C4graphGraph forms for C4 [ 300, 46 ] = XI(Rmap(150,33){5,6|10}_5)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 300, 46 ] = XI(Rmap(150,33){5,6|10}_5).

(I) Following is a form readable by MAGMA:

g:=Graph<300|{ {144, 190}, {132, 189}, {138, 176}, {137, 181}, {138, 200}, {148, 208}, {128, 197}, {144, 220}, {137, 198}, {128, 217}, {132, 219}, {148, 245}, {135, 228}, {140, 232}, {131, 228}, {142, 231}, {130, 243}, {132, 245}, {136, 250}, {131, 244}, {137, 240}, {56, 184}, {57, 185}, {58, 186}, {85, 213}, {61, 188}, {73, 200}, {52, 183}, {19, 151}, {29, 152}, {110, 235}, {45, 168}, {42, 175}, {40, 173}, {28, 154}, {29, 155}, {79, 201}, {81, 215}, {41, 174}, {60, 187}, {78, 201}, {35, 171}, {18, 152}, {126, 244}, {19, 153}, {39, 172}, {94, 210}, {116, 248}, {113, 253}, {112, 252}, {107, 231}, {97, 237}, {59, 182}, {17, 159}, {97, 239}, {96, 238}, {95, 209}, {120, 247}, {121, 246}, {11, 155}, {127, 239}, {112, 224}, {12, 156}, {70, 214}, {46, 191}, {114, 227}, {104, 249}, {64, 209}, {66, 211}, {67, 210}, {68, 213}, {70, 215}, {72, 217}, {74, 219}, {98, 240}, {32, 179}, {106, 249}, {105, 250}, {103, 244}, {99, 240}, {44, 191}, {36, 183}, {64, 211}, {65, 210}, {66, 209}, {69, 214}, {73, 218}, {76, 223}, {84, 199}, {40, 188}, {126, 234}, {118, 226}, {117, 225}, {111, 251}, {82, 198}, {2, 151}, {102, 243}, {100, 241}, {35, 182}, {33, 180}, {10, 159}, {8, 157}, {65, 212}, {1, 151}, {101, 243}, {9, 158}, {105, 254}, {101, 242}, {34, 181}, {67, 212}, {75, 220}, {1, 153}, {117, 237}, {4, 156}, {2, 154}, {1, 152}, {82, 203}, {85, 204}, {91, 194}, {1, 155}, {100, 254}, {4, 158}, {59, 161}, {62, 164}, {63, 165}, {80, 202}, {81, 203}, {3, 152}, {96, 251}, {95, 196}, {12, 151}, {7, 156}, {86, 205}, {37, 185}, {110, 242}, {39, 187}, {38, 186}, {86, 202}, {2, 159}, {6, 155}, {4, 153}, {88, 197}, {2, 156}, {112, 238}, {111, 241}, {7, 153}, {3, 157}, {60, 162}, {61, 163}, {5, 154}, {71, 216}, {80, 207}, {24, 184}, {4, 165}, {31, 190}, {23, 182}, {15, 174}, {63, 158}, {79, 238}, {10, 168}, {17, 179}, {16, 178}, {11, 169}, {3, 160}, {96, 195}, {95, 252}, {30, 189}, {24, 187}, {5, 166}, {62, 157}, {5, 161}, {106, 206}, {20, 176}, {7, 163}, {6, 162}, {64, 228}, {65, 229}, {25, 188}, {66, 231}, {88, 253}, {90, 255}, {6, 160}, {19, 181}, {18, 180}, {12, 170}, {9, 175}, {8, 174}, {3, 164}, {89, 254}, {21, 189}, {118, 222}, {113, 217}, {23, 191}, {22, 190}, {77, 229}, {8, 161}, {121, 208}, {95, 246}, {94, 247}, {67, 234}, {6, 172}, {121, 211}, {107, 193}, {13, 167}, {7, 173}, {11, 160}, {101, 206}, {15, 164}, {67, 232}, {81, 250}, {10, 166}, {120, 212}, {30, 178}, {69, 233}, {73, 229}, {14, 163}, {31, 178}, {77, 224}, {85, 248}, {5, 171}, {116, 218}, {31, 177}, {9, 167}, {13, 162}, {122, 213}, {30, 177}, {89, 233}, {111, 223}, {110, 222}, {109, 221}, {93, 237}, {92, 236}, {90, 