[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 300, 42 ] =
SDD(AMC(3,5,[0.1:4.4])).
(I) Following is a form readable by MAGMA:
g:=Graph<300|{ {141, 174}, {141, 169}, {143, 168}, {141, 161}, {133, 179}, {141,
193}, {149, 196}, {143, 221}, {134, 213}, {150, 195}, {129, 217}, {140, 213},
{129, 218}, {132, 216}, {133, 228}, {132, 230}, {133, 231}, {140, 239}, {149,
252}, {134, 232}, {140, 253}, {129, 243}, {138, 254}, {129, 244}, {139, 254},
{130, 250}, {150, 238}, {143, 247}, {128, 251}, {133, 249}, {131, 254}, {148,
234}, {148, 235}, {50, 178}, {67, 195}, {68, 196}, {80, 208}, {82, 210}, {83,
211}, {84, 212}, {85, 213}, {57, 184}, {59, 186}, {61, 188}, {65, 192}, {74,
203}, {78, 207}, {86, 215}, {88, 217}, {72, 202}, {89, 219}, {50, 177}, {58,
185}, {62, 189}, {66, 193}, {69, 198}, {77, 206}, {82, 209}, {89, 218}, {98,
230}, {127, 251}, {99, 231}, {88, 221}, {63, 185}, {105, 239}, {33, 166}, {125,
250}, {60, 187}, {86, 222}, {76, 197}, {36, 174}, {103, 237}, {96, 234}, {37,
175}, {91, 209}, {32, 171}, {119, 252}, {114, 249}, {57, 181}, {100, 232}, {94,
210}, {34, 172}, {56, 182}, {49, 191}, {35, 173}, {70, 200}, {71, 201}, {88,
214}, {56, 183}, {87, 216}, {94, 209}, {84, 196}, {117, 229}, {10, 155}, {14,
159}, {12, 157}, {42, 184}, {120, 234}, {115, 225}, {114, 224}, {13, 158}, {120,
235}, {64, 211}, {72, 219}, {13, 153}, {49, 165}, {2, 151}, {104, 253}, {59,
174}, {55, 162}, {39, 178}, {1, 151}, {121, 239}, {102, 240}, {39, 177}, {38,
176}, {74, 220}, {11, 156}, {122, 237}, {116, 227}, {111, 248}, {41, 190}, {32,
183}, {61, 170}, {62, 169}, {1, 153}, {55, 175}, {34, 186}, {1, 152}, {119,
238}, {3, 154}, {2, 155}, {90, 192}, {5, 158}, {40, 179}, {84, 207}, {2, 158},
{97, 253}, {44, 176}, {43, 183}, {6, 154}, {5, 153}, {4, 152}, {3, 159}, {1,
156}, {55, 170}, {49, 172}, {43, 182}, {41, 180}, {93, 192}, {3, 157}, {123,
229}, {119, 233}, {46, 176}, {36, 186}, {66, 220}, {42, 181}, {126, 225}, {81,
206}, {11, 171}, {69, 229}, {5, 164}, {23, 182}, {8, 169}, {77, 236}, {91, 250},
{14, 172}, {114, 208}, {23, 181}, {22, 180}, {19, 177}, {18, 176}, {92, 254},
{93, 255}, {6, 165}, {119, 212}, {31, 188}, {30, 189}, {9, 170}, {2, 166}, {3,
167}, {91, 255}, {10, 175}, {83, 246}, {8, 174}, {110, 200}, {96, 198}, {21,
179}, {20, 178}, {9, 175}, {4, 163}, {112, 215}, {110, 201}, {7, 160}, {88,
240}, {8, 161}, {118, 223}, {100, 205}, {98, 203}, {13, 164}, {80, 249}, {6,
172}, {7, 173}, {93, 247}, {9, 162}, {49, 154}, {16, 188}, {24, 180}, {17, 189},
{76, 224}, {67, 238}, {78, 227}, {79, 226}, {111, 193}, {113, 223}, {112, 222},
