280}, {34, 278}, {46, 280}, {33, 278}, {46, 281}, {34, 277}, {44,
279}, {43, 279}, {40, 278}, {40, 279}, {96, 290}, {96, 291}, {103, 292}, {103,
291}, {100, 290}, {71, 256}, {100, 291}, {110, 292}, {75, 256}, {110, 293}, {84,
287}, {104, 291}, {83, 287}, {104, 292}, {79, 257}, {80, 286}, {106, 292}, {79,
256}, {106, 293}, {80, 287}, {80, 256}, {81, 257}, {80, 257}, {76, 286}, {116,
294}, {76, 287}, {123, 296}, {116, 295}, {81, 258}, {73, 285}, {124, 296}, {114,
294}, {113, 293}, {74, 286}, {85, 257}, {126, 296}, {73, 286}, {126, 297}, {114,
293}, {113, 294}, {74, 285}, {85, 258}, {90, 258}, {91, 259}, {90, 259}, {70,
284}, {89, 259}, {64, 283}, {124, 295}, {70, 285}, {89, 258}, {95, 260}, {64,
284}, {123, 295}, {95, 259}, {66, 284}, {120, 294}, {66, 285}, {120, 295}, {91,
260}, {100, 260}, {101, 261}, {100, 261}, {101, 262}, {99, 261}, {99, 260},
{111, 264}, {110, 262}, {111, 263}, {110, 263}, {109, 263}, {109, 262}, {105,
261}, {105, 262}, {120, 264}, {121, 265}, {120, 265}, {83, 288}, {121, 266},
{84, 288}, {125, 265}, {115, 263}, {86, 288}, {86, 289}, {125, 266}, {90, 288},
{90, 289}, {115, 264}, {93, 289}, {94, 290}, {119, 265}, {93, 290}, {119, 264},
{94, 289}, {140, 268}, {141, 269}, {140, 269}, {141, 270}, {139, 269}, {139,
268}, {130, 266}, {131, 267}, {130, 267}, {129, 267}, {129, 266}, {135, 268},
{135, 267}, {131, 268}, {150, 270}, {150, 271}, {149, 270}, {145, 269}, {146,
271}, {145, 270}, {136, 298}, {136, 299}, {143, 300}, {143, 299}, {140, 298},
{140, 299}, {130, 296}, {130, 297}, {133, 297}, {134, 298}, {133, 298}, {134,
297}, {150, 300}, {144, 299}, {144, 300}, {146, 300} }>;
(II) A more general form is to represent the graph as the orbit of {147, 151}
under the group generated by the following permutations:
a: (1, 2)(3, 5)(6, 7)(8, 10)(11, 12)(13, 15)(16, 17)(18, 20)(21, 22)(23, 25)(26,
27)(28, 30)(31, 32)(33, 35)(36, 37)(38, 40)(41, 42)(43, 45)(46, 47)(48, 50)(51,
52)(53, 55)(56, 57)(58, 60)(61, 62)(63, 65)(66, 67)(68, 70)(71, 72)(73, 75)(76,
77)(78, 80)(81, 82)(83, 85)(86, 87)(88, 90)(91, 92)(93, 95)(96, 97)(98,
100)(101, 102)(103, 105)(106, 107)(108, 110)(111, 112)(113, 115)(116, 117)(118,
120)(121, 122)(123, 125)(126, 127)(128, 130)(131, 132)(133, 135)(136, 137)(138,
140)(141, 142)(143, 145)(146, 147)(148, 150)(181, 271)(182, 272)(183, 273)(184,
274)(185, 275)(186, 276)(187, 277)(188, 278)(189, 279)(190, 280)(191, 281)(192,
282)(193, 283)(194, 284)(195, 285)(196, 286)(197, 287)(198, 288)(199, 289)(200,
290)(201, 291)(202, 292)(203, 293)(204, 294)(205, 295)(206, 296)(207, 297)(208,
298)(209, 299)(210, 300)(211, 241)(212, 242)(213, 243)(214, 244)(215, 245)(216,
246)(217, 247)(218, 248)(219, 249)(220, 250)(221, 251)(222, 252)(223, 253)(224,
254)(225, 255)(226, 256)(227, 257)(228, 258)(229, 259)(230, 260)(231, 261)(232,
262)(233, 263)(234, 264)(235, 265)(236, 266)(237, 267)(238, 268)(239, 269)(240,
270) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 6, 12, 17, 21, 26, 32, 37, 41, 46, 52, 57, 61, 66, 72, 77, 81, 86, 92,
97, 101, 106, 112, 117, 121, 126, 132, 137, 141, 146, 2, 7, 11, 16, 22, 27, 31,
36, 42, 47, 51, 56, 62, 67, 71, 76, 82, 87, 91, 96, 102, 107, 111, 116, 122,
