[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 300, 44 ] =
SDD(C_75(1,26)).
(I) Following is a form readable by MAGMA:
g:=Graph<300|{ {144, 248}, {142, 255}, {136, 253}, {141, 251}, {132, 252}, {143,
247}, {130, 254}, {142, 243}, {46, 174}, {116, 244}, {83, 211}, {28, 157}, {87,
214}, {57, 187}, {106, 232}, {101, 231}, {75, 201}, {76, 206}, {32, 163}, {108,
239}, {43, 168}, {29, 153}, {126, 250}, {64, 196}, {68, 193}, {85, 208}, {73,
207}, {123, 253}, {115, 245}, {96, 230}, {87, 209}, {69, 194}, {44, 164}, {122,
242}, {121, 241}, {118, 254}, {117, 253}, {105, 225}, {53, 189}, {40, 161},
{112, 249}, {44, 165}, {33, 171}, {113, 251}, {36, 174}, {82, 216}, {32, 171},
{125, 246}, {48, 188}, {100, 232}, {97, 237}, {86, 218}, {52, 185}, {72, 197},
{74, 199}, {77, 192}, {34, 172}, {114, 252}, {35, 173}, {71, 201}, {78, 192},
{80, 222}, {81, 223}, {90, 212}, {45, 162}, {102, 233}, {100, 235}, {99, 236},
{47, 160}, {11, 155}, {123, 235}, {122, 234}, {121, 233}, {96, 240}, {42, 186},
{41, 185}, {15, 159}, {14, 158}, {13, 157}, {12, 156}, {65, 209}, {66, 210},
{47, 190}, {107, 250}, {54, 167}, {76, 221}, {79, 222}, {87, 198}, {32, 178},
{106, 248}, {45, 191}, {39, 181}, {33, 179}, {39, 180}, {101, 246}, {58, 169},
{70, 213}, {75, 216}, {38, 178}, {107, 255}, {103, 243}, {2, 151}, {112, 229},
{102, 243}, {58, 175}, {37, 176}, {33, 180}, {73, 220}, {1, 151}, {120, 238},
{44, 186}, {40, 191}, {111, 248}, {67, 212}, {1, 153}, {120, 224}, {119, 239},
{109, 245}, {103, 255}, {55, 175}, {1, 152}, {110, 247}, {98, 251}, {3, 154},
{2, 155}, {66, 219}, {74, 211}, {58, 160}, {126, 228}, {84, 207}, {2, 158},
{104, 244}, {6, 154}, {5, 153}, {4, 152}, {3, 159}, {1, 156}, {99, 254}, {40,
181}, {65, 220}, {68, 217}, {79, 210}, {3, 157}, {105, 247}, {40, 182}, {72,
215}, {125, 226}, {4, 164}, {30, 190}, {27, 187}, {26, 186}, {15, 175}, {6,
166}, {5, 165}, {67, 227}, {77, 237}, {10, 171}, {91, 250}, {54, 151}, {25,
184}, {23, 182}, {21, 180}, {8, 170}, {105, 203}, {102, 196}, {22, 180}, {19,
177}, {59, 153}, {72, 234}, {9, 170}, {22, 181}, {59, 152}, {13, 169}, {25,
189}, {17, 181}, {2, 167}, {123, 222}, {92, 249}, {28, 185}, {20, 177}, {84,
241}, {21, 179}, {106, 204}, {90, 252}, {7, 160}, {100, 195}, {28, 187}, {20,
179}, {17, 182}, {59, 156}, {85, 242}, {4, 172}, {55, 159}, {54, 158}, {7, 175},
{6, 174}, {5, 173}, {8, 161}, {30, 183}, {10, 163}, {9, 163}, {3, 168}, {53,
158}, {9, 162}, {48, 156}, {59, 151}, {75, 231}, {18, 191}, {95, 242}, {93,
240}, {54, 155}, {77, 224}, {80, 253}, {7, 169}, {17, 191}, {16, 190}, {24,