{4, 171}, {99, 204}, {20, 187}, {15, 160}, {7, 168}, {95, 240}, {70, 246}, {96,
208}, {80, 224}, {91, 235}, {16, 161}, {87, 230}, {71, 245}, {17, 162}, {117,
198}, {111, 220}, {12, 184}, {20, 160}, {15, 187}, {14, 186}, {13, 185}, {22,
163}, {31, 170}, {29, 168}, {71, 242}, {33, 151}, {108, 218}, {64, 246}, {65,
247}, {30, 169}, {108, 219}, {70, 241}, {68, 252}, {6, 191}, {4, 190}, {33,
155}, {66, 248}, {24, 163}, {116, 207}, {28, 167}, {5, 185}, {32, 156}, {11,
183}, {79, 243}, {15, 178}, {34, 159}, {27, 166}, {25, 164}, {81, 236}, {85,
232}, {37, 155}, {65, 255}, {26, 165}, {33, 158}, {10, 202}, {29, 221}, {28,
220}, {27, 219}, {46, 236}, {99, 161}, {54, 244}, {47, 237}, {35, 224}, {39,
227}, {21, 208}, {123, 190}, {54, 243}, {53, 240}, {44, 233}, {39, 226}, {45,
235}, {100, 162}, {62, 248}, {7, 192}, {38, 225}, {19, 212}, {12, 203}, {10,
205}, {8, 193}, {56, 241}, {15, 197}, {38, 236}, {63, 245}, {9, 194}, {57, 242},
{63, 244}, {40, 228}, {48, 252}, {41, 229}, {51, 253}, {58, 244}, {40, 231},
{123, 180}, {58, 245}, {52, 251}, {46, 225}, {60, 243}, {25, 201}, {50, 226},
{14, 223}, {50, 227}, {40, 249}, {27, 202}, {22, 199}, {20, 197}, {18, 195},
{73, 152}, {26, 200}, {45, 255}, {75, 153}, {21, 198}, {75, 152}, {96, 179},
{22, 194}, {47, 251}, {11, 222}, {19, 196}, {45, 250}, {28, 203}, {75, 156},
{31, 199}, {110, 182}, {42, 242}, {48, 233}, {100, 189}, {52, 237}, {61, 228},
{24, 194}, {98, 184}, {43, 241}, {110, 181}, {124, 167}, {16, 204}, {51, 239},
{19, 207}, {18, 206}, {17, 205}, {75, 151}, {23, 201}, {48, 238}, {60, 226},
{23, 200}, {99, 188}, {24, 199}, {57, 216}, {124, 157}, {76, 173}, {44, 206},
{73, 171}, {53, 214}, {124, 159}, {70, 165}, {71, 164}, {48, 212}, {84, 177},
{30, 248}, {124, 154}, {51, 213}, {35, 197}, {52, 211}, {36, 204}, {53, 221},
{37, 205}, {63, 214}, {12, 230}, {29, 247}, {73, 163}, {25, 242}, {26, 241},
{25, 245}, {58, 214}, {54, 218}, {53, 217}, {26, 246}, {83, 191}, {74, 167},
{72, 166}, {37, 202}, {56, 215}, {54, 217}, {44, 195}, {42, 216}, {90, 168},
{38, 210}, {79, 187}, {55, 194}, {16, 231}, {59, 204}, {73, 190}, {90, 173},
{17, 232}, {61, 199}, {90, 160}, {18, 233}, {31, 228}, {43, 215}, {47, 211},
{46, 210}, {45, 209}, {34, 223}, {32, 222}, {21, 234}, {98, 157}, {64, 191},
{29, 281}, {30, 282}, {28, 275}, {27, 262}, {60, 287}, {41, 269}, {62, 282},
{51, 283}, {47, 259}, {59, 276}, {36, 276}, {35, 274}, {52, 259}, {67, 259},
{102, 293}, {81, 277}, {82, 279}, {101, 288}, {89, 287}, {94, 280}, {95, 281},
{94, 279}, {82, 280}, {66, 265}, {107, 288}, {86, 285}, {109, 289}, {77, 256},
