[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 300, 35 ] =
UG(ATD[300,63]).
(I) Following is a form readable by MAGMA:
g:=Graph<300|{ {200, 201}, {266, 267}, {244, 245}, {206, 207}, {153, 155}, {1,
2}, {129, 130}, {1, 5}, {3, 7}, {2, 6}, {11, 14}, {58, 63}, {203, 205}, {274,
276}, {64, 71}, {39, 47}, {244, 252}, {113, 123}, {199, 205}, {275, 280}, {289,
298}, {4, 8}, {114, 126}, {36, 41}, {289, 300}, {210, 223}, {37, 40}, {195,
205}, {16, 31}, {225, 241}, {3, 18}, {15, 30}, {13, 28}, {11, 26}, {9, 24}, {7,
22}, {5, 20}, {207, 221}, {261, 279}, {2, 17}, {14, 29}, {10, 25}, {6, 21},
{108, 127}, {134, 149}, {168, 187}, {32, 52}, {203, 223}, {257, 276}, {4, 19},
{266, 285}, {12, 27}, {106, 115}, {193, 216}, {108, 117}, {110, 119}, {110,
116}, {195, 216}, {259, 280}, {107, 119}, {263, 282}, {8, 23}, {65, 94}, {101,
122}, {107, 116}, {264, 296}, {215, 246}, {264, 297}, {221, 252}, {68, 102},
{270, 300}, {263, 293}, {222, 252}, {206, 236}, {134, 164}, {137, 171}, {90,
126}, {270, 298}, {214, 242}, {135, 163}, {88, 125}, {25, 63}, {93, 123}, {91,
125}, {79, 104}, {87, 112}, {133, 162}, {14, 38}, {259, 299}, {199, 237}, {267,
289}, {145, 186}, {16, 63}, {130, 173}, {5, 53}, {10, 58}, {9, 57}, {8, 56}, {7,
55}, {6, 54}, {13, 60}, {15, 62}, {156, 173}, {78, 124}, {14, 61}, {94, 109},
{128, 180}, {72, 125}, {216, 237}, {200, 254}, {12, 59}, {208, 231}, {197, 242},
{275, 299}, {83, 106}, {283, 290}, {218, 227}, {196, 253}, {86, 111}, {207,
245}, {85, 110}, {196, 255}, {26, 38}, {142, 178}, {143, 179}, {156, 160}, {71,
122}, {139, 182}, {66, 124}, {150, 168}, {140, 179}, {39, 103}, {130, 194}, {47,
110}, {128, 193}, {146, 211}, {154, 219}, {27, 89}, {145, 213}, {128, 198},
{169, 239}, {22, 81}, {35, 100}, {23, 80}, {20, 92}, {28, 84}, {130, 202}, {37,
111}, {143, 197}, {155, 209}, {149, 222}, {178, 249}, {43, 103}, {31, 82}, {173,
224}, {180, 250}, {166, 246}, {17, 64}, {61, 108}, {48, 97}, {31, 78}, {29, 76},
{27, 74}, {25, 72}, {23, 70}, {21, 68}, {19, 66}, {20, 70}, {51, 97}, {50, 96},
{132, 214}, {170, 248}, {18, 65}, {32, 115}, {30, 77}, {26, 73}, {22, 69}, {23,
67}, {49, 101}, {36, 112}, {132, 208}, {148, 192}, {35, 118}, {169, 255}, {20,
67}, {28, 75}, {142, 217}, {159, 200}, {42, 114}, {164, 252}, {167, 254}, {57,
99}, {166, 253}, {45, 113}, {146, 206}, {171, 247}, {187, 230}, {21, 75}, {52,
106}, {24, 71}, {151, 247}, {152, 248}, {153, 249}, {154, 250}, {43, 74}, {62,
95}, {133, 228}, {137, 232}, {184, 218}, {134, 229}, {190, 221}, {174, 205},
{143, 235}, {144, 244}, {147, 246}, {158, 251}, {55, 81}, {136, 239}, {191,
216}, {146, 245}, {56, 80}, {53, 92}, {160, 202}, {161, 203}, {35, 78}, {189,
208}, {51, 94}, {37, 75}, {49, 95}, {48, 94}, {147, 253}, {159, 241}, {32, 79},
{180, 219}, {53, 69}, {29, 108}, {37, 84}, {35, 82}, {33, 80}, {10, 120}, {47,
