[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 300, 34 ] =
UG(ATD[300,61]).
(I) Following is a form readable by MAGMA:
g:=Graph<300|{ {180, 181}, {64, 66}, {281, 283}, {212, 214}, {1, 2}, {260, 263},
{184, 187}, {89, 90}, {50, 54}, {211, 215}, {2, 7}, {185, 188}, {91, 94}, {1,
6}, {290, 293}, {135, 143}, {289, 297}, {195, 203}, {3, 8}, {196, 207}, {192,
204}, {194, 206}, {193, 205}, {4, 9}, {183, 186}, {5, 10}, {262, 265}, {96,
112}, {79, 94}, {11, 25}, {68, 86}, {134, 148}, {42, 57}, {165, 182}, {140,
152}, {141, 153}, {2, 23}, {238, 251}, {228, 241}, {225, 244}, {10, 31}, {8,
29}, {130, 148}, {161, 183}, {9, 30}, {224, 247}, {78, 89}, {15, 24}, {231,
255}, {107, 114}, {38, 60}, {3, 24}, {233, 242}, {7, 28}, {39, 59}, {237, 241},
{175, 179}, {4, 25}, {6, 27}, {173, 176}, {226, 252}, {270, 272}, {5, 26}, {21,
52}, {205, 236}, {130, 163}, {16, 50}, {142, 170}, {203, 239}, {157, 185}, {270,
299}, {148, 178}, {223, 249}, {128, 167}, {129, 168}, {11, 32}, {15, 36}, {12,
33}, {14, 35}, {149, 184}, {13, 34}, {221, 236}, {69, 119}, {194, 240}, {95,
109}, {80, 98}, {279, 292}, {69, 113}, {16, 37}, {18, 39}, {17, 38}, {213, 226},
{64, 120}, {283, 291}, {219, 227}, {67, 123}, {66, 122}, {65, 121}, {69, 124},
{216, 225}, {212, 238}, {19, 40}, {279, 300}, {217, 226}, {142, 181}, {221,
225}, {20, 41}, {22, 43}, {147, 174}, {92, 98}, {222, 224}, {218, 228}, {143,
177}, {21, 42}, {6, 70}, {10, 74}, {9, 73}, {8, 72}, {7, 71}, {13, 76}, {18,
80}, {47, 109}, {46, 108}, {43, 105}, {42, 104}, {39, 101}, {38, 100}, {35, 97},
{34, 96}, {31, 93}, {30, 92}, {27, 89}, {26, 88}, {23, 85}, {22, 84}, {19, 81},
{14, 77}, {51, 112}, {23, 84}, {170, 233}, {51, 119}, {55, 115}, {54, 114}, {53,
113}, {150, 211}, {173, 232}, {20, 82}, {45, 107}, {44, 106}, {37, 99}, {36,
98}, {29, 91}, {28, 90}, {21, 83}, {144, 214}, {145, 215}, {12, 75}, {54, 126},
{63, 119}, {150, 222}, {163, 235}, {25, 83}, {28, 87}, {61, 118}, {161, 234},
{56, 116}, {160, 236}, {24, 86}, {41, 103}, {40, 102}, {25, 87}, {58, 117}, {59,
107}, {182, 230}, {166, 246}, {11, 90}, {137, 216}, {139, 218}, {141, 220},
{168, 250}, {138, 217}, {142, 221}, {146, 199}, {162, 247}, {24, 78}, {60, 106},
{32, 118}, {140, 219}, {156, 196}, {160, 248}, {171, 243}, {3, 90}, {36, 120},
{150, 202}, {167, 251}, {169, 245}, {16, 78}, {49, 111}, {48, 110}, {17, 79},
{157, 253}, {178, 210}, {37, 68}, {156, 254}, {41, 74}, {44, 79}, {154, 255},
{168, 206}, {27, 124}, {144, 247}, {158, 249}, {58, 82}, {145, 249}, {163, 203},
{166, 204}, {167, 205}, {164, 200}, {43, 70}, {47, 65}, {181, 219}, {57, 87},
{134, 244}, {159, 237}, {30, 106}, {56, 76}, {152, 237}, {158, 235}, {29, 107},
{191, 200}, {53, 77}, {138, 240}, {189, 199}, {135, 252}, {55, 75}, {45, 80},
{32, 94}, {61, 67}, {54, 72}, {33, 95}, {46, 81}, {62, 65}, {23, 151}, {16,
