[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 300, 43 ] =
XI(Rmap(150,7){6,10|10}_6).
(I) Following is a form readable by MAGMA:
g:=Graph<300|{ {138, 157}, {128, 162}, {129, 163}, {149, 182}, {141, 170}, {144,
183}, {150, 190}, {138, 165}, {141, 189}, {129, 176}, {137, 191}, {148, 162},
{135, 190}, {135, 188}, {148, 175}, {140, 183}, {150, 171}, {131, 189}, {128,
194}, {144, 212}, {142, 200}, {149, 211}, {136, 193}, {147, 217}, {133, 201},
{132, 202}, {130, 213}, {145, 202}, {146, 201}, {142, 211}, {135, 217}, {142,
208}, {137, 214}, {131, 227}, {136, 232}, {146, 243}, {134, 228}, {133, 230},
{145, 242}, {135, 226}, {131, 235}, {150, 254}, {143, 230}, {147, 249}, {132,
239}, {144, 251}, {133, 238}, {139, 251}, {130, 240}, {141, 255}, {145, 228},
{140, 250}, {147, 229}, {131, 244}, {139, 252}, {140, 244}, {142, 242}, {149,
234}, {118, 247}, {79, 205}, {105, 234}, {125, 254}, {104, 236}, {60, 185}, {84,
209}, {85, 208}, {73, 207}, {61, 186}, {106, 237}, {114, 250}, {32, 169}, {101,
236}, {36, 173}, {69, 204}, {50, 184}, {111, 229}, {93, 215}, {114, 249}, {120,
243}, {116, 255}, {77, 192}, {99, 238}, {98, 239}, {88, 213}, {46, 160}, {53,
187}, {47, 161}, {69, 203}, {80, 223}, {52, 164}, {79, 222}, {78, 221}, {111,
252}, {72, 220}, {87, 195}, {2, 151}, {10, 159}, {8, 157}, {1, 151}, {110, 248},
{33, 183}, {9, 158}, {1, 153}, {39, 191}, {2, 154}, {1, 152}, {112, 233}, {45,
180}, {42, 179}, {1, 155}, {38, 188}, {35, 185}, {34, 184}, {4, 158}, {3, 152},
{46, 181}, {7, 156}, {89, 194}, {34, 190}, {59, 167}, {2, 159}, {109, 240}, {6,
155}, {4, 153}, {2, 156}, {37, 187}, {36, 186}, {35, 189}, {3, 157}, {86, 200},
{5, 154}, {68, 219}, {67, 227}, {102, 198}, {101, 197}, {74, 234}, {75, 235},
{76, 236}, {80, 241}, {109, 204}, {92, 253}, {94, 255}, {4, 166}, {118, 212},
{12, 174}, {9, 171}, {8, 170}, {5, 167}, {3, 160}, {21, 182}, {7, 164}, {126,
218}, {4, 161}, {122, 223}, {120, 221}, {12, 169}, {6, 163}, {67, 230}, {3,
165}, {19, 181}, {11, 173}, {10, 172}, {66, 228}, {70, 224}, {5, 162}, {121,
222}, {13, 170}, {16, 184}, {20, 188}, {19, 187}, {18, 186}, {17, 185}, {66,
235}, {120, 209}, {5, 175}, {31, 181}, {30, 180}, {27, 177}, {26, 176}, {68,
238}, {69, 239}, {86, 252}, {11, 160}, {15, 164}, {70, 237}, {12, 161}, {127,
210}, {23, 186}, {14, 163}, {84, 249}, {6, 168}, {29, 179}, {28, 178}, {7, 169},
{73, 231}, {91, 245}, {13, 162}, {119, 216}, {85, 250}, {89, 246}, {112, 192},
{100, 214}, {74, 254}, {110, 218}, {89, 237}, {92, 232}, {93, 233}, {8, 189},
{20, 161}, {18, 167}, {16, 165}, {10, 191}, {66, 247}, {78, 251}, {6, 176}, {47,
153}, {25, 175}, {24, 174}, {7, 177}, {9, 190}, {118, 193}, {31, 168}, {17,
166}, {14, 182}, {119, 207}, {15, 183}, {77, 245}, {78, 246}, {8, 178}, {23,
173}, {22, 172}, {9, 179}, {19, 168}, {99, 216}, {67, 248}, {32, 156}, {110,