93}, {46, 92}, {43, 89}, {42, 88}, {39, 85}, {34, 81}, {160, 211}, {161, 210},
{57, 77}, {174, 218}, {162, 215}, {44, 90}, {45, 91}, {36, 83}, {136, 255},
{168, 223}, {129, 249}, {131, 251}, {138, 242}, {139, 243}, {165, 221}, {129,
251}, {131, 249}, {138, 240}, {139, 241}, {148, 238}, {170, 208}, {24, 99},
{181, 206}, {161, 218}, {165, 222}, {140, 240}, {141, 241}, {54, 75}, {40, 86},
{182, 200}, {41, 87}, {140, 242}, {141, 243}, {156, 226}, {18, 109}, {59, 184},
{95, 217}, {60, 183}, {96, 235}, {51, 191}, {91, 215}, {50, 191}, {98, 236},
{90, 213}, {92, 211}, {126, 238}, {24, 137}, {29, 140}, {26, 139}, {124, 237},
{21, 135}, {25, 138}, {30, 141}, {17, 133}, {88, 204}, {87, 195}, {86, 194},
{119, 227}, {19, 134}, {80, 197}, {99, 246}, {81, 198}, {68, 220}, {40, 177},
{30, 131}, {44, 177}, {119, 234}, {127, 226}, {22, 136}, {54, 150}, {97, 193},
{56, 152}, {55, 151}, {59, 154}, {61, 156}, {34, 128}, {67, 225}, {58, 153},
{104, 203}, {105, 202}, {49, 148}, {70, 227}, {113, 215}, {50, 149}, {69, 226},
{60, 155}, {79, 230}, {62, 148}, {72, 228}, {32, 142}, {33, 143}, {17, 190},
{74, 229}, {56, 151}, {55, 152}, {102, 201}, {104, 199}, {36, 144}, {83, 231},
{57, 141}, {121, 207}, {48, 135}, {93, 234}, {6, 190}, {44, 150}, {46, 146},
{85, 233}, {84, 232}, {47, 147}, {44, 145}, {62, 131}, {53, 136}, {40, 150},
{96, 222}, {114, 204}, {126, 192}, {28, 220}, {34, 226}, {99, 162}, {33, 227},
{71, 133}, {7, 196}, {124, 191}, {127, 188}, {121, 190}, {114, 187}, {117, 188},
{33, 234}, {113, 186}, {118, 189}, {52, 248}, {109, 163}, {27, 212}, {46, 225},
{2, 210}, {102, 182}, {76, 157}, {77, 158}, {96, 179}, {107, 184}, {109, 185},
{97, 180}, {18, 196}, {38, 240}, {5, 210}, {66, 149}, {98, 181}, {100, 189},
{42, 240}, {10, 214}, {67, 159}, {61, 224}, {64, 157}, {105, 183}, {65, 158},
{98, 189}, {60, 220}, {90, 187}, {82, 176}, {1, 228}, {69, 160}, {66, 167}, {64,
165}, {98, 132}, {104, 142}, {65, 166}, {79, 168}, {70, 161}, {68, 163}, {105,
129}, {117, 157}, {123, 147}, {54, 223}, {89, 176}, {78, 167}, {76, 165}, {72,
162}, {73, 163}, {123, 145}, {58, 209}, {77, 166}, {93, 177}, {95, 178}, {1,
239}, {74, 164}, {15, 225}, {59, 212}, {73, 185}, {89, 169}, {107, 154}, {105,
155}, {4, 247}, {122, 137}, {16, 228}, {91, 175}, {88, 175}, {125, 138}, {101,
157}, {83, 170}, {87, 174}, {85, 172}, {13, 247}, {106, 144}, {3, 248}, {86,
173}, {82, 169}, {120, 132}, {121, 135}, {16, 239}, {84, 171}, {76, 179}, {73,
182}, {45, 300}, {41, 299}, {15, 268}, {19, 278}, {41, 300}, {45, 299}, {31,
279}, {34, 298}, {12, 286}, {52, 288}, {11, 286}, {8, 278}, {9, 297}, {4, 293},
{46, 268}, {3, 288}, {42, 265}, {11, 296}, {12, 296}, {49, 276}, {13, 293}, {63,
279}, {51, 283}, {50, 283}, {9, 295}, {38, 265}, {39, 277}, {48, 262}, {43,
277}, {103, 291}, {111, 294}, {115, 291}, {118, 294}, {127, 298}, {112, 295},