145}, {88, 217}, {94, 220}, {105, 234}, {124, 255}, {28, 152}, {31, 155}, {30,
154}, {29, 153}, {21, 144}, {120, 254}, {39, 160}, {2, 138}, {88, 208}, {42,
162}, {101, 237}, {40, 161}, {117, 252}, {108, 230}, {85, 222}, {118, 253},
{126, 240}, {86, 198}, {104, 249}, {46, 188}, {48, 163}, {99, 247}, {110, 250},
{111, 251}, {113, 229}, {49, 164}, {26, 140}, {96, 246}, {67, 213}, {45, 187},
{44, 186}, {26, 141}, {63, 168}, {62, 167}, {122, 224}, {61, 166}, {100, 248},
{119, 235}, {85, 200}, {58, 165}, {66, 221}, {34, 131}, {41, 139}, {43, 137},
{14, 173}, {99, 192}, {59, 152}, {103, 196}, {68, 224}, {108, 200}, {123, 223},
{33, 132}, {100, 193}, {102, 195}, {111, 202}, {52, 146}, {118, 208}, {101,
194}, {110, 201}, {89, 241}, {70, 239}, {93, 244}, {91, 242}, {120, 209}, {122,
211}, {124, 213}, {126, 215}, {95, 245}, {121, 210}, {125, 214}, {104, 197},
{106, 199}, {92, 243}, {105, 198}, {123, 212}, {57, 136}, {14, 188}, {100, 214},
{101, 215}, {105, 218}, {3, 182}, {84, 225}, {61, 136}, {12, 186}, {82, 228},
{35, 149}, {13, 187}, {103, 209}, {71, 240}, {38, 159}, {115, 202}, {83, 233},
{113, 203}, {116, 206}, {117, 207}, {37, 158}, {33, 156}, {116, 201}, {114,
204}, {115, 205}, {34, 157}, {103, 216}, {51, 243}, {27, 218}, {68, 133}, {64,
133}, {35, 229}, {108, 170}, {31, 216}, {32, 231}, {22, 222}, {53, 255}, {102,
172}, {36, 232}, {114, 190}, {81, 156}, {40, 230}, {74, 154}, {77, 157}, {17,
192}, {71, 149}, {99, 177}, {98, 176}, {73, 155}, {18, 197}, {76, 149}, {104,
178}, {122, 160}, {73, 146}, {121, 162}, {127, 164}, {7, 219}, {19, 207}, {47,
242}, {121, 164}, {77, 147}, {97, 191}, {96, 190}, {109, 179}, {44, 243}, {82,
141}, {45, 242}, {8, 232}, {17, 241}, {84, 181}, {93, 188}, {91, 186}, {88,
185}, {86, 183}, {81, 179}, {95, 189}, {58, 217}, {85, 182}, {112, 147}, {6,
226}, {123, 159}, {78, 171}, {57, 223}, {73, 175}, {72, 174}, {117, 147}, {83,
180}, {92, 187}, {110, 134}, {111, 135}, {10, 227}, {79, 166}, {64, 169}, {102,
143}, {70, 172}, {75, 161}, {71, 173}, {65, 170}, {72, 165}, {109, 128}, {9,
231}, {93, 179}, {69, 171}, {87, 184}, {125, 146}, {127, 143}, {112, 129}, {97,
148}, {97, 151}, {55, 192}, {115, 132}, {116, 131}, {80, 169}, {53, 207}, {75,
177}, {74, 176}, {56, 197}, {76, 178}, {11, 267}, {20, 276}, {13, 269}, {12,
268}, {4, 261}, {5, 260}, {22, 287}, {15, 258}, {19, 284}, {4, 278}, {49, 293},
{5, 275}, {60, 298}, {20, 259}, {15, 278}, {48, 297}, {56, 292}, {18, 271}, {48,
272}, {50, 274}, {49, 273}, {52, 277}, {1, 291}, {47, 269}, {62, 280}, {63,
281}, {52, 285}, {1, 300}, {46, 256}, {59, 264}, {55, 257}, {62, 264}, {50,
266}, {63, 262}, {60, 262}, {51, 268}, {127, 296}, {66, 282}, {125, 286}, {67,
299}, {125, 272}, {127, 274}, {126, 273}, {136, 266}, {131, 260}, {132, 259},
{142, 256}, {144, 287}, {139, 281}, {128, 275}, {140, 280}, {129, 276}, {151,