234}, {91, 235}, {43, 154}, {126, 207}, {77, 252}, {80, 225}, {82, 227}, {10, 184}, {18, 160}, {14, 188}, {11, 185}, {90, 232}, {81, 226}, {24, 172}, {118, 194}, {43, 159}, {42, 158}, {41, 157}, {27, 175}, {26, 174}, {25, 173}, {76, 248}, {16, 165}, {72, 253}, {89, 236}, {92, 233}, {12, 186}, {107, 221}, {13, 187}, {90, 236}, {17, 166}, {76, 251}, {87, 239}, {94, 230}, {75, 242}, {101, 220}, {28, 166}, {109, 215}, {98, 216}, {68, 254}, {69, 255}, {74, 241}, {20, 168}, {23, 171}, {22, 170}, {21, 169}, {8, 182}, {27, 165}, {26, 164}, {15, 177}, {14, 176}, {9, 183}, {75, 245}, {16, 175}, {100, 219}, {32, 225}, {34, 227}, {118, 180}, {33, 226}, {25, 221}, {116, 176}, {115, 183}, {108, 168}, {47, 235}, {29, 217}, {27, 223}, {26, 222}, {14, 200}, {117, 179}, {15, 201}, {114, 181}, {55, 255}, {13, 199}, {23, 221}, {22, 220}, {47, 228}, {114, 185}, {113, 186}, {52, 255}, {48, 251}, {49, 252}, {20, 218}, {21, 219}, {50, 253}, {51, 227}, {110, 190}, {38, 247}, {40, 249}, {62, 239}, {109, 191}, {111, 189}, {32, 243}, {42, 249}, {41, 250}, {37, 246}, {36, 247}, {20, 192}, {115, 167}, {108, 184}, {19, 198}, {56, 237}, {55, 226}, {50, 231}, {48, 229}, {35, 246}, {33, 244}, {59, 238}, {34, 245}, {54, 225}, {49, 230}, {24, 192}, {29, 197}, {28, 196}, {27, 195}, {26, 194}, {25, 193}, {16, 201}, {21, 204}, {18, 203}, {58, 224}, {60, 230}, {17, 202}, {114, 169}, {113, 170}, {55, 236}, {51, 232}, {43, 240}, {22, 205}, {52, 233}, {54, 235}, {39, 248}, {57, 230}, {53, 234}, {44, 206}, {45, 207}, {61, 223}, {36, 199}, {86, 179}, {82, 180}, {63, 216}, {54, 222}, {37, 204}, {38, 205}, {31, 242}, {47, 194}, {45, 192}, {44, 193}, {32, 206}, {33, 207}, {30, 241}, {53, 218}, {46, 193}, {34, 208}, {39, 213}, {38, 212}, {35, 209}, {83, 161}, {43, 216}, {52, 199}, {48, 195}, {84, 167}, {49, 196}, {57, 204}, {51, 198}, {87, 162}, {88, 173}, {36, 210}, {37, 211}, {50, 197}, {58, 205}, {56, 192}, {83, 171}, {87, 172}, {88, 163}, {28, 224}, {55, 203}, {54, 202}, {42, 214}, {78, 178}, {85, 169}, {86, 170}, {53, 200}, {40, 214}, {46, 208}, {41, 215}, {58, 196}, {61, 195}, {79, 177}, {44, 268}, {45, 269}, {47, 270}, {50, 272}, {51, 273}, {53, 273}, {59, 275}, {46, 260}, {57, 274}, {60, 274}, {56, 265}, {48, 258}, {62, 266}, {63, 267}, {49, 271}, {102, 294}, {68, 261}, {97, 288}, {93, 284}, {89, 285}, {91, 286}, {99, 294}, {65, 262}, {71, 256}, {79, 263}, {84, 284}, {72, 257}, {74, 259}, {76, 261}, {73, 258}, {93, 278}, {77, 262}, {71, 267}, {83, 287}, {78, 256}, {75, 260}, {78, 286}, {124, 300}, {69, 276}, {115, 290}, {94, 271}, {70, 276}, {70, 277}, {125, 297}, {124, 292}, {66, 283}, {83, 264}, {91, 256}, {68, 281}, {92, 257}, {80, 269}, {84, 265}, {119, 297}, {124, 290}, {92, 259}, {64, 289}, {123, 282}, {119, 278}, {104, 265}, {112, 275}, {123, 280}, {108, 264}, {71, 290}, {106, 268}, {96, 