183}, {101, 202}, {94, 241}, {81, 254}, {89, 246}, {12, 188}, {102, 214}, {98,
210}, {29, 173}, {24, 168}, {19, 163}, {18, 162}, {17, 161}, {16, 160}, {82,
226}, {84, 228}, {85, 229}, {19, 162}, {100, 213}, {43, 154}, {68, 245}, {83,
225}, {11, 184}, {14, 189}, {13, 185}, {43, 159}, {28, 169}, {95, 234}, {76,
249}, {13, 187}, {43, 157}, {88, 238}, {11, 188}, {107, 220}, {94, 233}, {8,
176}, {31, 167}, {30, 166}, {29, 165}, {10, 178}, {9, 177}, {88, 224}, {19,
170}, {98, 219}, {92, 229}, {66, 251}, {90, 227}, {107, 209}, {65, 250}, {97,
218}, {93, 230}, {80, 235}, {86, 237}, {89, 226}, {72, 244}, {99, 223}, {81,
236}, {82, 239}, {83, 238}, {21, 171}, {26, 164}, {65, 255}, {26, 165}, {91,
228}, {67, 252}, {23, 214}, {50, 243}, {37, 228}, {35, 226}, {11, 201}, {15,
204}, {38, 229}, {34, 225}, {4, 192}, {27, 223}, {7, 195}, {6, 194}, {5, 193},
{14, 203}, {41, 236}, {18, 215}, {12, 202}, {24, 222}, {23, 209}, {22, 208},
{62, 248}, {63, 249}, {36, 227}, {51, 244}, {20, 220}, {24, 210}, {25, 211},
{60, 246}, {61, 247}, {22, 221}, {30, 213}, {8, 196}, {35, 239}, {34, 238}, {42,
231}, {56, 245}, {46, 227}, {10, 197}, {41, 230}, {27, 212}, {23, 198}, {52,
230}, {21, 198}, {27, 200}, {14, 218}, {38, 242}, {37, 241}, {36, 240}, {15,
219}, {12, 217}, {62, 232}, {78, 152}, {16, 200}, {52, 236}, {49, 232}, {51,
234}, {49, 235}, {20, 207}, {50, 233}, {60, 231}, {18, 206}, {29, 193}, {61,
225}, {71, 155}, {16, 205}, {26, 199}, {25, 199}, {46, 240}, {31, 192}, {69,
154}, {70, 166}, {56, 217}, {64, 161}, {87, 182}, {47, 205}, {63, 221}, {78,
172}, {42, 201}, {46, 205}, {45, 206}, {69, 166}, {49, 213}, {51, 215}, {50,
214}, {84, 176}, {32, 197}, {57, 223}, {33, 198}, {47, 200}, {79, 168}, {85,
178}, {36, 205}, {48, 217}, {37, 207}, {64, 170}, {77, 167}, {78, 164}, {41,
194}, {44, 199}, {69, 174}, {55, 219}, {57, 212}, {53, 218}, {64, 176}, {34,
211}, {57, 200}, {63, 206}, {70, 183}, {75, 186}, {31, 237}, {49, 195}, {42,
216}, {62, 204}, {74, 184}, {38, 208}, {52, 194}, {51, 197}, {50, 196}, {60,
202}, {61, 203}, {39, 208}, {74, 189}, {70, 190}, {73, 177}, {79, 183}, {56,
193}, {58, 195}, {39, 221}, {48, 202}, {45, 215}, {73, 179}, {35, 216}, {55,
204}, {71, 188}, {53, 203}, {31, 224}, {71, 184}, {82, 173}, {83, 172}, {56,
257}, {62, 260}, {60, 258}, {61, 259}, {63, 256}, {86, 276}, {92, 280}, {67,
262}, {95, 282}, {68, 257}, {66, 261}, {94, 281}, {108, 294}, {109, 295}, {76,
256}, {91, 279}, {88, 277}, {93, 275}, {89, 278}, {111, 288}, {110, 289}, {95,
272}, {113, 289}, {124, 300}, {114, 290}, {92, 269}, {119, 294}, {94, 271}, {88,