210}, {75, 247}, {20, 169}, {95, 226}, {10, 180}, {21, 171}, {11, 181}, {34,
226}, {108, 172}, {102, 166}, {101, 165}, {38, 230}, {37, 229}, {36, 228}, {35,
227}, {61, 253}, {62, 254}, {63, 255}, {90, 154}, {40, 233}, {41, 232}, {47,
236}, {49, 242}, {48, 243}, {24, 220}, {27, 223}, {26, 222}, {25, 221}, {56,
252}, {83, 151}, {16, 213}, {50, 247}, {46, 235}, {27, 222}, {22, 211}, {18,
215}, {30, 216}, {98, 164}, {17, 214}, {45, 234}, {57, 241}, {40, 225}, {121,
176}, {49, 248}, {41, 224}, {60, 245}, {82, 152}, {83, 153}, {11, 192}, {122,
177}, {54, 253}, {51, 248}, {44, 231}, {42, 225}, {19, 216}, {15, 196}, {55,
251}, {58, 246}, {12, 193}, {52, 249}, {22, 219}, {20, 217}, {14, 195}, {81,
159}, {13, 194}, {53, 250}, {31, 208}, {21, 218}, {57, 233}, {30, 207}, {54,
231}, {24, 202}, {49, 227}, {48, 226}, {25, 203}, {29, 206}, {117, 166}, {108,
191}, {98, 177}, {38, 245}, {32, 243}, {16, 197}, {127, 170}, {126, 171}, {33,
244}, {25, 204}, {18, 199}, {26, 204}, {43, 253}, {27, 205}, {65, 151}, {17,
198}, {120, 175}, {39, 240}, {28, 196}, {118, 174}, {99, 187}, {30, 199}, {107,
178}, {71, 158}, {46, 244}, {15, 212}, {64, 155}, {42, 246}, {106, 182}, {14,
211}, {100, 185}, {44, 241}, {65, 156}, {22, 200}, {54, 232}, {23, 201}, {62,
224}, {63, 225}, {13, 210}, {58, 229}, {77, 173}, {88, 184}, {51, 210}, {123,
154}, {59, 218}, {61, 220}, {44, 206}, {58, 217}, {123, 159}, {81, 180}, {43,
205}, {50, 212}, {57, 223}, {72, 174}, {55, 208}, {58, 221}, {60, 219}, {91,
188}, {40, 192}, {44, 196}, {43, 195}, {42, 194}, {41, 193}, {64, 168}, {68,
172}, {33, 200}, {34, 203}, {56, 209}, {26, 240}, {45, 199}, {61, 215}, {37,
206}, {117, 158}, {41, 197}, {28, 241}, {31, 242}, {40, 198}, {57, 215}, {51,
195}, {52, 196}, {32, 209}, {39, 214}, {39, 213}, {82, 160}, {70, 178}, {71,
179}, {87, 163}, {107, 157}, {24, 239}, {43, 220}, {21, 237}, {35, 219}, {23,
238}, {54, 207}, {50, 203}, {48, 201}, {63, 198}, {29, 231}, {49, 202}, {53,
206}, {62, 197}, {28, 224}, {103, 155}, {29, 225}, {59, 199}, {90, 167}, {51,
205}, {103, 152}, {36, 260}, {55, 279}, {38, 262}, {37, 261}, {56, 280}, {52,
277}, {33, 259}, {53, 278}, {63, 282}, {47, 264}, {62, 281}, {45, 263}, {48,
256}, {56, 266}, {60, 261}, {59, 256}, {55, 265}, {106, 298}, {64, 257}, {80,
273}, {82, 275}, {93, 287}, {65, 258}, {100, 295}, {97, 290}, {96, 291}, {76,
271}, {81, 274}, {67, 263}, {100, 288}, {72, 268}, {73, 269}, {88, 284}, {90,
286}, {70, 259}, {103, 290}, {75, 270}, {84, 274}, {109, 299}, {83, 276}, {107,
300}, {102, 289}, {77, 261}, {66, 264}, {108, 294}, {105, 291}, {87, 285}, {69,
265}, {71, 267}, {86, 282}, {97, 300}, {68, 266}, {85, 283}, {94, 272}, {103,
296}, {81, 257}, {124, 300}, {123, 299}, {76, 285}, {113, 288}, {95, 270}, {64,
274}, {71, 277}, {87, 260}, {113, 290}, {92, 271}, {86, 259}, {127, 298}, {125,