263}, {99, 267}, {74, 291}, {102, 268}, {103, 269}, {72, 291}, {125, 278}, {127, 275}, {115, 286}, {122, 279}, {125, 275}, {126, 273}, {107, 283}, {116, 261}, {119, 262}, {122, 264}, {104, 284}, {105, 285}, {98, 279}, {127, 266}, {119, 258}, {87, 288}, {103, 272}, {109, 277}, {127, 263}, {120, 257}, {123, 258}, {93, 295}, {125, 263}, {99, 280}, {120, 259}, {108, 279}, {102, 282}, {124, 256}, {117, 265}, {105, 277}, {104, 276}, {103, 283}, {97, 284}, {123, 262}, {121, 260}, {100, 281}, {98, 287}, {106, 276}, {122, 261}, {132, 260}, {136, 264}, {137, 267}, {135, 271}, {134, 271}, {128, 266}, {129, 266}, {133, 270}, {131, 270}, {130, 268}, {150, 280}, {148, 282}, {131, 269}, {141, 285}, {143, 287}, {138, 283}, {139, 281}, {147, 257}, {144, 259}, {130, 278}, {141, 281}, {140, 280}, {134, 274}, {135, 274}, {139, 285}, {140, 282}, {136, 287}, {134, 286}, {143, 279}, {138, 272}, {136, 277}, {140, 273}, {142, 272}, {145, 270}, {128, 288}, {139, 299}, {129, 288}, {129, 293}, {143, 299}, {142, 298}, {134, 290}, {133, 289}, {130, 295}, {141, 296}, {135, 289}, {142, 296}, {141, 293}, {129, 298}, {143, 292}, {133, 296}, {133, 298}, {139, 292}, {145, 289}, {150, 294}, {147, 291}, {148, 294}, {149, 295}, {144, 291}, {145, 292}, {146, 295}, {147, 293}, {146, 293}, {146, 298}, {149, 300}, {150, 300}, {146, 297}, {147, 296}, {149, 297}, {145, 300}, {150, 299}, {149, 299} }>;

(II) A more general form is to represent the graph as the orbit of {144, 190} under the group generated by the following permutations:

a: (1, 2)(3, 5)(4, 7)(6, 10)(9, 14)(11, 17)(12, 19)(13, 20)(15, 23)(16, 25)(18, 28)(21, 32)(22, 34)(26, 35)(27, 40)(29, 43)(30, 44)(31, 46)(33, 49)(36, 53)(37, 54)(38, 51)(39, 56)(41, 59)(42, 61)(45, 60)(47, 64)(48, 69)(50, 71)(52, 73)(55, 77)(57, 80)(58, 82)(62, 83)(63, 88)(65, 90)(66, 91)(68, 93)(70, 96)(72, 99)(74, 102)(76, 104)(78, 107)(79, 109)(81, 112)(84, 116)(85, 117)(86, 114)(87, 108)(89, 119)(92, 123)(94, 126)(95, 118)(97, 122)(98, 128)(100, 130)(101, 132)(103, 134)(105, 125)(106, 111)(110, 121)(113, 137)(115, 138)(120, 140)(124, 142)(127, 136)(129, 143)(131, 135)(133, 145)(139, 146)(141, 149)(144, 148)(147, 150)(152, 154)(153, 156)(155, 159)(157, 161)(158, 163)(160, 166)(162, 168)(164, 171)(165, 173)(167, 176)(169, 179)(170, 181)(172, 184)(174, 182)(175, 188)(177, 191)(178, 193)(180, 196)(183, 200)(185, 202)(186, 198)(187, 192)(189, 206)(190, 208)(194, 209)(195, 214)(197, 216)(199, 218)(201, 221)(203, 224)(204, 225)(205, 227)(207, 230)(210, 234)(211, 235)(212, 232)(213, 237)(215, 238)(217, 240)(219, 243)(220, 245)(222, 246)(223, 249)(226, 252)(229, 255)(231, 256)(233, 258)(236, 262)(239, 264)(241, 268)(242, 260)(244, 271)(247, 273)(248, 265)(250, 275)(251, 276)(253, 267)(254, 278)(257, 280)(259, 282)(261, 284)(263, 277)(266, 287)(269, 274)(270, 289)(272, 290)(279, 288)(281, 295)(283, 286)(285, 297)(291, 294)(292, 298)(293, 299)(296, 300)
