[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 300, 47 ] =
XI(Rmap(150,35){5,10|6}_15).
(I) Following is a form readable by MAGMA:
g:=Graph<300|{ {132, 158}, {142, 164}, {129, 173}, {129, 172}, {132, 178}, {142,
185}, {132, 204}, {130, 203}, {130, 206}, {135, 203}, {142, 193}, {129, 215},
{129, 214}, {134, 222}, {140, 209}, {142, 239}, {141, 232}, {135, 225}, {140,
234}, {136, 238}, {144, 250}, {135, 236}, {137, 226}, {133, 233}, {144, 254},
{137, 230}, {128, 247}, {141, 250}, {143, 246}, {131, 249}, {138, 240}, {133,
248}, {131, 253}, {138, 245}, {111, 239}, {43, 170}, {55, 182}, {88, 217}, {30,
156}, {50, 176}, {62, 188}, {79, 205}, {93, 223}, {46, 173}, {100, 231}, {68,
199}, {76, 207}, {83, 208}, {89, 218}, {63, 187}, {64, 196}, {79, 202}, {109,
232}, {80, 213}, {105, 238}, {126, 249}, {107, 227}, {119, 255}, {84, 221}, {73,
195}, {83, 216}, {115, 248}, {106, 225}, {44, 160}, {119, 251}, {108, 224}, {45,
161}, {59, 183}, {94, 209}, {106, 229}, {97, 241}, {123, 235}, {46, 191}, {88,
201}, {96, 243}, {115, 224}, {62, 170}, {102, 242}, {2, 151}, {113, 228}, {10,
159}, {8, 157}, {1, 151}, {9, 158}, {104, 255}, {40, 191}, {32, 183}, {67, 212},
{1, 153}, {44, 180}, {43, 179}, {2, 154}, {1, 152}, {105, 240}, {103, 254},
{101, 252}, {99, 250}, {39, 190}, {37, 188}, {35, 186}, {33, 184}, {81, 200},
{1, 155}, {110, 244}, {4, 158}, {70, 220}, {3, 152}, {98, 249}, {38, 189}, {34,
185}, {7, 156}, {67, 223}, {126, 226}, {118, 234}, {71, 219}, {2, 159}, {6,
155}, {4, 153}, {63, 162}, {2, 156}, {98, 252}, {33, 191}, {3, 157}, {64, 222},
{5, 154}, {116, 235}, {109, 242}, {100, 251}, {36, 187}, {75, 235}, {10, 171},
{96, 193}, {20, 181}, {12, 173}, {90, 251}, {95, 254}, {4, 166}, {122, 216},
{112, 210}, {5, 167}, {83, 241}, {3, 160}, {9, 170}, {7, 164}, {69, 230}, {4,
161}, {31, 186}, {12, 169}, {6, 163}, {69, 224}, {3, 165}, {18, 180}, {74, 236},
{84, 242}, {5, 162}, {116, 211}, {16, 183}, {13, 170}, {11, 172}, {87, 240},
{91, 252}, {29, 181}, {77, 229}, {78, 230}, {95, 247}, {6, 175}, {31, 182}, {29,
180}, {27, 178}, {25, 176}, {19, 186}, {17, 184}, {72, 225}, {74, 227}, {8,
162}, {15, 165}, {14, 164}, {82, 248}, {89, 243}, {5, 174}, {109, 198}, {107,
192}, {26, 177}, {18, 185}, {11, 160}, {73, 226}, {92, 247}, {72, 228}, {12,
161}, {125, 208}, {68, 233}, {82, 255}, {6, 168}, {124, 210}, {121, 215}, {120,
214}, {13, 163}, {7, 169}, {28, 179}, {75, 228}, {70, 246}, {114, 194}, {77,
253}, {69, 244}, {98, 211}, {71, 246}, {19, 161}, {71, 245}, {8, 187}, {12,
191}, {70, 245}, {45, 153}, {9, 188}, {29, 168}, {11, 190}, {16, 166}, {17,