{64, 270}, {65, 271}, {72, 262}, {80, 286}, {85, 282}, {109, 290}, {92, 275},
{79, 287}, {81, 256}, {125, 300}, {89, 264}, {93, 271}, {67, 272}, {115, 288},
{113, 290}, {86, 261}, {115, 295}, {118, 290}, {68, 273}, {116, 289}, {92, 265},
{87, 257}, {117, 291}, {85, 258}, {77, 277}, {78, 278}, {74, 275}, {126, 295},
{120, 291}, {125, 294}, {83, 270}, {76, 274}, {126, 288}, {95, 257}, {68, 283},
{117, 298}, {101, 260}, {109, 268}, {107, 266}, {106, 267}, {105, 264}, {103,
261}, {118, 276}, {116, 278}, {97, 258}, {108, 264}, {115, 279}, {113, 276},
{125, 280}, {69, 291}, {111, 265}, {109, 267}, {102, 257}, {121, 273}, {126,
279}, {127, 278}, {104, 258}, {122, 272}, {114, 286}, {103, 266}, {112, 285},
{106, 263}, {69, 298}, {107, 260}, {105, 262}, {101, 266}, {78, 289}, {122,
266}, {118, 263}, {127, 270}, {121, 264}, {108, 287}, {127, 268}, {97, 277},
{106, 286}, {104, 284}, {112, 261}, {107, 285}, {123, 269}, {113, 263}, {103,
272}, {120, 271}, {92, 292}, {106, 274}, {105, 273}, {101, 285}, {95, 293}, {97,
284}, {104, 277}, {87, 296}, {122, 261}, {121, 262}, {102, 281}, {131, 256},
{138, 265}, {136, 267}, {135, 260}, {134, 258}, {149, 273}, {137, 269}, {132,
257}, {150, 272}, {135, 269}, {139, 256}, {128, 268}, {137, 260}, {128, 270},
{149, 283}, {136, 263}, {150, 259}, {128, 278}, {143, 281}, {136, 286}, {139,
284}, {140, 283}, {147, 267}, {138, 275}, {130, 280}, {136, 274}, {148, 271},
{134, 282}, {131, 284}, {147, 268}, {135, 295}, {139, 299}, {142, 300}, {137,
298}, {130, 294}, {142, 296}, {142, 297}, {131, 299}, {142, 293}, {132, 296},
{135, 298}, {130, 300}, {138, 292}, {137, 295}, {147, 290}, {147, 289}, {144,
292}, {146, 294}, {145, 293}, {144, 294}, {146, 292}, {148, 291}, {145, 297},
{144, 297}, {146, 299}, {145, 296}, {144, 299}, {146, 297}, {145, 300} }>;
(II) A more general form is to represent the graph as the orbit of {141, 174}
under the group generated by the following permutations:
a: (53, 88) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (5, 13)
c: (38, 46)
d: (47, 52)
e: (10, 37)
f: (23, 110)
g: (87, 132)
h: (30, 62)
m: (105, 121)
n1: (18, 44)
a1: (68, 149)
b1: (80, 114)
c1: (120, 148)
d1: (109, 147)
e1: (101, 107)
f1: (7, 90)
g1: (26, 70)
h1: (51, 140)
m1: (60, 79)
n2: (29, 143)
a2: (131, 139)
b2: (15, 20)
c2: (97, 104)
d2: (67, 150)
e2: (27, 72)
f2: (66, 111)
g2: (127, 128)
h2: (12, 98)
m2: (45, 91)
n3: (40, 133)
a3: (19, 84)
b3: (2, 5)(3, 8)(4, 11)(6, 16)(7, 19)(9, 23)(10, 25)(12, 30)(13, 33)(14, 36)(15,
39)(17, 42)(18, 45)(20, 50)(21, 47)(22, 43)(24, 56)(26, 31)(27, 58)(28, 66)(29,