258}, {130, 277}, {137, 286}, {150, 257}, {133, 285}, {158, 262}, {159, 263},
{153, 256}, {190, 295}, {153, 259}, {189, 294}, {134, 282}, {185, 293}, {154,
260}, {155, 261}, {191, 288}, {136, 296}, {137, 297}, {169, 265}, {139, 298},
{171, 266}, {130, 288}, {180, 278}, {175, 269}, {174, 268}, {132, 295}, {165,
257}, {176, 276}, {131, 294}, {133, 288}, {128, 294}, {129, 295}, {172, 267},
{162, 264}, {183, 285}, {135, 299}, {189, 272}, {191, 274}, {138, 293}, {190,
273}, {145, 291}, {184, 266}, {172, 287}, {151, 291}, {175, 277}, {180, 271},
{174, 274}, {155, 292}, {177, 270}, {220, 284}, {210, 273}, {239, 300}, {212,
279}, {204, 264}, {227, 292}, {208, 280}, {211, 283}, {210, 282}, {209, 281},
{206, 263}, {197, 265}, {199, 265}, {220, 275}, {198, 278}, {246, 294}, {193,
275}, {248, 298}, {245, 295}, {213, 263}, {209, 258}, {253, 296}, {194, 276},
{244, 290}, {195, 277}, {251, 290}, {208, 267}, {250, 289}, {246, 299}, {252,
289}, {201, 279}, {254, 288}, {193, 286}, {229, 261}, {250, 283}, {228, 257},
{235, 270}, {229, 258}, {232, 256}, {239, 261}, {195, 296}, {202, 289}, {201,
290}, {198, 298}, {227, 271}, {196, 297}, {230, 267}, {236, 259}, {245, 282},
{253, 269}, {238, 287}, {254, 268}, {223, 300}, {233, 285}, {234, 286}, {234,
284}, {238, 280}, {248, 271}, {231, 284} }>;
(II) A more general form is to represent the graph as the orbit of {180, 181}
under the group generated by the following permutations:
a: (2, 6)(3, 11)(4, 15)(5, 20)(7, 27)(8, 32)(9, 36)(10, 41)(12, 47)(13, 51)(14,
53)(16, 57)(17, 59)(18, 60)(19, 46)(21, 68)(23, 70)(24, 25)(26, 82)(28, 89)(29,
94)(30, 98)(31, 103)(33, 109)(34, 112)(35, 113)(37, 42)(38, 39)(40, 108)(43,
84)(44, 45)(48, 134)(49, 135)(50, 136)(52, 133)(54, 61)(55, 62)(56, 63)(58,
88)(64, 146)(65, 75)(66, 125)(67, 126)(69, 149)(71, 124)(72, 118)(73, 120)(76,
119)(78, 87)(79, 107)(80, 106)(83, 86)(85, 172)(93, 196)(97, 203)(99, 162)(100,
160)(101, 159)(102, 200)(104, 158)(105, 181)(114, 166)(115, 167)(116, 168)(117,
185)(121, 177)(122, 214)(123, 215)(128, 132)(129, 131)(137, 225)(138, 226)(139,
227)(140, 228)(142, 234)(143, 164)(144, 224)(145, 223)(147, 157)(148, 163)(150,
238)(151, 239)(152, 241)(153, 220)(154, 176)(155, 209)(156, 179)(161, 170)(165,
208)(169, 199)(171, 184)(173, 255)(174, 253)(175, 254)(178, 235)(180, 198)(182,
267)(183, 233)(186, 242)(187, 243)(188, 207)(189, 245)(190, 246)(191, 195)(192,
264)(193, 236)(194, 263)(197, 262)(201, 250)(202, 251)(210, 270)(211, 212)(213,
240)(218, 219)(221, 286)(222, 287)(231, 232)(244, 297)(252, 293)(256, 284)(257,
280)(258, 261)(259, 275)(260, 276)(268, 269)(271, 298)(272, 282)(273, 299)(274,
296)(277, 288)(279, 283)(281, 292)(289, 290)(291, 300)(294, 295) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 7, 28, 90, 3, 8, 29, 91, 186, 12, 33, 95, 189, 272, 48, 110, 201, 279,