b: (2, 4)(5, 16)(7, 12)(8, 15)(9, 10)(13, 24)(14, 38)(17, 42)(20, 36)(21, 37)(22, 25)(23, 31)(26, 41)(27, 28)(30, 35)(32, 106)(33, 55)(39, 60)(40, 86)(43, 63)(44, 101)(45, 52)(46, 75)(47, 105)(48, 77)(49, 76)(50, 72)(53, 67)(54, 70)(56, 84)(57, 85)(58, 61)(59, 79)(64, 100)(65, 73)(66, 74)(68, 135)(69, 80)(71, 98)(78, 83)(81, 118)(88, 113)(89, 131)(90, 126)(91, 136)(92, 103)(94, 116)(95, 111)(96, 112)(104, 117)(107, 144)(108, 115)(109, 110)(120, 138)(121, 132)(122, 134)(124, 143)(133, 141)(139, 145)(142, 147)(151, 153)(154, 165)(157, 164)(158, 159)(161, 201)(162, 172)(163, 186)(166, 175)(167, 184)(168, 183)(169, 185)(170, 173)(171, 178)(176, 247)(177, 182)(179, 249)(180, 203)(188, 205)(189, 246)(190, 221)(191, 242)(192, 199)(193, 220)(194, 250)(195, 224)(196, 223)(197, 217)(200, 212)(202, 214)(207, 255)(208, 245)(209, 241)(210, 218)(211, 219)(213, 274)(215, 222)(225, 276)(228, 254)(230, 248)(231, 291)(232, 273)(233, 269)(235, 277)(236, 244)(237, 284)(240, 267)(243, 268)(251, 252)(256, 287)(257, 272)(258, 262)(259, 283)(261, 271)(263, 275)(264, 286)(270, 285)(279, 290)(281, 289)(293, 298)(299, 300)
c: (2, 6, 4, 3)(5, 24, 9, 15)(7, 18, 12, 11)(8, 10, 13, 16)(14, 55, 22, 37)(17, 60, 27, 41)(19, 29)(20, 52, 31, 35)(21, 25, 33, 38)(23, 45, 36, 30)(26, 28, 39, 42)(32, 135, 48, 105)(34, 50, 51, 72)(40, 118, 58, 85)(43, 87, 63, 62)(44, 131, 65, 100)(46, 103, 67, 74)(47, 77, 68, 106)(49, 76, 70, 54)(53, 92, 75, 66)(56, 115, 79, 83)(57, 61, 81, 86)(59, 108, 84, 78)(64, 73, 89, 101)(69, 110, 95, 116)(71, 127, 98, 97)(80, 94, 111, 109)(82, 113, 114, 88)(90, 144, 121, 138)(91, 112, 122, 104)(93, 124, 125, 143)(96, 136, 117, 134)(99, 129)(102, 133, 123, 141)(107, 126, 120, 132)(119, 139, 130, 145)(128, 137)(140, 147, 148, 142)(146, 150)(151, 155, 153, 152)(154, 172, 158, 164)(156, 160)(157, 159, 162, 165)(161, 184, 167, 201)(163, 203, 170, 185)(166, 187, 175, 174)(168, 199, 178, 182)(169, 173, 180, 186)(171, 192, 183, 177)(176, 255, 190, 246)(179, 274, 195, 250)(181, 197, 198, 217)(188, 226, 205, 204)(189, 221, 207, 247)(191, 269, 210, 241)(193, 244, 212, 219)(194, 224, 213, 249)(196, 248, 214, 222)(200, 236, 220, 211)(202, 230, 223, 215)(206, 228, 229, 254)(208, 272, 232, 291)(209, 218, 233, 242)(216, 239)(225, 271, 251, 277)(227, 253)(231, 273, 257, 245)(234, 259, 260, 283)(235, 252, 261, 276)(237, 290, 263, 287)(238, 264, 265, 286)(240, 288, 267, 266)(243, 289, 258, 285)(256, 275, 279, 284)(262, 281, 268, 270)(278, 292)(280, 293, 294, 298)(282, 296)(295, 300, 297, 299)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 300, 46 ]
300
-1 155 151 152 153
-2 154 156 159 151
-3 157 160 152 164
-4 165 156 158 153
-5 154 166 171 161
-6 155 160 172 162
-7 156 173 163 153
-8 157 182 161 174
-9 167 158 183 175