{112, 297}, {102, 258}, {116, 272}, {117, 273}, {120, 287}, {120, 272}, {111,
260}, {116, 287}, {122, 276}, {115, 284}, {118, 260}, {101, 273}, {100, 285},
{103, 284}, {100, 281}, {121, 262}, {144, 275}, {158, 283}, {159, 278}, {151,
257}, {152, 256}, {185, 288}, {186, 289}, {153, 261}, {172, 271}, {174, 264},
{175, 263}, {170, 256}, {181, 287}, {171, 257}, {175, 259}, {172, 258}, {176,
286}, {183, 263}, {186, 266}, {185, 265}, {184, 264}, {181, 262}, {188, 271},
{176, 260}, {183, 259}, {178, 261}, {188, 267}, {164, 284}, {167, 285}, {172,
272}, {177, 269}, {229, 293}, {231, 295}, {209, 272}, {231, 294}, {199, 261},
{201, 267}, {197, 256}, {201, 271}, {230, 288}, {198, 257}, {213, 285}, {217,
273}, {219, 274}, {235, 290}, {233, 291}, {238, 292}, {211, 280}, {192, 268},
{213, 281}, {195, 270}, {212, 282}, {232, 294}, {193, 270}, {232, 295}, {194,
269}, {202, 280}, {209, 258}, {198, 274}, {204, 282}, {214, 256}, {192, 281},
{251, 290}, {243, 297}, {243, 296}, {220, 258}, {194, 290}, {236, 268}, {224,
260}, {250, 287}, {233, 271}, {245, 275}, {235, 269}, {234, 269}, {204, 292},
{254, 278}, {253, 277}, {244, 284}, {255, 277}, {230, 265}, {212, 292}, {254,
266}, {236, 281}, {233, 273}, {217, 291}, {237, 279}, {238, 274}, {250, 262},
{224, 286}, {219, 292}, {229, 282} }>;
(II) A more general form is to represent the graph as the orbit of {200, 201}
under the group generated by the following permutations:
a: (2, 5)(3, 9)(4, 13)(6, 20)(7, 24)(8, 28)(10, 35)(11, 38)(12, 42)(15, 48)(17,
53)(18, 57)(19, 60)(21, 67)(22, 71)(23, 75)(25, 82)(27, 88)(29, 61)(30, 94)(31,
63)(32, 87)(33, 40)(34, 101)(36, 106)(37, 80)(39, 113)(41, 115)(43, 91)(44,
119)(45, 103)(46, 121)(47, 123)(49, 128)(50, 129)(51, 131)(52, 112)(54, 70)(55,
137)(56, 84)(58, 78)(59, 114)(62, 97)(64, 69)(65, 77)(66, 155)(68, 159)(72,
169)(73, 139)(74, 175)(76, 156)(79, 174)(81, 122)(85, 186)(86, 143)(89, 125)(90,
107)(92, 190)(95, 193)(96, 130)(99, 196)(100, 120)(102, 200)(104, 205)(105,
149)(109, 141)(110, 145)(111, 197)(116, 213)(117, 127)(118, 214)(124, 153)(126,
154)(132, 189)(133, 136)(134, 183)(135, 225)(138, 176)(140, 224)(142, 195)(146,
207)(148, 180)(150, 227)(151, 171)(152, 232)(157, 226)(160, 165)(161, 223)(162,
255)(163, 241)(164, 259)(167, 209)(168, 218)(170, 231)(172, 266)(173, 179)(177,
234)(178, 216)(181, 236)(184, 187)(185, 243)(191, 249)(192, 250)(194, 235)(198,
276)(202, 222)(204, 212)(211, 221)(215, 277)(217, 270)(219, 238)(220, 278)(228,
239)(229, 263)(230, 264)(233, 289)(237, 261)(240, 286)(242, 260)(244, 275)(246,
253)(248, 295)(251, 283)(252, 280)(254, 258)(256, 294)(262, 268)(265, 296)(267,
271)(272, 285)(273, 298)(281, 287)(284, 299)(288, 297)(291, 300) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 6, 21, 68, 102, 201, 267, 289, 300, 41, 36, 83, 170, 256, 197, 143,