68)(32, 73)(34, 59)(35, 78)(37, 71)(38, 82)(40, 64)(41, 86)(44, 91)(46, 94)(48,
65)(49, 99)(51, 95)(52, 96)(53, 105)(54, 89)(55, 110)(57, 100)(61, 70)(62,
98)(63, 72)(67, 120)(69, 103)(74, 111)(76, 116)(77, 125)(80, 127)(81, 130)(83,
133)(84, 90)(85, 87)(88, 121)(93, 119)(97, 142)(101, 135)(102, 140)(104,
145)(106, 109)(107, 137)(108, 129)(112, 123)(114, 128)(117, 122)(124, 141)(131,
144)(132, 134)(136, 147)(139, 146)(143, 149)(148, 150)(151, 153)(152, 156)(154,
161)(155, 164)(157, 169)(159, 174)(160, 177)(162, 181)(163, 183)(165, 188)(166,
185)(167, 193)(168, 196)(170, 200)(172, 204)(173, 207)(175, 201)(176, 209)(179,
211)(180, 215)(182, 194)(184, 189)(187, 226)(190, 222)(191, 231)(192, 212)(195,
235)(197, 227)(198, 237)(199, 241)(202, 245)(203, 248)(205, 242)(206, 250)(208,
251)(213, 257)(214, 262)(216, 232)(217, 264)(219, 244)(221, 273)(223, 276)(224,
278)(225, 279)(228, 246)(229, 261)(230, 282)(233, 255)(234, 259)(236, 280)(238,
271)(239, 240)(243, 287)(247, 252)(249, 270)(253, 293)(254, 292)(256, 294)(258,
296)(263, 290)(265, 275)(266, 298)(268, 286)(269, 285)(272, 291)(274, 289)(277,
300)(281, 283)(284, 297)(288, 295)
c3: (92, 138)
d3: (35, 76)
e3: (1, 2, 10, 9, 22, 4)(3, 7, 18)(5, 27, 17, 31, 41, 11)(6, 29, 48, 28, 35,
38)(8, 21, 101, 23, 54, 51)(12, 15, 77, 14, 65, 67)(13, 72, 100, 61, 123,
32)(16, 69, 86, 25, 89, 85)(19, 92, 106, 82, 64, 95)(20, 81, 34, 93, 150,
98)(24, 73, 75, 33, 37, 55)(26, 53, 68, 66, 80, 115)(30, 40, 135, 43, 58,
105)(36, 120, 103, 42, 60, 97)(39, 131, 113, 45, 47, 87)(44, 124, 90)(46, 49,
143, 119, 74, 76)(50, 139, 118, 91, 52, 132)(56, 63, 121, 62, 133, 137)(57, 79,
104, 59, 148, 122)(70, 88, 149, 111, 114, 126)(71, 108, 134, 99, 117, 112)(78,
144, 109, 125, 127, 142)(83, 102, 84, 138, 136, 94)(96, 107, 110, 129, 140,
141)(116, 146, 147, 130, 128, 145)(151, 155, 175, 194, 163, 152)(153, 166, 205,
170, 180, 171)(154, 168, 233, 167, 173, 176)(156, 158, 202, 162, 199, 190)(157,
160, 206, 159, 192, 195)(161, 198, 285, 201, 218, 213)(164, 219, 232, 188, 229,
222)(165, 221, 252, 220, 224, 225)(169, 179, 260, 182, 244, 239)(172, 247, 238,
203, 197, 236)(174, 234, 266, 181, 243, 253)(177, 254, 263, 209, 211, 257)(178,
256, 223, 255, 259, 230)(183, 185, 262, 189, 228, 269)(184, 187, 277, 186, 271,
272)(191, 281, 212, 275, 274, 210)(193, 208, 288, 200, 217, 283)(196, 265, 286,
279, 246, 240)(204, 291, 261, 242, 287, 258)(207, 292, 267, 280, 270, 293)(214,
273, 248, 249, 295, 241)(215, 245, 264, 282, 231, 298)(216, 226, 284, 276, 235,
237)(227, 299, 290, 250, 251, 296)(268, 300, 278, 297, 289, 294)