266}, {118, 292}, {89, 267}, {93, 270}, {115, 295}, {117, 291}, {80, 263}, {127,
296}, {91, 268}, {81, 264}, {124, 293}, {113, 296}, {114, 297}, {90, 262}, {127,
291}, {118, 299}, {86, 265}, {117, 298}, {121, 281}, {122, 282}, {110, 266},
{116, 274}, {98, 261}, {101, 258}, {97, 265}, {116, 284}, {112, 280}, {111,
263}, {104, 256}, {126, 279}, {105, 259}, {122, 272}, {119, 285}, {99, 264},
{127, 276}, {125, 278}, {108, 257}, {120, 277}, {115, 286}, {96, 270}, {106,
260}, {109, 258}, {124, 275}, {111, 287}, {118, 262}, {117, 261}, {108, 285},
{115, 258}, {110, 287}, {120, 266}, {126, 268}, {96, 275}, {109, 286}, {104,
284}, {124, 264}, {116, 256}, {97, 276}, {113, 260}, {103, 273}, {125, 267},
{121, 271}, {119, 257}, {104, 274}, {103, 283}, {127, 259}, {123, 263}, {114,
270}, {112, 269}, {146, 274}, {150, 278}, {137, 264}, {150, 279}, {145, 272},
{130, 262}, {149, 273}, {143, 266}, {146, 282}, {149, 285}, {148, 284}, {147,
283}, {128, 265}, {145, 280}, {141, 260}, {129, 267}, {133, 271}, {132, 270},
{149, 281}, {129, 268}, {147, 286}, {136, 261}, {131, 269}, {135, 265}, {140,
259}, {144, 287}, {143, 287}, {139, 282}, {133, 279}, {135, 277}, {133, 278},
{138, 281}, {128, 277}, {142, 283}, {134, 272}, {138, 285}, {144, 263}, {140,
276}, {147, 267}, {139, 274}, {150, 271}, {148, 269}, {129, 283}, {137, 275},
{138, 273}, {134, 280}, {129, 286}, {147, 268}, {142, 273}, {131, 284}, {128,
288}, {134, 292}, {136, 298}, {133, 294}, {140, 296}, {137, 300}, {141, 296},
{130, 292}, {132, 290}, {131, 293}, {135, 288}, {139, 300}, {131, 299}, {130,
299}, {139, 290}, {128, 298}, {136, 291}, {137, 293}, {141, 289}, {132, 297},
{138, 295}, {135, 298}, {143, 289}, {134, 297}, {140, 291}, {144, 288}, {150,
294}, {146, 290}, {148, 293}, {149, 295}, {145, 292}, {145, 297}, {146, 300},
{148, 299} }>;
(II) A more general form is to represent the graph as the orbit of {144, 248}
under the group generated by the following permutations:
a: (49, 100) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (65, 107)
c: (62, 106)
d: (124, 137)
e: (103, 142)
f: (8, 64)
g: (60, 101)
h: (134, 145)
m: (30, 70)
n1: (13, 28)
a1: (94, 121)
b1: (128, 135)
c1: (3, 43)
d1: (80, 123)
e1: (117, 136)
f1: (88, 120)
g1: (41, 52)
h1: (86, 97)
m1: (109, 115)
n2: (9, 19)
a2: (2, 4)(3, 7)(5, 12)(6, 16)(8, 23)(9, 21)(11, 26)(14, 34)(18, 22)(19, 33)(24,
49)(27, 41)(29, 48)(35, 60)(37, 65)(38, 51)(39, 45)(43, 58)(44, 71)(47, 69)(52,
57)(53, 83)(54, 78)(62, 66)(64, 87)(67, 93)(72, 85)(79, 100)(82, 101)(84,