235, 290, 251, 131, 62, 148, 238, 292, 212, 27, 89, 169, 239)(3, 10, 23, 76,
177, 51, 105, 141, 217, 281, 198, 88, 184, 164, 260, 196, 63, 20, 64, 150, 48,
60, 139, 233, 285, 34, 91, 174, 244, 294)(4, 14, 47, 124, 160, 99, 104, 206,
171, 265, 116, 19, 61, 147, 237, 211, 24, 79, 181, 247, 38, 110, 66, 156, 246,
199, 146, 137, 230, 287)(5, 17, 54, 135, 220, 182, 271, 266, 298, 45, 87, 144,
231, 248, 214, 80, 179, 269, 283, 129, 30, 95, 192, 274, 204, 59, 74, 176, 255,
16)(7, 25, 70, 165, 40, 94, 155, 241, 273, 213, 128, 175, 264, 284, 118)(8, 29,
93, 191, 202, 57, 142, 236, 257, 42, 107, 134, 224, 253, 279, 92, 71, 168, 262,
13, 26, 85, 167, 226, 215, 205, 245, 232, 288, 120)(9, 32, 98, 151, 240, 119,
149, 173, 166, 261, 46, 122, 187, 250, 293, 11, 39, 78, 69, 162, 203, 207, 84,
185, 272, 278, 108, 123, 216, 280)(12, 43, 82, 136, 228, 210, 190, 75, 163, 258,
200, 188, 186, 270, 299, 112, 106, 208, 152, 242, 33, 96, 194, 158, 249, 15, 49,
126, 219, 282)(18, 58, 67, 157, 44, 97, 183, 243, 291, 100, 81, 125, 218, 252,
111)(22, 72, 161, 221, 37, 109, 209, 159, 117, 145, 193, 259, 297, 115, 189, 55,
138, 227, 222, 86, 65, 153, 225, 101, 90, 180, 263, 296, 103, 35)(28, 73, 172,
254, 127, 113, 195, 275, 295, 52, 132, 56, 140, 234, 50, 130, 77, 178, 268, 276,
114, 154, 229, 286, 277, 31, 53, 133, 223, 121)
c: (2, 239)(3, 222)(4, 38)(5, 228)(6, 169)(7, 165)(8, 240)(9, 202)(10, 227)(11,
13)(12, 220)(14, 247)(15, 45)(16, 210)(17, 136)(18, 252)(19, 265)(20, 72)(21,
89)(22, 64)(23, 138)(24, 160)(25, 70)(26, 293)(27, 68)(28, 286)(29, 151)(30,
299)(31, 223)(32, 191)(33, 214)(34, 101)(35, 150)(36, 251)(37, 260)(39, 262)(40,
118)(41, 131)(42, 278)(43, 135)(44, 100)(46, 215)(47, 181)(48, 103)(49, 298)(50,
52)(51, 115)(53, 133)(54, 82)(55, 76)(56, 140)(57, 280)(58, 218)(59, 258)(60,
296)(61, 171)(62, 300)(63, 161)(65, 244)(66, 230)(67, 125)(69, 71)(73, 229)(74,
163)(75, 176)(77, 275)(78, 168)(79, 124)(80, 242)(81, 157)(83, 290)(84, 224)(85,
250)(86, 294)(87, 249)(88, 159)(90, 285)(91, 225)(92, 162)(93, 98)(94, 284)(95,
270)(96, 248)(97, 291)(99, 211)(102, 212)(104, 237)(105, 297)(106, 283)(107,
272)(108, 257)(109, 164)(110, 287)(112, 129)(113, 268)(114, 254)(117, 198)(119,
120)(121, 277)(122, 226)(123, 236)(126, 266)(127, 276)(128, 273)(130, 295)(132,
234)(134, 185)(137, 156)(139, 263)(141, 259)(142, 216)(143, 256)(144, 158)(145,
281)(146, 246)(147, 206)(148, 289)(149, 288)(152, 179)(153, 174)(154, 172)(155,
264)(166, 245)(167, 187)(170, 235)(173, 232)(175, 241)(177, 189)(178, 195)(180,
233)(182, 282)(183, 243)(184, 209)(186, 192)(188, 274)(190, 255)(193, 217)(194,
231)(196, 221)(200, 204)(201, 292)(203, 279)(205, 261)(207, 253)(208, 269)(219,
271)(238, 267)
C4[ 300, 35 ]
300
-1 2 5 228 239
-2 1 210 6 17
-3 288 248 7 18
-4 247 293 8 19
-5 1 210 20 53
-6 2 190 21 54
-7 22 55 3 196
-8 23 56 278 4
-9 297 24 57 295