f3: (16, 99)
g3: (48, 119)
h3: (36, 59)
m3: (3, 124)
n4: (65, 93)
a4: (115, 126)
b4: (78, 116)
c4: (89, 108)
d4: (86, 112)
e4: (11, 32)
f4: (69, 117)
g4: (22, 24)
h4: (2, 33)
m4: (25, 71)
n5: (41, 123)
a5: (28, 74)
b5: (4, 73)
c5: (17, 100)
d5: (43, 56)
e5: (135, 137)
f5: (31, 61)
g5: (6, 49)
h5: (142, 145)
m5: (54, 129)
n6: (58, 63)
a6: (85, 134)
b6: (113, 118)
c6: (21, 96)
d6: (144, 146)
e6: (95, 102)
f6: (64, 83)
g6: (103, 122)
h6: (77, 81)
m6: (125, 130)
n7: (9, 55)
a7: (42, 57)
b7: (8, 141)
c7: (39, 50)
d7: (2, 4)(5, 11)(6, 12)(7, 18)(10, 22)(13, 32)(14, 28)(15, 38)(16, 30)(17,
31)(19, 45)(20, 46)(21, 51)(24, 37)(25, 43)(26, 42)(27, 41)(29, 67)(33, 73)(34,
74)(35, 77)(36, 66)(39, 82)(40, 85)(44, 90)(47, 95)(48, 65)(49, 98)(50, 94)(52,
102)(53, 103)(54, 101)(56, 71)(57, 70)(58, 86)(59, 111)(60, 115)(61, 100)(62,
99)(63, 112)(64, 87)(68, 120)(69, 105)(72, 123)(76, 81)(78, 125)(79, 126)(80,
97)(83, 132)(84, 91)(88, 122)(89, 135)(92, 113)(93, 119)(96, 140)(104, 114)(106,
131)(107, 129)(108, 137)(109, 144)(116, 130)(117, 121)(118, 138)(127, 142)(128,
145)(133, 134)(136, 139)(143, 150)(146, 147)(148, 149)(151, 152)(153, 156)(154,
157)(155, 163)(158, 171)(159, 167)(160, 176)(161, 169)(162, 170)(164, 183)(165,
184)(166, 190)(168, 195)(172, 203)(173, 206)(174, 193)(175, 194)(177, 209)(178,
210)(179, 213)(180, 202)(181, 200)(182, 201)(185, 222)(186, 220)(187, 225)(188,
189)(191, 230)(192, 233)(196, 235)(197, 236)(198, 239)(199, 205)(204, 248)(207,
250)(208, 253)(211, 257)(212, 255)(214, 261)(215, 245)(216, 246)(217, 266)(218,
260)(219, 269)(221, 272)(223, 275)(224, 277)(226, 279)(227, 280)(228, 232)(229,
262)(231, 282)(234, 283)(237, 240)(238, 247)(241, 242)(243, 288)(244, 285)(249,
258)(251, 293)(252, 271)(254, 263)(256, 274)(259, 281)(264, 298)(265, 276)(267,
299)(268, 297)(270, 296)(273, 291)(278, 300)(284, 286)(287, 295)(289, 294)(290,
292)
e7: (14, 34)
f7: (82, 94)
C4[ 300, 42 ]
300
-1 156 151 152 153
-2 155 166 158 151
-3 154 167 157 159
-4 190 171 152 163
-5 158 185 153 164
-6 154 165 191 172
-7 168 192 160 173
-8 169 193 161 174
-9 170 194 162 175
-10 155 202 205 175
-11 156 222 171 183
-12 157 203 184 230
-13 158 185 153 164
-14 223 159 172 186
-15 187 178 160 197
-16 231 188 204 161
-17 232 189 205 162
-18 176 233 195 206
-19 177 212 196 207
-20 187 178 160 197
-21 198 179 234 208
-22 199 180 194 163
-23 200 201 181 182
-24 199 180 194 163
-25 242 201 245 164
-26 165 200 246 241
-27 166 202 262 219
-28 220 275 167 203
-29 221 168 247 281
-30 189 169 248 282
-31 188 199 170 228
-32 156 222 171 183