167}, {7, 176}, {30, 169}, {24, 175}, {10, 189}, {80, 231}, {8, 177}, {23, 174},
{21, 172}, {15, 182}, {10, 179}, {81, 232}, {86, 239}, {18, 168}, {99, 217},
{19, 169}, {9, 178}, {22, 173}, {14, 181}, {82, 233}, {85, 238}, {87, 236}, {81,
237}, {64, 253}, {66, 255}, {116, 202}, {118, 200}, {11, 180}, {20, 171}, {65,
254}, {25, 217}, {94, 158}, {20, 213}, {124, 189}, {52, 245}, {26, 219}, {24,
217}, {22, 215}, {13, 207}, {47, 237}, {33, 227}, {17, 211}, {16, 210}, {59,
249}, {21, 214}, {53, 246}, {39, 228}, {30, 221}, {25, 218}, {91, 152}, {89,
157}, {32, 229}, {57, 252}, {90, 159}, {92, 153}, {18, 212}, {38, 224}, {60,
250}, {61, 251}, {27, 220}, {112, 183}, {51, 244}, {28, 212}, {117, 189}, {107,
163}, {42, 226}, {41, 225}, {44, 229}, {57, 243}, {40, 227}, {45, 230}, {58,
241}, {92, 151}, {99, 175}, {116, 184}, {13, 192}, {48, 253}, {34, 239}, {15,
194}, {14, 193}, {56, 247}, {33, 238}, {23, 216}, {21, 197}, {30, 206}, {29,
205}, {28, 204}, {27, 203}, {26, 202}, {25, 201}, {24, 200}, {23, 199}, {22,
198}, {105, 184}, {56, 234}, {16, 195}, {105, 186}, {35, 240}, {122, 174}, {17,
196}, {112, 165}, {36, 241}, {66, 151}, {19, 197}, {117, 163}, {113, 167}, {37,
242}, {114, 165}, {28, 196}, {20, 205}, {45, 244}, {42, 243}, {31, 197}, {117,
175}, {102, 188}, {97, 187}, {55, 237}, {65, 155}, {58, 231}, {14, 208}, {117,
171}, {38, 248}, {15, 209}, {66, 156}, {41, 201}, {68, 164}, {47, 206}, {37,
199}, {58, 216}, {57, 218}, {63, 220}, {93, 190}, {39, 195}, {43, 207}, {49,
212}, {62, 219}, {32, 198}, {83, 181}, {47, 200}, {55, 208}, {64, 167}, {50,
218}, {115, 155}, {89, 177}, {94, 182}, {41, 192}, {118, 159}, {56, 209}, {54,
223}, {46, 199}, {65, 168}, {90, 179}, {40, 194}, {57, 211}, {44, 198}, {60,
214}, {61, 215}, {42, 193}, {115, 152}, {113, 154}, {118, 154}, {112, 157}, {48,
222}, {59, 213}, {43, 196}, {73, 166}, {48, 192}, {26, 235}, {93, 172}, {21,
231}, {47, 221}, {31, 237}, {24, 234}, {40, 219}, {38, 210}, {68, 176}, {70,
178}, {32, 213}, {71, 177}, {72, 190}, {88, 174}, {27, 236}, {94, 166}, {48,
201}, {54, 207}, {52, 205}, {50, 203}, {67, 185}, {88, 162}, {36, 223}, {53,
206}, {49, 202}, {39, 220}, {80, 171}, {91, 160}, {62, 194}, {63, 195}, {35,
222}, {49, 204}, {22, 232}, {23, 233}, {34, 221}, {58, 197}, {51, 204}, {60,
285}, {34, 256}, {35, 257}, {36, 258}, {37, 259}, {54, 284}, {56, 275}, {41,
260}, {46, 259}, {52, 282}, {53, 283}, {42, 261}, {60, 269}, {61, 270}, {50,
263}, {49, 262}, {51, 260}, {61, 261}, {51, 264}, {55, 268}, {59, 256}, {52,
265}, {54, 267}, {53, 266}, {86, 279}, {103, 294}, {82, 272}, {87, 277}, {90,
280}, {91, 281}, {85, 278}, {95, 284}, {74, 270}, {74, 271}, {111, 298}, {103,