300)(4, 16, 58, 142, 187, 17, 40, 120, 190, 275, 52, 119, 202, 93, 197, 67, 43,
97, 194, 280)(5, 21, 69, 150, 188, 18, 61, 105, 191, 276, 62, 9, 37, 117, 221,
13, 38, 102, 209, 273)(6, 23, 71, 152, 11, 24, 72, 153, 242, 44, 75, 156, 245,
294, 125, 163, 250, 290, 292, 223)(10, 42, 124, 222, 14, 39, 118, 198, 274, 20,
65, 30, 99, 207, 66, 34, 100, 195, 281, 49)(15, 54, 141, 233, 243, 55, 81, 169,
246, 286, 130, 168, 251, 155, 249, 226, 84, 149, 237, 267)(19, 64, 96, 193, 277,
63, 111, 31, 104, 213, 22, 35, 101, 208, 278, 50, 82, 170, 92, 192)(25, 78, 165,
256, 45, 79, 161, 254, 295, 128, 146, 235, 289, 244, 56, 123, 70, 151, 240,
140)(26, 83, 171, 257, 46, 80, 166, 234, 288, 129, 167, 73, 158, 252, 225, 76,
159, 172, 258, 126)(27, 85, 173, 59, 32, 86, 174, 259, 47, 106, 177, 196, 282,
131, 214, 203, 283, 293, 227, 57)(36, 114, 220, 285, 51, 115, 179, 265, 299,
137, 148, 206, 238, 261, 145, 217, 181, 184, 241, 230)(41, 121, 154, 247, 53,
122, 157, 248, 296, 139, 164, 74, 162, 255, 224, 77, 160, 253, 298, 127)(60,
143, 103, 210, 260, 144, 113, 211, 185, 271, 136, 218, 200, 176, 264, 231, 68,
147, 236, 269)(87, 89, 182, 232, 107, 94, 183, 268, 132, 109, 199, 270, 297,
134, 116, 212, 239, 291, 138, 219)(88, 180, 266, 228, 108, 98, 204, 284, 133,
112, 205, 175, 262, 135, 216, 178, 263, 287, 229, 215)
c: (2, 300)(3, 48)(4, 225)(5, 18)(6, 291)(7, 279)(8, 272)(9, 221)(10, 271)(11,
134)(13, 62)(14, 144)(15, 137)(16, 252)(17, 129)(19, 133)(20, 60)(21, 188)(22,
229)(23, 239)(24, 297)(25, 244)(26, 197)(27, 283)(28, 201)(29, 189)(30, 236)(31,
180)(32, 282)(33, 186)(34, 264)(35, 287)(36, 286)(37, 117)(38, 276)(39, 260)(40,
288)(41, 298)(42, 185)(43, 258)(44, 132)(45, 128)(46, 52)(49, 136)(50, 135)(51,
55)(53, 224)(54, 299)(56, 140)(57, 293)(58, 158)(59, 131)(61, 273)(63, 228)(64,
284)(65, 269)(66, 231)(67, 126)(68, 207)(69, 150)(70, 151)(71, 212)(72, 270)(73,
142)(74, 248)(75, 268)(76, 280)(77, 247)(78, 289)(79, 295)(80, 275)(81, 285)(82,
262)(83, 93)(84, 261)(85, 203)(86, 196)(87, 290)(88, 104)(89, 250)(90, 110)(91,
95)(92, 205)(94, 245)(96, 204)(97, 172)(98, 193)(99, 147)(100, 176)(101,
263)(102, 191)(103, 198)(105, 209)(106, 259)(107, 294)(108, 277)(109, 242)(111,
266)(112, 192)(113, 222)(114, 246)(115, 243)(116, 152)(118, 210)(119, 257)(120,
234)(121, 253)(122, 255)(123, 240)(124, 211)(125, 232)(130, 230)(138, 223)(141,
265)(143, 274)(145, 226)(146, 256)(148, 267)(149, 238)(153, 199)(154, 160)(155,
181)(156, 183)(157, 162)(159, 194)(161, 254)(163, 182)(164, 296)(165, 235)(166,
190)(167, 187)(168, 241)(169, 220)(170, 175)(171, 202)(173, 214)(174, 177)(178,
208)(179, 233)(184, 251)(195, 200)(206, 237)(213, 215)(216, 278)(217, 249)(218,
281)(219, 292)
C4[ 300, 34 ]
300
-1 2 300 291 6
-2 1 23 138 7
-3 24 90 182 8
-4 25 278 261 9
-5 275 26 260 10
-6 1 70 27 226
-7 2 71 28 219
-8 232 3 72 29
-9 231 4 73 30