107)(86, 88)(90, 96)(92, 104)(94, 103)(97, 120)(98, 106)(108, 109)(110,
127)(111, 117)(112, 116)(115, 119)(118, 124)(121, 142)(129, 133)(130, 137)(134,
139)(136, 144)(140, 143)(145, 146)(147, 150)(151, 152)(153, 156)(154, 160)(155,
164)(157, 169)(158, 172)(159, 175)(161, 182)(162, 180)(163, 171)(165, 188)(166,
190)(167, 192)(168, 195)(170, 198)(173, 202)(174, 205)(176, 209)(177, 179)(178,
197)(181, 191)(183, 213)(184, 199)(185, 187)(186, 201)(189, 211)(193, 217)(194,
200)(196, 214)(203, 225)(204, 219)(206, 221)(207, 220)(208, 215)(210, 232)(212,
230)(216, 231)(218, 238)(222, 235)(223, 236)(224, 237)(226, 246)(227, 240)(228,
250)(229, 244)(233, 243)(234, 242)(239, 258)(241, 255)(245, 257)(247, 259)(248,
261)(249, 256)(251, 260)(252, 270)(253, 263)(254, 264)(262, 275)(265, 277)(266,
276)(267, 278)(268, 279)(269, 284)(271, 283)(272, 282)(273, 281)(274, 280)(285,
295)(286, 294)(287, 291)(288, 298)(289, 296)(290, 297)(292, 300)(293, 299)
b2: (36, 46)
c2: (2, 5)(3, 9)(4, 12)(6, 18)(7, 21)(8, 24)(10, 13)(11, 26)(14, 35)(15, 20)(16,
22)(17, 30)(19, 43)(23, 49)(25, 42)(27, 38)(28, 32)(29, 54)(31, 56)(33, 58)(34,
60)(36, 63)(37, 66)(39, 47)(40, 70)(41, 51)(44, 71)(45, 69)(46, 76)(48, 78)(50,
80)(52, 72)(53, 82)(55, 73)(57, 85)(61, 89)(62, 65)(64, 79)(67, 92)(68, 77)(74,
75)(81, 95)(83, 101)(84, 98)(86, 108)(87, 100)(88, 109)(90, 112)(91, 113)(93,
104)(94, 117)(96, 116)(97, 119)(99, 122)(102, 123)(103, 111)(105, 125)(106,
107)(110, 129)(114, 131)(115, 120)(118, 134)(121, 136)(124, 139)(126, 141)(127,
133)(128, 138)(130, 145)(132, 148)(135, 149)(137, 146)(140, 150)(142, 144)(143,
147)(151, 153)(152, 156)(154, 162)(155, 165)(157, 163)(158, 173)(159, 177)(160,
180)(161, 183)(164, 188)(166, 191)(167, 193)(168, 170)(169, 171)(172, 202)(174,
206)(175, 179)(176, 210)(178, 187)(181, 190)(182, 213)(184, 186)(185, 197)(189,
216)(192, 217)(194, 215)(195, 198)(196, 222)(199, 201)(200, 208)(203, 226)(204,
220)(205, 221)(207, 219)(209, 232)(211, 231)(212, 229)(214, 235)(218, 239)(223,
242)(224, 245)(225, 246)(227, 249)(228, 251)(230, 244)(233, 253)(234, 236)(237,
257)(238, 258)(240, 256)(241, 261)(243, 263)(247, 267)(248, 255)(250, 260)(252,
269)(254, 272)(259, 278)(262, 280)(264, 282)(265, 285)(266, 286)(268, 289)(270,
284)(271, 291)(273, 288)(274, 275)(276, 294)(277, 295)(279, 296)(281, 298)(283,
287)(290, 293)(297, 299)
d2: (12, 48)
e2: (92, 112)
f2: (38, 85)
g2: (34, 83)
h2: (50, 102)
m2: (35, 82)
n3: (25, 74)
a3: (20, 73)
b3: (7, 58)
c3: (89, 125)
d3: (114, 132)
e3: (1, 2)(3, 8)(4, 11)(5, 14)(6, 17)(7, 20)(9, 13)(10, 27)(12, 31)(15, 37)(16,