-33 155 166 158 151
-34 223 159 172 186
-35 224 173 197 274
-36 276 204 174 186
-37 155 202 205 175
-38 176 210 225 236
-39 177 178 226 227
-40 231 179 249 228
-41 190 180 269 229
-42 242 181 216 184
-43 182 215 183 241
-44 176 233 195 206
-45 209 255 235 250
-46 176 210 225 236
-47 211 237 259 251
-48 233 212 238 252
-49 154 165 191 172
-50 177 178 226 227
-51 253 213 239 283
-52 211 237 259 251
-53 221 214 217 240
-54 243 244 217 218
-55 170 194 162 175
-56 182 215 183 241
-57 242 181 216 184
-58 244 245 214 185
-59 276 204 174 186
-60 187 243 287 226
-61 188 199 170 228
-62 189 169 248 282
-63 244 245 214 185
-64 211 191 246 270
-65 255 192 247 271
-66 220 265 193 248
-67 259 238 195 272
-68 283 196 273 252
-69 198 298 291 229
-70 165 200 246 241
-71 242 201 245 164
-72 166 202 262 219
-73 190 171 152 163
-74 220 275 167 203
-75 156 151 152 153
-76 224 173 197 274
-77 277 256 236 206
-78 278 289 227 207
-79 187 243 287 226
-80 286 224 249 208
-81 277 256 236 206
-82 209 210 279 280
-83 211 191 246 270
-84 177 212 196 207
-85 232 213 258 282
-86 222 215 261 285
-87 257 216 230 296
-88 221 214 217 240
-89 264 287 218 219
-90 168 192 160 173
-91 209 255 235 250
-92 275 254 265 292
-93 255 192 247 271
-94 209 210 279 280
-95 257 281 293 240
-96 198 179 234 208
-97 253 277 258 284
-98 157 203 184 230
-99 231 188 204 161
-100 232 189 205 162
-101 266 288 260 285
-102 257 281 293 240
-103 266 237 261 272
-104 253 277 258 284
-105 264 239 262 273
-106 286 267 263 274
-107 266 288 260 285
-108 264 287 218 219
-109 267 289 268 290
-110 200 201 181 182
-111 220 265 193 248
-112 222 215 261 285
-113 276 223 290 263
-114 286 224 249 208
-115 288 279 225 295
-116 278 289 227 207
-117 198 298 291 229
-118 276 223 290 263
-119 233 212 238 252
-120 234 235 291 271
-121 264 239 262 273
-122 266 237 261 272
-123 190 180 269 229
-124 154 167 157 159
-125 300 280 250 294
-126 288 279 225 295
-127 278 268 270 251
-128 278 268 270 251
-129 243 244 217 218
-130 300 280 250 294
-131 254 299 256 284
-132 257 216 230 296
-133 231 179 249 228
-134 232 213 258 282
-135 298 269 260 295
-136 286 267 263 274
-137 298 269 260 295
-138 275 254 265 292
-139 254 299 256 284
-140 253 213 239 283
-141 169 193 161 174
-142 297 300 293 296
-143 221 168 247 281
-144 297 299 292 294
-145 297 300 293 296
-146 297 299 292 294
-147 267 289 268 290
-148 234 235 291 271
-149 283 196 273 252
-150 259 238 195 272
-151 33 1 2 75
-152 1 4 73 75
-153 1 13 5 75
-154 3 124 49 6
-155 33 2 37 10
-156 11 1 75 32
-157 12 3 124 98
-158 33 2 13 5
-159 34 3 14 124
-160 90 15 7 20