-10 5 227 74 31
-11 90 25 267 32
-12 33 268 75 186
-13 187 34 269 76
-14 77 188 35 173
-15 24 36 278 258
-16 78 145 37 50
-17 79 38 192 241
-18 80 39 271 197
-19 81 40 207 284
-20 276 82 259 41
-21 144 83 52 42
-22 287 222 84 43
-23 2 84 85 151
-24 78 3 15 86
-25 11 4 83 87
-26 88 5 140 141
-27 89 124 6 218
-28 90 7 152 87
-29 91 8 107 153
-30 154 92 106 9
-31 155 93 216 10
-32 11 231 94 118
-33 132 12 156 95
-34 13 157 96 131
-35 14 149 97 229
-36 232 15 98 120
-37 99 68 158 16
-38 100 60 159 17
-39 101 59 160 18
-40 102 161 19 230
-41 103 139 74 20
-42 57 104 162 21
-43 22 70 137 105
-44 243 79 106 186
-45 187 242 80 107
-46 188 256 81 108
-47 242 269 65 109
-48 110 297 272 163
-49 111 293 273 164
-50 266 16 54 274
-51 243 112 268 119
-52 277 146 21 285
-53 77 255 113 207
-54 114 126 50 72
-55 257 115 192 75
-56 116 292 76 197
-57 223 136 42 87
-58 165 82 117 217
-59 264 39 107 152
-60 298 38 106 262
-61 67 166 136 118
-62 264 167 280 65
-63 168 281 119 262
-64 66 133 169 120
-65 121 47 170 62
-66 122 221 282 64
-67 123 299 213 61
-68 133 37 224 86
-69 113 124 171 119
-70 6 172 239 43
-71 149 7 173 240
-72 165 8 174 54
-73 155 146 9 175
-74 154 176 41 10
-75 55 12 177 161
-76 56 13 178 149
-77 14 157 147 53
-78 89 24 16 171
-79 44 166 17 94
-80 45 169 18 98
-81 46 156 179 19
-82 58 228 20 141
-83 233 25 180 21
-84 22 23 181 225
-85 23 200 222 182
-86 198 24 68 183
-87 57 25 28 184
-88 26 217 185 208
-89 78 90 27 241
-90 11 89 3 28
-91 242 94 29 186
-92 187 243 30 98
-93 188 244 179 31
-94 220 79 91 32
-95 33 189 245 109
-96 34 112 190 246
-97 35 191 148 151
-98 176 36 80 92
-99 177 37 192 247
-100 38 214 193 248
-101 39 215 237 194
-102 143 40 172 195
-103 209 216 41 196
-104 178 249 42 197
-105 198 234 218 43
-106 44 199 60 30
-107 45 59 114 29
-108 46 200 170 230
-109 47 179 95 128
-110 134 201 48 250
-111 135 202 49 251
-112 147 51 96 129
-113 69 203 53 229
-114 190 204 107 54
-115 55 132 202 205
-116 56 201 206 131
-117 58 147 207 252
-118 253 61 32 208
-119 69 235 51 63
-120 209 254 36 64
-121 210 162 65 164
-122 66 211 224 160
-123 67 212 223 159
-124 255 69 213 27
-125 286 146 214 272
-126 215 240 273 54
-127 143 164 274 296
-128 275 167 294 109
-129 276 112 168 295
-130 277 288 148 163
-131 34 116 260 294
-132 33 115 259 295
-133 68 288 64 285
-134 110 244 148 282
-135 143 111 299 252
-136 57 266 61 296
-137 286 297 216 43
-138 2 293 217 240
-139 298 281 41 218
-140 26 280 152 219
-141 220 26 82 153
-142 221 256 170 181
-143 177 102 135 127
-144 287 214 247 21
-145 16 291 215 249
-146 199 125 73 52
-147 77 112 117 174
-148 134 178 97 130
-149 35 71 184 76
-150 211 222 202 257
-151 23 258 291 97
-152 59 28 237 140
-153 256 259 29 141
-154 255 260 30 74
-155 292 73 261 31
-156 33 254 81 196
-157 77 253 34 185
-158 37 235 249 262
-159 123 38 237 263