127, 131, 136, 142, 147)(3, 8, 15, 20, 23, 28, 35, 40, 43, 48, 55, 60, 63, 68,
75, 80, 83, 88, 95, 100, 103, 108, 115, 120, 123, 128, 135, 140, 143, 148, 5,
10, 13, 18, 25, 30, 33, 38, 45, 50, 53, 58, 65, 70, 73, 78, 85, 90, 93, 98, 105,
110, 113, 118, 125, 130, 133, 138, 145, 150)(4, 9, 14, 19, 24, 29, 34, 39, 44,
49, 54, 59, 64, 69, 74, 79, 84, 89, 94, 99, 104, 109, 114, 119, 124, 129, 134,
139, 144, 149)(151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,
164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180)(181, 242, 273, 214, 185, 246, 277, 218, 189, 250, 281, 222, 193, 254, 285,
226, 197, 258, 289, 230, 201, 262, 293, 234, 205, 266, 297, 238, 209, 270, 271,
212, 183, 244, 275, 216, 187, 248, 279, 220, 191, 252, 283, 224, 195, 256, 287,
228, 199, 260, 291, 232, 203, 264, 295, 236, 207, 268, 299, 240)(182, 243, 274,
215, 186, 247, 278, 219, 190, 251, 282, 223, 194, 255, 286, 227, 198, 259, 290,
231, 202, 263, 294, 235, 206, 267, 298, 239, 210, 241, 272, 213, 184, 245, 276,
217, 188, 249, 280, 221, 192, 253, 284, 225, 196, 257, 288, 229, 200, 261, 292,
233, 204, 265, 296, 237, 208, 269, 300, 211)
c: (2, 5)(3, 4)(6, 10)(7, 9)(12, 15)(13, 14)(16, 20)(17, 19)(22, 25)(23, 24)(26,
30)(27, 29)(32, 35)(33, 34)(36, 40)(37, 39)(42, 45)(43, 44)(46, 50)(47, 49)(52,
55)(53, 54)(56, 60)(57, 59)(62, 65)(63, 64)(66, 70)(67, 69)(72, 75)(73, 74)(76,
80)(77, 79)(82, 85)(83, 84)(86, 90)(87, 89)(92, 95)(93, 94)(96, 100)(97,
99)(102, 105)(103, 104)(106, 110)(107, 109)(112, 115)(113, 114)(116, 120)(117,
119)(122, 125)(123, 124)(126, 130)(127, 129)(132, 135)(133, 134)(136, 140)(137,
139)(142, 145)(143, 144)(146, 150)(147, 149)(151, 241)(152, 242)(153, 243)(154,
244)(155, 245)(156, 246)(157, 247)(158, 248)(159, 249)(160, 250)(161, 251)(162,
252)(163, 253)(164, 254)(165, 255)(166, 256)(167, 257)(168, 258)(169, 259)(170,
260)(171, 261)(172, 262)(173, 263)(174, 264)(175, 265)(176, 266)(177, 267)(178,
268)(179, 269)(180, 270)(181, 211)(182, 212)(183, 213)(184, 214)(185, 215)(186,
216)(187, 217)(188, 218)(189, 219)(190, 220)(191, 221)(192, 222)(193, 223)(194,
224)(195, 225)(196, 226)(197, 227)(198, 228)(199, 229)(200, 230)(201, 231)(202,
232)(203, 233)(204, 234)(205, 235)(206, 236)(207, 237)(208, 238)(209, 239)(210,
240)
d: (6, 146)(7, 147)(8, 148)(9, 149)(10, 150)(11, 141)(12, 142)(13, 143)(14,
144)(15, 145)(16, 136)(17, 137)(18, 138)(19, 139)(20, 140)(21, 131)(22, 132)(23,
133)(24, 134)(25, 135)(26, 126)(27, 127)(28, 128)(29, 129)(30, 130)(31, 121)(32,
122)(33, 123)(34, 124)(35, 125)(36, 116)(37, 117)(38, 118)(39, 119)(40, 120)(41,
111)(42, 112)(43, 113)(44, 114)(45, 115)(46, 106)(47, 107)(48, 108)(49, 109)(50,
110)(51, 101)(52, 102)(53, 103)(54, 104)(55, 105)(56, 96)(57, 97)(58, 98)(59,
99)(60, 100)(61, 91)(62, 92)(63, 93)(64, 94)(65, 95)(66, 86)(67, 87)(68, 88)(69,
89)(70, 90)(71, 81)(72, 82)(73, 83)(74, 84)(75, 85)(151, 152)(153, 180)(154,
179)(155, 178)(156, 177)(157, 176)(158, 175)(159, 174)(160, 173)(161, 172)(162,
171)(163, 170)(164, 169)(165, 168)(166, 167)(181, 182)(183, 210)(184, 209)(185,
208)(186, 207)(187, 206)(188, 205)(189, 204)(190, 203)(191, 202)(192, 201)(193,