296}, {74, 284}, {78, 281}, {91, 268}, {65, 283}, {89, 259}, {125, 294}, {126,
293}, {85, 265}, {112, 300}, {84, 266}, {122, 292}, {88, 262}, {79, 272}, {116,
299}, {95, 256}, {113, 273}, {116, 276}, {115, 275}, {114, 274}, {96, 257},
{113, 272}, {121, 283}, {124, 286}, {97, 258}, {123, 280}, {104, 267}, {76,
296}, {122, 286}, {105, 269}, {106, 271}, {79, 297}, {112, 278}, {115, 276},
{99, 266}, {117, 284}, {114, 283}, {104, 257}, {111, 261}, {119, 285}, {96,
267}, {116, 287}, {98, 265}, {72, 292}, {115, 287}, {73, 293}, {74, 294}, {75,
295}, {96, 269}, {115, 286}, {101, 264}, {110, 256}, {127, 273}, {124, 275},
{83, 291}, {97, 273}, {125, 271}, {82, 289}, {126, 269}, {119, 260}, {117, 262},
{94, 299}, {111, 282}, {109, 280}, {105, 284}, {104, 285}, {102, 275}, {92,
298}, {95, 297}, {93, 293}, {80, 298}, {91, 289}, {108, 279}, {121, 258}, {107,
278}, {90, 292}, {124, 258}, {94, 288}, {143, 270}, {133, 263}, {136, 267},
{148, 272}, {147, 277}, {143, 262}, {144, 281}, {132, 270}, {134, 268}, {134,
264}, {150, 281}, {149, 263}, {139, 280}, {145, 260}, {129, 279}, {141, 282},
{140, 278}, {139, 279}, {136, 277}, {137, 276}, {146, 268}, {128, 287}, {130,
290}, {128, 293}, {129, 294}, {134, 289}, {143, 295}, {130, 296}, {138, 288},
{137, 291}, {132, 297}, {138, 295}, {146, 292}, {148, 297} }>;
(II) A more general form is to represent the graph as the orbit of {138, 157}
under the group generated by the following permutations:
a: (2, 6)(3, 4)(5, 14)(7, 19)(8, 9)(10, 26)(11, 12)(13, 21)(15, 37)(16, 17)(18,
43)(20, 46)(22, 25)(23, 24)(27, 30)(28, 29)(31, 32)(33, 58)(34, 35)(36, 72)(38,
75)(40, 41)(42, 70)(45, 79)(47, 82)(48, 49)(50, 60)(51, 59)(52, 53)(54, 57)(55,
56)(62, 63)(64, 65)(66, 91)(67, 95)(68, 69)(71, 107)(73, 80)(74, 94)(76,
115)(77, 118)(78, 86)(81, 121)(83, 103)(84, 85)(87, 90)(88, 100)(92, 93)(96,
97)(98, 99)(101, 102)(104, 124)(105, 113)(106, 128)(108, 109)(111, 144)(112,
136)(116, 125)(117, 138)(119, 122)(120, 142)(123, 129)(126, 127)(130, 137)(131,
135)(132, 133)(140, 147)(141, 150)(145, 146)(148, 149)(151, 155)(152, 153)(154,
163)(156, 168)(157, 158)(159, 176)(160, 161)(162, 182)(164, 187)(165, 166)(167,
195)(169, 181)(170, 171)(172, 204)(173, 174)(175, 211)(177, 216)(178, 179)(180,
222)(183, 229)(184, 185)(186, 220)(188, 235)(189, 190)(191, 240)(192, 193)(194,
237)(196, 206)(197, 198)(199, 205)(200, 221)(201, 202)(203, 219)(207, 223)(208,
209)(210, 218)(212, 261)(213, 214)(215, 253)(217, 244)(224, 225)(226, 227)(228,
268)(230, 270)(231, 241)(232, 233)(234, 272)(236, 275)(238, 239)(242, 243)(245,
247)(246, 259)(248, 256)(249, 250)(251, 252)(254, 255)(257, 258)(260, 292)(262,
295)(263, 297)(264, 289)(265, 266)(267, 300)(269, 273)(271, 287)(274, 283)(276,
296)(277, 278)(279, 280)(281, 282)(284, 288)(285, 286)(290, 291)(293, 298)(294,
299) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 23)(17, 26)(18, 28)(20,
31)(22, 34)(24, 37)(25, 35)(27, 40)(29, 43)(30, 41)(32, 46)(33, 48)(36, 52)(38,
55)(42, 51)(44, 61)(45, 62)(47, 64)(49, 58)(50, 68)(53, 72)(56, 75)(59, 70)(60,
69)(63, 79)(65, 82)(66, 84)(67, 78)(71, 87)(73, 92)(76, 96)(77, 98)(80, 93)(81,
101)(83, 103)(85, 91)(86, 95)(88, 108)(89, 110)(90, 107)(97, 115)(99, 118)(100,
109)(102, 121)(105, 125)(106, 126)(111, 132)(112, 122)(113, 116)(114, 134)(117,
129)(119, 136)(120, 131)(123, 138)(127, 128)(130, 137)(133, 144)(135, 142)(139,
143)(140, 146)(141, 148)(145, 147)(149, 150)(151, 152)(153, 155)(154, 157)(156,
160)(158, 163)(159, 165)(161, 168)(162, 170)(164, 173)(166, 176)(167, 178)(169,
181)(171, 182)(172, 184)(174, 187)(175, 189)(177, 192)(179, 195)(180, 197)(183,
201)(185, 204)(186, 196)(188, 208)(190, 211)(191, 213)(193, 216)(194, 210)(198,
222)(199, 224)(200, 226)(202, 229)(203, 219)(205, 225)(206, 220)(207, 232)(209,
235)(212, 238)(214, 240)(215, 241)(217, 242)(218, 237)(221, 227)(223, 233)(228,
249)(230, 251)(231, 253)(234, 254)(236, 257)(239, 261)(243, 244)(245, 265)(246,
248)(247, 266)(250, 268)(252, 270)(255, 272)(256, 259)(258, 275)(260, 277)(262,
279)(263, 281)(264, 274)(267, 285)(269, 271)(273, 287)(276, 290)(278, 292)(280,
295)(282, 297)(283, 289)(284, 294)(286, 300)(288, 299)(291, 296)(293, 298)
c: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 25)(17,
27)(19, 30)(21, 33)(23, 36)(24, 38)(26, 39)(28, 42)(29, 44)(31, 45)(32, 47)(34,
50)(35, 51)(37, 54)(40, 57)(41, 58)(43, 60)(46, 59)(48, 66)(49, 67)(52, 71)(53,
73)(55, 74)(56, 76)(61, 77)(62, 78)(63, 80)(64, 81)(65, 83)(68, 87)(69, 88)(70,
89)(72, 91)(75, 95)(79, 100)(82, 90)(84, 104)(85, 105)(86, 106)(92, 111)(93,
112)(94, 113)(96, 114)(97, 116)(98, 117)(99, 119)(101, 120)(102, 122)(103,
123)(107, 128)(108, 129)(109, 130)(110, 131)(115, 124)(118, 135)(121, 137)(125,
139)(126, 140)(127, 141)(132, 143)(133, 145)(134, 146)(136, 147)(138, 148)(142,
149)(144, 150)(152, 154)(153, 156)(155, 159)(157, 162)(158, 164)(160, 167)(161,
169)(163, 172)(165, 175)(166, 177)(168, 180)(171, 183)(173, 186)(174, 188)(176,
191)(178, 194)(179, 196)(181, 199)(182, 200)(184, 203)(185, 205)(187, 207)(189,
210)(190, 212)(192, 215)(193, 217)(195, 219)(197, 221)(198, 223)(201, 228)(202,
230)(204, 213)(206, 231)(208, 234)(209, 236)(214, 222)(218, 244)(220, 245)(224,
246)(225, 241)(226, 247)(227, 248)(229, 232)(235, 256)(237, 259)(238, 260)(239,
262)(242, 263)(243, 264)(249, 267)(250, 269)(251, 254)(252, 271)(253, 261)(255,
273)(257, 274)(258, 276)(265, 284)(266, 285)(272, 288)(275, 286)(278, 293)(279,
294)(280, 296)(282, 298)(283, 291)(287, 300)(289, 292)(290, 299)(295, 297)
C4[ 300, 43 ]
300
-1 155 151 152 153
-2 154 156 159 151
-3 165 157 160 152
-4 166 158 161 153
-5 154 167 162 175
-6 176 155 168 163
-7 177 156 169 164