-160 122 236 39 248
-161 234 40 183 75
-162 121 264 247 42
-163 48 235 203 130
-164 121 200 49 127
-165 58 257 72 182
-166 79 246 61 204
-167 62 128 205 251
-168 206 129 63 250
-169 265 80 245 64
-170 233 108 65 142
-171 78 243 266 69
-172 287 102 267 70
-173 176 232 14 71
-174 147 268 72 274
-175 277 179 269 73
-176 276 74 173 98
-177 99 143 270 75
-178 210 104 148 76
-179 81 93 109 175
-180 278 181 83 271
-181 180 84 142 219
-182 165 3 85 230
-183 161 86 186 285
-184 187 266 149 87
-185 88 188 157 293
-186 44 12 91 183
-187 45 13 92 184
-188 46 14 93 185
-189 199 95 272 294
-190 114 96 273 295
-191 200 288 97 274
-192 55 99 17 204
-193 275 286 100 205
-194 276 101 206 240
-195 277 102 203 296
-196 297 156 103 207
-197 56 265 104 18
-198 298 278 105 86
-199 265 189 146 106
-200 191 85 108 164
-201 110 279 290 116
-202 111 289 115 150
-203 113 195 239 163
-204 264 166 114 192
-205 167 115 236 193
-206 168 116 194 263
-207 117 19 53 196
-208 88 267 280 118
-209 103 258 281 120
-210 121 178 282 273
-211 122 215 150 283
-212 123 279 214 238
-213 67 124 226 263
-214 100 144 212 125
-215 101 145 211 126
-216 103 137 225 31
-217 88 58 138 226
-218 27 105 139 228
-219 181 7 227 140
-220 275 94 141 284
-221 66 225 236 142
-222 22 224 150 85
-223 57 123 300 249
-224 122 68 222 247
-225 221 244 84 216
-226 213 6 217 252
-227 292 271 10 219
-228 257 82 218 241
-229 35 113 258 261
-230 267 182 40 108
-231 255 9 284 32
-232 36 256 8 173
-233 242 170 83 285
-234 286 105 161 284
-235 158 270 119 163
-236 221 160 259 205
-237 101 159 152 241
-238 287 212 280 251
-239 300 70 203 261
-240 71 126 138 194
-241 89 17 237 228
-242 45 233 47 91
-243 44 92 171 51
-244 134 290 93 225
-245 169 95 282 295
-246 166 299 96 294
-247 99 144 224 162
-248 100 298 160 271
-249 145 223 158 104
-250 110 168 289 283
-251 111 167 290 238
-252 135 289 226 117
-253 157 269 118 296
-254 156 288 268 120
-255 154 231 124 53
-256 232 46 142 153
-257 55 165 150 228
-258 209 15 151 229
-259 132 236 20 153
-260 154 5 131 263
-261 155 4 239 229
-262 265 158 60 63
-263 213 159 260 206
-264 59 204 62 162
-265 199 169 262 197
-266 136 50 171 184
-267 11 172 208 230
-268 12 254 51 174
-269 253 13 47 175
-270 177 299 235 272
-271 180 248 18 227
-272 189 48 125 270
-273 210 190 49 126
-274 191 50 127 174
-275 220 5 193 128
-276 176 194 129 20
-277 52 195 130 175
-278 198 4 15 180
-279 201 212 300 292
-280 62 238 140 208
-281 209 139 63 283
-282 66 210 134 245
-283 211 291 281 250
-284 220 231 234 19
-285 133 233 183 52
-286 234 125 137 193
-287 22 144 172 238
-288 133 254 191 130
-289 297 202 250 252
-290 244 201 293 251
-291 1 145 151 283
-292 56 155 279 227
-293 290 49 138 185
-294 189 246 128 131
-295 132 190 245 129
-296 253 136 127 195
-297 289 48 137 196
-298 198 60 248 139
-299 67 135 246 270
-300 1 223 279 239
0