200)(194, 199)(195, 198)(196, 197)(211, 212)(213, 240)(214, 239)(215, 238)(216,
237)(217, 236)(218, 235)(219, 234)(220, 233)(221, 232)(222, 231)(223, 230)(224,
229)(225, 228)(226, 227)(241, 242)(243, 270)(244, 269)(245, 268)(246, 267)(247,
266)(248, 265)(249, 264)(250, 263)(251, 262)(252, 261)(253, 260)(254, 259)(255,
258)(256, 257)(271, 272)(273, 300)(274, 299)(275, 298)(276, 297)(277, 296)(278,
295)(279, 294)(280, 293)(281, 292)(282, 291)(283, 290)(284, 289)(285, 288)(286,
287)
C4[ 300, 25 ]
300
-1 242 151 152 241
-2 211 212 151 152
-3 211 212 271 272
-4 181 182 271 272
-5 242 181 182 241
-6 272 152 273 153
-7 182 183 152 153
-8 212 213 182 183
-9 242 243 212 213
-10 242 243 272 273
-11 154 243 244 153
-12 154 213 214 153
-13 213 214 273 274
-14 183 184 273 274
-15 243 244 183 184
-16 154 275 155 274
-17 154 155 184 185
-18 214 215 184 185
-19 244 245 214 215
-20 275 244 245 274
-21 155 156 245 246
-22 155 156 215 216
-23 275 276 215 216
-24 275 276 185 186
-25 245 246 185 186
-26 276 156 277 157
-27 187 156 157 186
-28 187 216 217 186
-29 246 247 216 217
-30 276 277 246 247
-31 157 158 247 248
-32 157 158 217 218
-33 277 278 217 218
-34 187 188 277 278
-35 187 188 247 248
-36 278 158 279 159
-37 188 189 158 159
-38 188 189 218 219
-39 248 249 218 219
-40 278 279 248 249
-41 159 160 249 250
-42 220 159 160 219
-43 220 279 280 219
-44 189 190 279 280
-45 189 190 249 250
-46 280 160 281 161
-47 190 191 160 161
-48 220 221 190 191
-49 220 221 250 251
-50 280 281 250 251
-51 161 162 251 252
-52 221 222 161 162
-53 221 222 281 282
-54 191 192 281 282
-55 191 192 251 252
-56 282 162 283 163
-57 192 193 162 163
-58 222 223 192 193
-59 253 222 223 252
-60 253 282 283 252
-61 253 254 163 164
-62 223 224 163 164
-63 223 224 283 284
-64 193 194 283 284
-65 253 254 193 194
-66 165 284 164 285
-67 165 194 195 164
-68 224 225 194 195
-69 254 255 224 225
-70 254 255 284 285
-71 165 166 255 256
-72 165 166 225 226
-73 286 225 226 285
-74 286 195 196 285
-75 255 256 195 196
-76 286 166 287 167
-77 166 167 196 197
-78 226 227 196 197
-79 256 257 226 227
-80 286 287 256 257
-81 167 168 257 258
-82 167 168 227 228
-83 287 288 227 228
-84 198 287 288 197
-85 198 257 258 197
-86 288 168 289 169
-87 198 199 168 169
-88 198 199 228 229
-89 258 259 228 229
-90 288 289 258 259
-91 169 170 259 260
-92 169 170 229 230
-93 289 290 229 230
-94 199 200 289 290
-95 199 200 259 260
-96 290 170 291 171
-97 200 201 170 171
-98 231 200 201 230
-99 231 260 261 230
-100 290 291 260 261
-101 171 172 261 262
-102 231 232 171 172
-103 231 232 291 292
-104 201 202 291 292
-105 201 202 261 262
-106 292 172 293 173
-107 202 203 172 173
-108 232 233 202 203
-109 232 233 262 263
-110 292 293 262 263
-111 264 173 174 263
-112 233 234 173 174
-113 233 234 293 294
-114 203 204 293 294
-115 264 203 204 263
-116 294 174 295 175
-117 204 205 174 175
-118 234 235 204 205
-119 264 265 234 235
-120 264 265 294 295
-121 176 265 266 175
-122 176 235 236 175
-123 235 236 295 296
-124 205 206 295 296
-125 265 266 205 206
-126 176 297 177 296
-127 176 177 206 207
-128 236 237 206 207
-129 266 267 236 237
-130 297 266 267 296