-10 166 168 159 184
-11 155 169 160 185
-12 156 170 151 186
-13 187 199 167 162
-14 176 188 200 163
-15 177 201 174 164
-16 165 178 201 175
-17 166 179 202 159
-18 180 203 160 152
-19 198 181 151 153
-20 176 168 192 218
-21 189 169 204 219
-22 220 190 170 205
-23 221 191 171 182
-24 187 192 172 184
-25 188 221 193 173
-26 222 194 174 164
-27 165 223 195 175
-28 154 166 224 196
-29 155 217 152 197
-30 177 178 189 241
-31 242 177 178 190
-32 243 179 225 206
-33 244 180 226 207
-34 245 181 227 208
-35 209 246 171 182
-36 199 210 247 183
-37 211 246 204 185
-38 212 247 205 186
-39 187 213 248 172
-40 188 214 249 173
-41 157 215 250 174
-42 158 214 249 175
-43 154 159 216 240
-44 191 268 193 206
-45 168 192 269 207
-46 191 193 260 208
-47 235 270 194 228
-48 258 195 229 251
-49 271 196 230 252
-50 231 253 272 197
-51 198 232 227 273
-52 199 233 255 183
-53 200 234 218 273
-54 222 202 235 225
-55 255 203 236 226
-56 265 192 237 184
-57 204 185 230 274
-58 224 205 196 186
-59 275 182 161 238
-60 187 162 230 274
-61 188 223 195 163
-62 266 157 239 164
-63 165 267 158 216
-64 209 211 289 228
-65 210 212 229 262
-66 209 231 211 283
-67 210 232 212 234
-68 254 213 281 261
-69 276 233 255 214
-70 276 277 214 215
-71 256 267 290 216
-72 253 257 291 217
-73 200 258 218 229
-74 291 259 219 241
-75 220 242 245 260
-76 223 248 261 251
-77 224 229 262 252
-78 286 178 201 256
-79 177 201 238 263
-80 202 225 269 207
-81 203 215 226 250
-82 198 180 203 227
-83 264 287 171 161
-84 199 265 167 284
-85 169 213 204 248
-86 179 202 170 205
-87 288 172 162 239
-88 253 173 163 197
-89 254 233 236 285
-90 232 255 234 236
-91 286 256 235 194
-92 233 257 236 259
-93 278 237 284 295
-94 210 247 271 230
-95 209 246 196 252
-96 238 195 251 263
-97 288 237 239 284
-98 287 279 216 240
-99 267 280 294 240
-100 254 281 219 241
-101 220 242 243 206
-102 243 268 282 294
-103 244 269 272 283
-104 265 276 249 284
-105 254 277 250 285
-106 276 268 249 206
-107 231 221 193 283
-108 264 168 279 184
-109 221 277 191 215
-110 242 222 190 235
-111 189 223 251 241
-112 275 224 238 252
-113 253 170 217 186
-114 169 181 227 185
-115 286 167 290 183
-116 176 248 261 218
-117 265 179 225 237
-118 222 180 226 194
-119 297 278 258 262
-120 212 257 247 259
-121 211 246 260 208
-122 264 213 279 261
-123 258 280 282 262
-124 256 300 290 292
-125 275 297 278 263
-126 244 234 207 273
-127 275 266 239 263
-128 266 288 217 197
-129 298 266 288 293
-130 243 278 268 295
-131 244 269 270 228
-132 189 245 260 219
-133 298 289 270 296
-134 286 290 271 274
-135 289 271 228 274
-136 264 287 277 250
-137 198 267 181 240
-138 176 200 272 283
-139 299 281 292 285
-140 232 280 282 273
-141 281 293 285 296
-142 231 298 272 296
-143 287 299 279 292
-144 220 190 291 259
-145 289 300 270 292
-146 297 298 293 295
-147 257 291 293 296