21)(18, 41)(19, 28)(22, 36)(23, 30)(24, 50)(25, 26)(29, 53)(32, 57)(33, 47)(34,
42)(35, 61)(38, 67)(39, 46)(40, 69)(43, 64)(44, 74)(45, 52)(48, 77)(49, 65)(51,
81)(54, 59)(55, 84)(56, 86)(58, 73)(60, 88)(62, 91)(63, 93)(66, 94)(68, 97)(70,
87)(71, 78)(72, 99)(75, 83)(76, 96)(79, 102)(80, 103)(82, 105)(85, 90)(89,
110)(92, 114)(95, 118)(98, 121)(100, 107)(101, 120)(104, 124)(106, 126)(108,
127)(109, 128)(111, 129)(112, 132)(113, 133)(115, 135)(116, 137)(117, 138)(119,
140)(122, 130)(123, 142)(125, 143)(131, 139)(136, 149)(141, 150)(144, 147)(146,
148)(152, 155)(153, 158)(154, 161)(156, 167)(157, 170)(159, 176)(160, 179)(162,
185)(163, 187)(164, 184)(165, 189)(166, 182)(168, 196)(169, 177)(171, 200)(172,
201)(173, 203)(174, 181)(175, 207)(178, 212)(180, 205)(183, 214)(186, 211)(188,
192)(190, 198)(191, 194)(193, 218)(195, 220)(197, 223)(202, 224)(204, 228)(206,
230)(208, 227)(209, 213)(210, 233)(215, 236)(216, 225)(217, 237)(219, 241)(221,
240)(222, 243)(226, 247)(229, 252)(231, 238)(232, 250)(234, 254)(235, 255)(239,
259)(242, 262)(244, 264)(245, 265)(246, 266)(248, 268)(249, 270)(251, 271)(253,
273)(256, 275)(257, 276)(258, 277)(260, 279)(261, 281)(263, 283)(267, 287)(269,
290)(272, 292)(274, 293)(278, 289)(280, 297)(282, 299)(284, 300)(285, 291)(286,
288)(294, 296)(295, 298)
f3: (133, 150)
g3: (56, 68)
h3: (22, 39)
m3: (24, 79)
n4: (51, 72)
a4: (138, 149)
b4: (129, 147)
c4: (131, 148)
d4: (31, 77)
e4: (95, 122)
f4: (91, 126)
g4: (104, 116)
h4: (4, 78)
m4: (111, 144)
n5: (16, 47)
a5: (23, 87)
b5: (63, 76)
c5: (11, 71)
d5: (10, 32)
e5: (93, 96)
f5: (27, 57)
g5: (14, 53)
h5: (108, 119)
m5: (15, 55)
n6: (127, 140)
a6: (110, 143)
b6: (81, 99)
c6: (42, 75)
d6: (61, 105)
e6: (17, 40)
f6: (26, 44)
g6: (67, 90)
h6: (139, 146)
m6: (6, 69)
n7: (37, 84)
a7: (113, 141)
b7: (5, 29)
c7: (66, 98)
d7: (2, 54)
e7: (21, 33)
f7: (18, 45)
C4[ 300, 44 ]
300
-1 156 151 152 153
-2 155 167 158 151
-3 154 157 168 159
-4 192 172 152 164
-5 165 193 173 153
-6 154 166 194 174
-7 169 160 195 175
-8 176 170 161 196
-9 177 170 162 163
-10 178 171 163 197
-11 155 188 201 184
-12 188 156 202 217
-13 187 157 169 185
-14 189 158 203 218
-15 159 204 175 219
-16 200 190 160 205
-17 191 181 182 161
-18 191 215 162 206
-19 177 170 162 163
-20 220 177 179 207
-21 198 179 180 171
-22 221 180 181 208
-23 198 209 214 182
-24 210 222 168 183
-25 199 189 211 184
-26 165 199 164 186
-27 187 200 212 223
-28 187 157 169 185
-29 165 193 173 153
-30 166 190 213 183
-31 167 224 192 237
-32 178 171 163 197
-33 198 179 180 171
-34 211 225 172 238