-131 177 178 267 268
-132 177 178 237 238
-133 297 298 237 238
-134 297 298 207 208
-135 267 268 207 208
-136 298 178 299 179
-137 209 178 179 208
-138 209 238 239 208
-139 268 269 238 239
-140 298 299 268 269
-141 179 180 269 270
-142 179 180 239 240
-143 299 300 239 240
-144 209 210 299 300
-145 209 210 269 270
-146 300 180 271 151
-147 210 180 181 151
-148 210 211 181 240
-149 211 270 240 241
-150 300 270 271 241
-151 1 2 146 147
-152 1 2 6 7
-153 11 12 6 7
-154 11 12 16 17
-155 22 16 17 21
-156 22 26 27 21
-157 26 27 31 32
-158 36 37 31 32
-159 36 37 41 42
-160 46 47 41 42
-161 46 47 51 52
-162 56 57 51 52
-163 56 57 61 62
-164 66 67 61 62
-165 66 67 71 72
-166 77 71 72 76
-167 77 81 82 76
-168 81 82 86 87
-169 91 92 86 87
-170 91 92 96 97
-171 101 102 96 97
-172 101 102 106 107
-173 111 112 106 107
-174 111 112 116 117
-175 121 122 116 117
-176 121 122 126 127
-177 132 126 127 131
-178 132 136 137 131
-179 136 137 141 142
-180 146 147 141 142
-181 4 147 5 148
-182 4 5 7 8
-183 14 15 7 8
-184 14 15 17 18
-185 24 25 17 18
-186 24 25 27 28
-187 34 35 27 28
-188 34 35 37 38
-189 44 45 37 38
-190 44 45 47 48
-191 55 47 48 54
-192 55 57 58 54
-193 57 58 64 65
-194 67 68 64 65
-195 67 68 74 75
-196 77 78 74 75
-197 77 78 84 85
-198 88 84 85 87
-199 88 94 95 87
-200 94 95 97 98
-201 104 105 97 98
-202 104 105 107 108
-203 114 115 107 108
-204 114 115 117 118
-205 124 125 117 118
-206 124 125 127 128
-207 134 135 127 128
-208 134 135 137 138
-209 144 145 137 138
-210 144 145 147 148
-211 2 3 148 149
-212 2 3 8 9
-213 12 13 8 9
-214 12 13 18 19
-215 22 23 18 19
-216 22 23 28 29
-217 33 28 29 32
-218 33 38 39 32
-219 38 39 42 43
-220 48 49 42 43
-221 48 49 52 53
-222 58 59 52 53
-223 58 59 62 63
-224 68 69 62 63
-225 68 69 72 73
-226 78 79 72 73
-227 78 79 82 83
-228 88 89 82 83
-229 88 89 92 93
-230 99 92 93 98
-231 99 102 103 98
-232 102 103 108 109
-233 112 113 108 109
-234 112 113 118 119
-235 122 123 118 119
-236 122 123 128 129
-237 132 133 128 129
-238 132 133 138 139
-239 143 138 139 142
-240 143 148 149 142
-241 1 5 149 150
-242 1 5 9 10
-243 11 15 9 10
-244 11 15 19 20
-245 25 19 20 21
-246 25 29 30 21
-247 35 29 30 31
-248 35 39 40 31
-249 45 39 40 41
-250 45 49 50 41
-251 55 49 50 51
-252 55 59 60 51
-253 59 60 61 65
-254 69 70 61 65
-255 69 70 71 75
-256 79 80 71 75
-257 79 80 81 85
-258 89 90 81 85
-259 89 90 91 95
-260 99 100 91 95
-261 99 100 101 105
-262 110 101 105 109
-263 110 111 115 109
-264 111 115 119 120
-265 121 125 119 120
-266 121 125 129 130
-267 135 129 130 131
-268 135 139 140 131
-269 145 139 140 141
-270 145 149 150 141
-271 3 146 4 150
-272 3 4 6 10
-273 13 14 6 10
-274 13 14 16 20
-275 23 24 16 20
-276 23 24 26 30
-277 33 34 26 30
-278 33 34 36 40
-279 44 36 40 43
-280 44 46 50 43
-281 46 50 53 54
-282 56 60 53 54
-283 56 60 63 64
-284 66 70 63 64
-285 66 70 73 74
-286 80 73 74 76
-287 80 83 84 76
-288 90 83 84 86
-289 90 93 94 86
-290 100 93 94 96
-291 100 103 104 96
-292 110 103 104 106
-293 110 113 114 106
-294 113 114 116 120
-295 123 124 116 120
-296 123 124 126 130
-297 133 134 126 130
-298 133 134 136 140
-299 143 144 136 140
-300 143 144 146 150
0