290}, {80, 277}, {81, 276}, {69, 259}, {75, 269}, {79, 265}, {76, 267}, {102,
289}, {99, 299}, {108, 292}, {79, 262}, {106, 288}, {86, 285}, {104, 291}, {85,
281}, {102, 298}, {104, 293}, {65, 271}, {111, 289}, {92, 275}, {78, 286}, {95,
271}, {66, 272}, {84, 256}, {127, 299}, {114, 295}, {72, 286}, {73, 287}, {87,
271}, {127, 295}, {122, 290}, {120, 289}, {120, 290}, {124, 294}, {121, 291},
{75, 272}, {123, 288}, {122, 289}, {78, 274}, {76, 273}, {86, 264}, {67, 284},
{84, 267}, {93, 258}, {103, 263}, {127, 287}, {125, 285}, {100, 261}, {110,
268}, {77, 296}, {114, 279}, {107, 270}, {109, 267}, {78, 297}, {127, 280},
{111, 264}, {110, 265}, {101, 258}, {98, 266}, {121, 273}, {110, 260}, {125,
279}, {124, 278}, {123, 272}, {77, 288}, {108, 257}, {104, 262}, {76, 291},
{123, 276}, {119, 280}, {108, 259}, {97, 273}, {96, 273}, {125, 268}, {119,
262}, {100, 277}, {96, 274}, {97, 274}, {106, 286}, {120, 269}, {101, 275},
{121, 270}, {126, 261}, {101, 281}, {113, 269}, {126, 256}, {85, 298}, {146,
274}, {135, 260}, {130, 263}, {147, 278}, {134, 257}, {145, 278}, {130, 266},
{131, 266}, {139, 258}, {134, 268}, {147, 280}, {132, 264}, {147, 287}, {148,
282}, {149, 283}, {134, 265}, {138, 282}, {145, 257}, {141, 285}, {136, 281},
{143, 283}, {137, 287}, {137, 286}, {144, 263}, {139, 275}, {141, 276}, {128,
282}, {143, 276}, {128, 284}, {133, 283}, {136, 279}, {138, 277}, {139, 296},
{140, 297}, {133, 300}, {140, 293}, {131, 296}, {128, 300}, {136, 295}, {143,
288}, {139, 292}, {148, 293}, {150, 295}, {149, 294}, {150, 293}, {145, 292},
{147, 294}, {146, 292}, {148, 291}, {149, 290}, {148, 300}, {149, 300}, {146,
296}, {144, 299}, {146, 297}, {145, 298}, {150, 299}, {150, 297} }>;
(II) A more general form is to represent the graph as the orbit of {132, 158}
under the group generated by the following permutations:
a: (1, 2)(3, 5)(4, 7)(6, 10)(9, 14)(11, 17)(12, 19)(13, 20)(15, 23)(16, 25)(18,
28)(21, 33)(22, 35)(24, 38)(26, 36)(27, 42)(29, 43)(30, 45)(31, 46)(32, 48)(34,
51)(37, 55)(39, 57)(40, 58)(41, 59)(44, 64)(47, 69)(49, 67)(50, 73)(52, 76)(53,
78)(54, 79)(56, 82)(60, 85)(61, 87)(62, 83)(63, 89)(65, 90)(66, 92)(68, 94)(70,
96)(71, 97)(72, 98)(74, 100)(75, 101)(80, 107)(81, 108)(84, 110)(86, 111)(88,
112)(91, 113)(93, 116)(95, 119)(99, 124)(102, 125)(103, 127)(104, 128)(105,
129)(106, 131)(109, 134)(114, 122)(115, 118)(120, 136)(121, 138)(123, 139)(126,
135)(130, 137)(132, 142)(133, 140)(141, 145)(143, 146)(144, 147)(149, 150)(152,
154)(153, 156)(155, 159)(157, 162)(158, 164)(160, 167)(161, 169)(163, 171)(165,
174)(166, 176)(168, 179)(170, 181)(172, 184)(173, 186)(175, 189)(177, 187)(178,