-35 226 216 173 239
-36 205 227 174 240
-37 176 228 207 241
-38 242 178 229 208
-39 221 180 181 208
-40 191 181 182 161
-41 236 194 185 230
-42 231 201 216 186
-43 154 157 168 159
-44 165 199 164 186
-45 191 215 162 206
-46 205 227 174 240
-47 200 190 160 205
-48 188 156 202 217
-49 232 213 235 195
-50 243 233 214 196
-51 244 234 215 197
-52 236 194 185 230
-53 189 158 203 218
-54 155 167 158 151
-55 159 204 175 219
-56 245 257 193 217
-57 187 200 212 223
-58 169 160 195 175
-59 156 151 152 153
-60 231 202 246 258
-61 203 225 247 259
-62 232 204 248 260
-63 221 256 249 206
-64 176 170 161 196
-65 209 220 255 250
-66 210 261 251 219
-67 212 227 262 252
-68 245 257 193 217
-69 154 166 194 174
-70 166 190 213 183
-71 155 188 201 184
-72 244 234 215 197
-73 220 177 179 207
-74 199 189 211 184
-75 231 201 216 186
-76 221 256 249 206
-77 167 224 192 237
-78 192 172 152 164
-79 210 222 168 183
-80 253 222 235 263
-81 264 254 223 236
-82 226 216 173 239
-83 211 225 172 238
-84 176 228 207 241
-85 242 178 229 208
-86 265 276 237 218
-87 198 209 214 182
-88 266 277 224 238
-89 267 278 246 226
-90 212 227 262 252
-91 268 279 228 250
-92 269 280 249 229
-93 275 270 240 230
-94 233 281 271 241
-95 242 234 282 272
-96 275 270 240 230
-97 265 276 237 218
-98 210 261 251 219
-99 264 254 223 236
-100 232 213 235 195
-101 231 202 246 258
-102 243 233 214 196
-103 243 255 283 273
-104 244 256 284 274
-105 203 225 247 259
-106 232 204 248 260
-107 209 220 255 250
-108 257 239 294 285
-109 286 245 258 295
-110 287 266 289 247
-111 287 288 248 263
-112 269 280 249 229
-113 289 260 251 296
-114 297 290 270 252
-115 286 245 258 295
-116 244 256 284 274
-117 253 298 291 261
-118 254 299 292 262
-119 257 239 294 285
-120 266 277 224 238
-121 233 281 271 241
-122 242 234 282 272
-123 253 222 235 263
-124 264 275 300 293
-125 267 278 246 226
-126 268 279 228 250
-127 276 291 259 296
-128 265 298 277 288
-129 286 267 268 283
-130 254 299 292 262
-131 299 269 293 284
-132 297 290 270 252
-133 278 279 271 294
-134 297 280 292 272
-135 265 298 277 288
-136 253 298 291 261
-137 264 275 300 293
-138 281 273 295 285
-139 300 290 282 274
-140 276 291 259 296
-141 289 260 251 296
-142 243 255 283 273
-143 287 266 289 247
-144 287 288 248 263
-145 297 280 292 272
-146 300 290 282 274
-147 286 267 268 283
-148 299 269 293 284
-149 281 273 295 285
-150 278 279 271 294
-151 1 2 59 54
-152 1 78 4 59
-153 1 59 5 29
-154 3 69 6 43
-155 11 2 71 54
-156 1 12 48 59
-157 13 3 28 43
-158 2 14 53 54
-159 55 3 15 43
-160 47 58 16 7
-161 17 40 8 64