-10 25 58 214 120
-11 286 14 26 296
-12 286 59 27 296
-13 60 247 28 293
-14 11 38 61 29
-15 268 225 62 30
-16 63 228 239 31
-17 133 2 190 64
-18 3 196 65 109
-19 66 134 278 4
-20 67 70 92 5
-21 68 135 6 75
-22 69 81 136 7
-23 67 80 70 8
-24 99 71 137 9
-25 72 138 63 10
-26 11 38 73 139
-27 12 89 212 74
-28 220 13 84 75
-29 14 140 108 76
-30 77 15 141 131
-31 78 279 16 82
-32 79 115 52 142
-33 143 80 234 227
-34 298 81 226 128
-35 78 100 82 118
-36 144 112 83 41
-37 111 40 84 75
-38 265 14 26 240
-39 277 47 103 85
-40 177 37 150 86
-41 299 36 300 87
-42 88 265 114 240
-43 89 277 103 74
-44 177 90 145 150
-45 299 91 113 300
-46 146 92 268 225
-47 110 147 93 39
-48 135 94 97 262
-49 276 101 148 95
-50 191 149 96 283
-51 191 94 283 97
-52 288 248 106 32
-53 69 92 136 5
-54 223 6 150 75
-55 81 7 151 152
-56 80 8 151 152
-57 77 99 9 141
-58 209 63 10 153
-59 154 12 212 184
-60 220 155 13 183
-61 156 14 224 108
-62 15 148 95 131
-63 25 58 279 16
-64 165 157 71 17
-65 166 158 94 18
-66 167 124 149 19
-67 23 159 225 20
-68 220 102 163 21
-69 22 160 226 53
-70 23 161 227 20
-71 122 133 24 64
-72 25 125 162 228
-73 26 182 163 185
-74 27 229 43 164
-75 37 28 21 54
-76 165 157 179 29
-77 166 57 158 30
-78 35 167 124 31
-79 168 104 32 230
-80 33 23 56 197
-81 22 55 198 34
-82 176 35 169 31
-83 231 36 170 106
-84 232 37 28 171
-85 110 233 39 172
-86 111 40 194 173
-87 112 41 195 174
-88 125 204 42 175
-89 176 169 27 43
-90 44 187 213 126
-91 45 125 215 175
-92 46 211 20 53
-93 177 123 47 234
-94 48 51 65 109
-95 178 49 62 217
-96 222 179 235 50
-97 48 180 193 51
-98 132 189 181 236
-99 24 57 246 162
-100 35 189 281 285
-101 122 157 49 273
-102 68 201 258 182
-103 291 39 284 43
-104 199 79 203 142
-105 155 202 183 129
-106 144 115 83 52
-107 154 116 184 119
-108 61 127 29 117
-109 94 18 163 185
-110 47 116 85 119
-111 37 260 294 86
-112 297 36 295 87
-113 45 123 215 186
-114 187 126 204 42
-115 291 106 284 32
-116 110 287 107 272
-117 188 157 108 273
-118 35 189 260 294
-119 110 234 227 107
-120 132 287 272 10
-121 135 190 207 262
-122 276 101 71 137
-123 145 113 147 93
-124 66 78 191 237
-125 88 91 72 138
-126 90 114 192 238
-127 188 298 226 108
-128 198 34 180 193
-129 105 249 130 251
-130 202 194 129 173
-131 62 249 30 251
-132 214 98 120 208
-133 71 17 162 228
-134 149 19 229 164
-135 121 48 163 21
-136 22 255 239 53
-137 122 232 24 171
-138 242 25 125 240
-139 243 26 182 241
-140 242 179 29 240
-141 243 57 30 241
-142 178 104 217 32
-143 33 179 235 197
-144 275 244 36 106
-145 44 123 213 186
-146 46 211 245 206
-147 253 123 47 246
-148 49 192 62 238
-149 66 134 222 50
-150 44 168 40 54
-151 55 56 257 247
-152 55 56 256 248
-153 155 58 249 261
-154 59 107 250 219
-155 209 60 105 153
-156 61 160 226 173
-157 101 117 64 76
-158 77 283 251 65
-159 67 200 278 241
-160 156 211 69 202