-8 178 189 157 170
-9 179 190 158 171
-10 180 191 159 172
-11 181 192 160 173
-12 169 193 161 174
-13 210 170 194 162
-14 211 182 195 163
-15 212 183 196 164
-16 165 213 184 197
-17 198 166 214 185
-18 199 167 215 186
-19 187 168 181 216
-20 188 169 161 217
-21 171 182 237 218
-22 200 211 172 219
-23 201 238 173 186
-24 220 202 239 174
-25 221 203 204 175
-26 176 222 204 240
-27 177 222 223 205
-28 178 224 196 241
-29 231 179 225 206
-30 199 180 216 207
-31 242 168 181 208
-32 209 243 156 169
-33 200 244 259 183
-34 190 203 226 184
-35 189 227 185 219
-36 260 173 228 186
-37 187 206 261 229
-38 188 245 262 230
-39 191 213 214 240
-40 198 233 192 225
-41 232 224 193 197
-42 179 246 225 194
-43 220 253 205 195
-44 231 206 196 241
-45 199 234 180 263
-46 244 235 181 160
-47 264 236 161 153
-48 243 201 256 226
-49 242 202 248 227
-50 212 203 247 184
-51 210 248 205 195
-52 277 249 196 164
-53 187 278 206 250
-54 231 253 232 207
-55 265 279 251 208
-56 209 266 280 252
-57 233 223 215 241
-58 221 246 217 229
-59 199 167 256 218
-60 245 261 185 219
-61 220 253 215 186
-62 254 224 281 197
-63 198 255 225 282
-64 155 168 257 274
-65 156 258 151 283
-66 264 235 247 228
-67 248 227 230 263
-68 266 172 238 219
-69 265 203 204 239
-70 178 224 237 259
-71 277 179 267 158
-72 220 268 292 174
-73 231 269 293 207
-74 254 234 294 284
-75 235 247 270 295
-76 236 271 285 296
-77 245 192 173 261
-78 221 246 281 251
-79 297 222 205 272
-80 298 223 273 241
-81 180 257 159 274
-82 275 289 160 152
-83 276 291 151 153
-84 209 266 249 274
-85 265 250 283 208
-86 200 259 282 252
-87 260 195 163 285
-88 213 184 262 284
-89 246 237 259 194
-90 154 286 167 292
-91 188 245 289 268
-92 253 232 298 271
-93 287 233 215 293
-94 255 288 299 272
-95 297 256 226 270
-96 267 257 269 291
-97 300 290 258 273
-98 177 265 239 164
-99 187 266 216 238
-100 288 214 185 295
-101 165 264 236 197
-102 198 275 166 289
-103 155 290 152 296
-104 267 257 236 285
-105 234 269 291 284
-106 298 182 237 271
-107 178 157 278 300
-108 191 279 172 294
-109 299 280 204 240
-110 210 256 248 218
-111 282 261 229 252
-112 233 278 300 192
-113 288 290 272 273
-114 249 250 283 274
-115 275 286 276 287
-116 276 287 255 299
-117 166 158 262 284
-118 212 247 193 174
-119 216 260 207 285
-120 209 221 243 175
-121 176 222 258 283
-122 286 177 223 292
-123 154 299 159 280
-124 275 286 300 258
-125 254 271 294 296
-126 269 171 293 218
-127 210 298 170 273
-128 287 194 293 162
-129 176 279 294 163
-130 213 290 240 296
-131 189 244 235 227
-132 297 202 270 239
-133 201 238 230 263
-134 264 289 268 228
-135 188 190 226 217
-136 232 277 267 193
-137 276 191 214 291
-138 165 288 157 295
-139 279 280 251 252
-140 244 278 183 250
-141 189 255 170 282
-142 242 200 211 208
-143 270 262 295 230
-144 212 281 183 251
-145 242 202 260 228
-146 243 201 268 292