-162 45 18 19 9
-163 19 9 10 32
-164 44 78 4 26
-165 44 26 5 29
-166 69 70 6 30
-167 77 2 31 54
-168 24 79 3 43
-169 13 58 28 7
-170 8 19 9 64
-171 33 10 21 32
-172 34 78 4 83
-173 35 5 82 29
-174 46 36 69 6
-175 55 58 15 7
-176 37 84 8 64
-177 73 19 9 20
-178 38 85 10 32
-179 33 73 20 21
-180 22 33 39 21
-181 22 17 39 40
-182 23 17 40 87
-183 24 79 70 30
-184 11 25 71 74
-185 13 28 41 52
-186 44 26 42 75
-187 13 57 27 28
-188 11 12 48 71
-189 14 25 74 53
-190 47 70 16 30
-191 45 17 18 40
-192 77 78 4 31
-193 56 68 5 29
-194 69 6 41 52
-195 100 58 49 7
-196 102 50 8 64
-197 72 51 10 32
-198 33 23 21 87
-199 44 25 26 74
-200 57 47 16 27
-201 11 71 42 75
-202 12 101 48 60
-203 14 61 105 53
-204 55 15 62 106
-205 46 36 47 16
-206 45 18 63 76
-207 37 73 84 20
-208 22 38 39 85
-209 23 107 65 87
-210 66 24 79 98
-211 34 25 83 74
-212 67 57 90 27
-213 100 70 49 30
-214 23 102 50 87
-215 45 72 18 51
-216 35 82 42 75
-217 12 56 68 48
-218 14 53 86 97
-219 55 66 15 98
-220 73 107 20 65
-221 22 39 63 76
-222 24 79 123 80
-223 99 57 81 27
-224 77 88 31 120
-225 34 61 83 105
-226 89 35 125 82
-227 67 46 90 36
-228 91 37 126 84
-229 112 92 38 85
-230 93 41 52 96
-231 101 60 42 75
-232 100 49 62 106
-233 121 102 50 94
-234 122 72 51 95
-235 100 123 80 49
-236 99 81 41 52
-237 77 31 86 97
-238 88 34 83 120
-239 35 82 108 119
-240 46 36 93 96
-241 121 37 94 84
-242 122 38 95 85
-243 102 103 50 142
-244 104 72 116 51
-245 56 68 115 109
-246 89 101 125 60
-247 110 143 61 105
-248 111 144 62 106
-249 112 92 63 76
-250 91 126 107 65
-251 66 113 141 98
-252 132 67 90 114
-253 123 80 136 117
-254 99 81 118 130
-255 103 107 65 142
-256 104 116 63 76
-257 56 68 108 119
-258 101 60 115 109
-259 61 105 127 140
-260 113 62 106 141
-261 66 136 117 98
-262 67 90 118 130
-263 111 144 123 80
-264 99 124 81 137
-265 135 128 86 97
-266 88 110 143 120
-267 89 125 147 129
-268 91 147 126 129
-269 112 92 148 131
-270 132 114 93 96
-271 121 133 94 150
-272 122 134 145 95
-273 103 138 149 142
-274 146 104 116 139
-275 124 93 137 96
-276 127 140 86 97
-277 88 135 128 120
-278 89 133 125 150
-279 133 91 126 150
-280 112 134 145 92
-281 121 94 138 149
-282 122 146 95 139
-283 103 147 129 142
-284 104 148 116 131
-285 138 149 108 119
-286 147 115 129 109
-287 110 143 111 144
-288 111 144 135 128
-289 110 143 113 141
-290 132 146 114 139
-291 136 127 117 140
-292 134 145 118 130
-293 124 137 148 131
-294 133 150 108 119
-295 115 138 149 109
-296 113 127 140 141
-297 132 134 145 114
-298 135 136 117 128
-299 148 118 130 131
-300 124 146 137 139
0