-161 210 70 203 218
-162 99 133 72 215
-163 68 135 73 109
-164 134 74 284 252
-165 221 222 64 76
-166 77 253 246 65
-167 66 78 254 285
-168 187 79 223 150
-169 89 255 82 239
-170 256 83 248 208
-171 257 137 247 84
-172 258 271 85 272
-173 156 224 86 130
-174 264 205 218 87
-175 88 91 259 263
-176 286 89 82 260
-177 44 93 269 40
-178 95 249 261 142
-179 143 96 140 76
-180 128 250 97 219
-181 287 206 262 98
-182 200 102 73 139
-183 60 105 259 263
-184 264 59 107 218
-185 265 288 73 109
-186 145 266 113 289
-187 90 168 114 230
-188 267 127 117 271
-189 100 118 98 208
-190 121 221 6 17
-191 124 50 51 216
-192 268 126 148 281
-193 270 128 216 97
-194 290 269 86 130
-195 270 205 216 87
-196 253 255 7 18
-197 143 242 80 256
-198 81 257 128 274
-199 104 237 205 261
-200 254 201 159 182
-201 200 102 267 271
-202 280 105 160 130
-203 223 104 161 205
-204 88 114 292 282
-205 199 203 195 174
-206 146 181 236 207
-207 121 221 245 206
-208 132 231 189 170
-209 155 58 258 272
-210 2 223 5 161
-211 146 92 280 160
-212 59 27 292 282
-213 90 145 281 285
-214 132 242 256 10
-215 91 113 246 162
-216 191 193 237 195
-217 291 95 273 142
-218 161 227 184 174
-219 154 180 292 274
-220 68 60 258 28
-221 165 190 207 252
-222 165 149 96 252
-223 210 168 203 54
-224 286 61 260 173
-225 67 46 15 241
-226 34 156 69 127
-227 33 70 119 218
-228 1 133 16 72
-229 134 282 293 74
-230 187 265 79 288
-231 83 294 295 208
-232 137 84 294 295
-233 291 271 85 273
-234 33 93 269 119
-235 143 290 269 96
-236 268 281 206 98
-237 199 124 279 216
-238 126 148 292 274
-239 1 136 169 16
-240 38 138 140 42
-241 159 225 139 141
-242 214 138 140 197
-243 297 139 141 296
-244 144 245 284 252
-245 275 244 146 207
-246 99 166 147 215
-247 13 4 171 151
-248 3 170 52 152
-249 178 129 131 153
-250 154 287 180 262
-251 158 290 129 131
-252 221 222 244 164
-253 166 277 147 196
-254 167 200 266 278
-255 277 136 169 196
-256 170 214 152 197
-257 198 276 171 151
-258 209 220 102 172
-259 299 280 183 175
-260 176 111 224 118
-261 199 178 279 153
-262 121 48 181 250
-263 183 282 293 175
-264 297 184 174 296
-265 38 42 185 230
-266 254 267 186 285
-267 188 266 201 289
-268 46 15 192 236
-269 177 234 235 194
-270 298 300 193 195
-271 188 233 201 172
-272 209 116 172 120
-273 101 233 117 217
-274 198 276 238 219
-275 144 299 245 280
-276 122 257 49 274
-277 253 255 39 43
-278 254 159 8 19
-279 237 63 261 31
-280 275 211 202 259
-281 100 213 192 236
-282 212 204 229 263
-283 158 290 50 51
-284 244 103 115 164
-285 100 167 266 213
-286 11 176 12 224
-287 181 116 250 120
-288 3 52 185 230
-289 298 267 300 186
-290 235 194 283 251
-291 233 103 115 217
-292 212 204 238 219
-293 13 4 229 263
-294 231 111 232 118
-295 231 232 112 9
-296 11 264 12 243
-297 264 243 112 9
-298 34 289 127 270
-299 275 45 259 41
-300 45 289 270 41
0