-148 245 282 294 208
-149 297 299 300 295
-150 299 300 280 294
-151 1 12 2 19
-152 1 3 18 29
-153 1 4 7 19
-154 2 5 28 43
-155 11 1 6 29
-156 12 2 4 7
-157 3 62 8 41
-158 4 63 9 42
-159 2 17 10 43
-160 11 3 6 18
-161 59 5 83 8
-162 13 60 6 87
-163 88 14 61 7
-164 3 15 26 62
-165 4 16 27 63
-166 5 17 28 10
-167 13 115 84 9
-168 45 20 108 10
-169 11 114 85 21
-170 22 12 113 86
-171 23 35 5 83
-172 24 6 39 87
-173 88 25 7 40
-174 15 26 8 41
-175 16 27 9 42
-176 14 116 138 20
-177 79 15 30 31
-178 78 16 30 31
-179 17 117 86 32
-180 33 82 18 118
-181 34 114 137 19
-182 23 35 59 8
-183 36 115 52 9
-184 56 24 108 10
-185 11 57 37 114
-186 12 58 113 38
-187 13 24 60 39
-188 14 25 61 40
-189 132 111 30 21
-190 22 110 144 31
-191 44 23 46 109
-192 45 56 24 20
-193 44 46 25 107
-194 47 91 26 118
-195 48 27 61 96
-196 58 49 28 95
-197 88 50 29 128
-198 82 137 51 19
-199 13 36 84 52
-200 14 138 73 53
-201 78 79 15 16
-202 80 17 86 54
-203 55 81 82 18
-204 57 37 85 21
-205 22 58 38 86
-206 44 101 106 32
-207 33 45 80 126
-208 121 34 46 148
-209 66 35 95 64
-210 67 36 94 65
-211 66 121 37 64
-212 67 38 65 120
-213 122 68 39 85
-214 69 70 40 42
-215 70 81 41 109
-216 71 63 43 98
-217 113 72 29 128
-218 116 73 20 53
-219 132 100 74 21
-220 22 144 101 75
-221 23 25 107 109
-222 110 26 118 54
-223 111 27 61 76
-224 77 112 58 28
-225 80 117 32 54
-226 33 55 81 118
-227 34 114 82 51
-228 47 135 64 131
-229 77 48 73 65
-230 57 49 60 94
-231 66 50 107 142
-232 67 90 51 140
-233 89 69 92 52
-234 67 90 126 53
-235 110 47 91 54
-236 55 89 90 92
-237 56 93 117 97
-238 79 112 59 96
-239 127 62 97 87
-240 99 137 43 98
-241 100 111 30 74
-242 110 101 31 75
-243 101 102 130 32
-244 33 103 126 131
-245 132 34 148 75
-246 121 35 37 95
-247 36 38 94 120
-248 39 116 85 76
-249 104 40 106 42
-250 81 136 105 41
-251 111 48 96 76
-252 77 112 49 95
-253 88 113 50 72
-254 89 100 68 105
-255 55 90 69 52
-256 78 91 124 71
-257 92 147 72 120
-258 123 48 73 119
-259 144 92 74 120
-260 121 132 46 75
-261 122 68 116 76
-262 77 123 119 65
-263 79 125 127 96
-264 122 136 83 108
-265 56 104 84 117
-266 127 62 128 129
-267 99 71 137 63
-268 44 102 106 130
-269 45 80 103 131
-270 133 145 47 131
-271 134 135 49 94
-272 103 50 138 142
-273 126 51 140 53
-274 57 134 135 60
-275 112 59 125 127
-276 69 70 104 106
-277 70 136 105 109
-278 125 93 119 130
-279 143 122 108 98
-280 99 123 150 140
-281 100 68 139 141
-282 123 102 148 140
-283 66 103 138 107
-284 93 104 84 97
-285 89 105 139 141
-286 78 134 91 115
-287 143 136 83 98
-288 128 129 97 87
-289 133 145 135 64
-290 134 124 71 115
-291 144 147 72 74
-292 143 145 124 139
-293 146 147 129 141
-294 99 102 148 150
-295 146 93 149 130
-296 133 147 141 142
-297 146 125 149 119
-298 133 146 129 142
-299 143 149 139 150
-300 145 124 149 150
0

**************