-147 277 249 217 229
-148 297 162 272 175
-149 211 234 182 263
-150 254 190 171 281
-151 1 2 83 65
-152 1 3 103 82
-153 1 47 4 83
-154 2 90 123 5
-155 1 103 6 64
-156 2 7 32 65
-157 3 138 8 107
-158 4 71 117 9
-159 2 123 81 10
-160 11 46 3 82
-161 12 47 4 20
-162 13 5 148 128
-163 14 6 129 87
-164 15 7 52 98
-165 101 3 16 138
-166 102 4 17 117
-167 90 59 5 18
-168 6 19 31 64
-169 12 7 20 32
-170 13 127 8 141
-171 126 150 9 21
-172 22 68 108 10
-173 11 77 23 36
-174 12 24 72 118
-175 25 5 148 120
-176 121 26 6 129
-177 122 27 7 98
-178 70 28 8 107
-179 71 29 9 42
-180 45 81 30 10
-181 11 46 19 31
-182 14 149 106 21
-183 33 144 15 140
-184 88 34 16 50
-185 100 35 60 17
-186 23 36 61 18
-187 99 37 19 53
-188 91 135 38 20
-189 35 8 141 131
-190 34 135 150 9
-191 137 39 108 10
-192 11 77 112 40
-193 12 136 41 118
-194 89 13 128 42
-195 14 51 43 87
-196 44 15 28 52
-197 101 16 62 41
-198 102 17 40 63
-199 45 59 18 30
-200 22 33 86 142
-201 23 133 146 48
-202 132 24 145 49
-203 34 25 69 50
-204 25 69 26 109
-205 79 27 51 43
-206 44 37 29 53
-207 73 30 119 54
-208 55 85 31 142
-209 56 84 32 120
-210 110 13 127 51
-211 22 14 149 142
-212 144 15 50 118
-213 88 16 39 130
-214 100 137 17 39
-215 57 93 61 18
-216 99 19 30 119
-217 58 135 147 20
-218 110 59 126 21
-219 22 35 68 60
-220 24 61 72 43
-221 78 25 58 120
-222 121 79 26 27
-223 122 57 80 27
-224 70 28 62 41
-225 29 40 63 42
-226 34 135 48 95
-227 67 35 49 131
-228 66 134 145 36
-229 111 58 37 147
-230 143 67 133 38
-231 44 29 73 54
-232 92 136 41 54
-233 57 112 93 40
-234 45 105 149 74
-235 66 46 75 131
-236 101 47 104 76
-237 89 70 106 21
-238 99 23 133 68
-239 132 24 69 98
-240 26 39 130 109
-241 44 57 80 28
-242 145 49 31 142
-243 146 48 32 120
-244 33 46 140 131
-245 77 91 38 60
-246 78 89 58 42
-247 66 50 118 75
-248 110 67 49 51
-249 114 147 84 52
-250 114 85 140 53
-251 55 78 144 139
-252 56 111 139 86
-253 92 61 43 54
-254 125 62 150 74
-255 94 116 63 141
-256 110 48 59 95
-257 81 104 96 64
-258 121 124 97 65
-259 33 89 70 86
-260 145 36 119 87
-261 77 111 37 60
-262 88 143 38 117
-263 45 67 133 149
-264 66 101 134 47
-265 55 69 85 98
-266 99 56 68 84
-267 136 71 104 96
-268 134 91 146 72
-269 126 105 73 96
-270 132 143 95 75
-271 92 125 106 76
-272 79 113 148 94
-273 80 113 127 97
-274 81 114 84 64
-275 102 124 82 115
-276 115 137 83 116
-277 136 147 71 52
-278 112 107 140 53
-279 55 139 129 108
-280 56 123 139 109
-281 78 144 62 150
-282 111 63 86 141
-283 121 114 85 65
-284 88 105 117 74
-285 104 119 76 87
-286 122 90 124 115
-287 93 115 116 128
-288 100 113 94 138
-289 134 91 102 82
-290 113 103 97 130
-291 137 83 105 96
-292 122 90 146 72
-293 93 126 73 128
-294 125 74 129 108
-295 143 100 138 75
-296 103 125 130 76
-297 132 79 148 95
-298 80 92 127 106
-299 123 94 116 109
-300 112 124 107 97
0