-161 99 16 8 141
-162 55 100 17 9
-163 22 24 4 73
-164 13 25 5 71
-165 26 70 49 6
-166 33 2 27 72
-167 3 124 28 74
-168 143 90 7 29
-169 62 8 30 141
-170 55 61 9 31
-171 11 4 73 32
-172 34 14 49 6
-173 35 90 7 76
-174 36 59 8 141
-175 55 37 9 10
-176 44 46 38 18
-177 39 50 84 19
-178 15 39 50 20
-179 133 40 96 21
-180 22 24 123 41
-181 110 23 57 42
-182 110 23 56 43
-183 11 56 32 43
-184 12 57 42 98
-185 13 58 5 63
-186 34 14 36 59
-187 79 15 60 20
-188 99 16 61 31
-189 100 17 62 30
-190 123 4 73 41
-191 49 6 83 64
-192 90 93 7 65
-193 66 111 8 141
-194 22 55 24 9
-195 44 67 18 150
-196 68 149 84 19
-197 35 15 20 76
-198 69 117 96 21
-199 22 24 61 31
-200 110 23 26 70
-201 110 23 25 71
-202 37 27 72 10
-203 12 28 74 98
-204 99 36 59 16
-205 100 37 17 10
-206 44 77 81 18
-207 78 116 84 19
-208 80 114 96 21
-209 45 91 82 94
-210 46 38 82 94
-211 47 83 52 64
-212 48 84 19 119
-213 134 51 85 140
-214 88 58 63 53
-215 56 112 86 43
-216 132 57 42 87
-217 88 129 53 54
-218 89 129 108 54
-219 89 27 72 108
-220 66 111 28 74
-221 88 143 29 53
-222 11 112 86 32
-223 34 14 113 118
-224 35 80 114 76
-225 46 38 115 126
-226 79 60 39 50
-227 78 39 50 116
-228 133 61 40 31
-229 123 69 117 41
-230 132 12 87 98
-231 99 133 16 40
-232 100 134 17 85
-233 44 48 18 119
-234 148 96 21 120
-235 45 91 148 120
-236 77 46 81 38
-237 122 47 103 52
-238 67 48 150 119
-239 121 105 51 140
-240 88 102 95 53
-241 56 26 70 43
-242 57 25 71 42
-243 79 60 129 54
-244 58 63 129 54
-245 25 58 71 63
-246 26 70 83 64
-247 143 93 29 65
-248 66 111 62 30
-249 133 80 114 40
-250 45 91 125 130
-251 47 127 128 52
-252 68 48 149 119
-253 104 51 140 97
-254 92 138 139 131
-255 45 91 93 65
-256 77 81 139 131
-257 132 102 95 87
-258 134 104 85 97
-259 67 47 150 52
-260 101 135 137 107
-261 122 112 103 86
-262 121 27 72 105
-263 113 136 106 118
-264 121 89 105 108
-265 66 111 92 138
-266 122 101 103 107
-267 136 147 106 109
-268 147 127 128 109
-269 123 135 137 41
-270 83 127 128 64
-271 93 148 65 120
-272 67 122 103 150
-273 121 68 105 149
-274 35 136 106 76
-275 92 28 138 74
-276 36 113 59 118
-277 77 81 104 97
-278 78 116 127 128
-279 82 115 126 94
-280 125 82 94 130
-281 143 102 29 95
-282 134 62 30 85
-283 68 149 51 140
-284 104 139 97 131
-285 101 112 107 86
-286 80 114 136 106
-287 89 79 60 108
-288 101 115 126 107
-289 78 147 116 109
-290 113 147 118 109
-291 69 148 117 120
-292 144 146 92 138
-293 145 102 95 142
-294 144 146 125 130
-295 135 115 126 137
-296 132 145 87 142
-297 144 145 146 142
-298 69 135 137 117
-299 144 146 139 131
-300 145 125 130 142
0