193)(180, 196)(182, 199)(183, 201)(185, 204)(188, 208)(190, 211)(191, 197)(192,
213)(194, 216)(195, 218)(198, 222)(200, 224)(202, 223)(203, 226)(205, 207)(206,
230)(209, 233)(210, 217)(214, 238)(215, 240)(219, 241)(220, 243)(221, 244)(225,
249)(227, 231)(228, 252)(229, 253)(232, 257)(234, 248)(235, 258)(236, 261)(237,
259)(239, 264)(242, 268)(245, 273)(246, 274)(247, 255)(250, 278)(251, 271)(254,
280)(256, 260)(262, 284)(263, 287)(265, 267)(266, 286)(269, 281)(270, 277)(272,
275)(276, 292)(279, 289)(282, 291)(283, 297)(285, 298)(288, 296)(290, 295)(293,
300)(294, 299) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 4)(3, 6)(5, 9)(7, 12)(8, 13)(10, 16)(11, 18)(14, 22)(15, 24)(17, 27)(19,
30)(20, 32)(21, 34)(23, 37)(25, 40)(26, 41)(28, 39)(29, 44)(31, 47)(33, 50)(35,
53)(36, 54)(42, 61)(43, 63)(45, 66)(46, 68)(48, 71)(49, 72)(51, 75)(52, 77)(55,
81)(57, 74)(58, 84)(59, 80)(60, 86)(62, 88)(64, 70)(65, 91)(67, 93)(69, 82)(73,
90)(76, 97)(78, 104)(79, 106)(83, 109)(85, 103)(87, 98)(89, 107)(94, 118)(95,
101)(96, 121)(99, 114)(100, 126)(102, 122)(105, 130)(108, 133)(110, 123)(111,
120)(112, 117)(113, 132)(116, 135)(119, 137)(125, 141)(128, 139)(129, 142)(131,
138)(134, 143)(136, 144)(145, 149)(146, 148)(151, 153)(152, 155)(154, 158)(156,
161)(157, 163)(159, 166)(160, 168)(162, 170)(164, 173)(165, 175)(167, 178)(171,
183)(172, 185)(174, 188)(176, 191)(177, 192)(179, 195)(181, 198)(182, 200)(184,
203)(186, 206)(187, 207)(189, 210)(190, 212)(193, 215)(194, 217)(196, 220)(197,
221)(201, 219)(202, 225)(204, 228)(205, 229)(208, 232)(209, 234)(211, 236)(214,
239)(216, 242)(218, 227)(222, 246)(224, 248)(226, 251)(230, 255)(231, 256)(233,
259)(235, 260)(238, 263)(240, 266)(241, 267)(243, 270)(244, 272)(245, 253)(247,
275)(249, 277)(250, 279)(252, 271)(254, 281)(257, 283)(258, 284)(262, 286)(264,
269)(265, 288)(268, 276)(274, 291)(278, 294)(280, 287)(282, 296)(290, 298)(292,
300)(293, 297)(295, 299)
c: (2, 3)(4, 6)(5, 8)(7, 11)(9, 13)(10, 15)(12, 18)(14, 21)(16, 24)(17, 26)(19,
29)(20, 31)(22, 34)(23, 36)(25, 39)(27, 41)(28, 40)(30, 44)(32, 47)(33, 49)(35,
52)(37, 54)(38, 56)(42, 60)(43, 62)(45, 65)(46, 67)(48, 70)(50, 72)(51, 74)(53,
77)(55, 80)(57, 75)(58, 83)(59, 81)(61, 86)(63, 88)(64, 71)(66, 91)(68, 93)(69,
95)(73, 99)(76, 102)(78, 103)(79, 105)(82, 101)(84, 109)(85, 104)(87, 110)(89,
113)(90, 114)(92, 115)(94, 117)(96, 120)(97, 122)(98, 123)(100, 125)(106,
130)(107, 132)(108, 128)(111, 121)(112, 118)(119, 136)(124, 140)(126, 141)(129,
142)(131, 143)(133, 139)(134, 138)(137, 144)(145, 148)(146, 149)(147, 150)(151,
152)(153, 155)(154, 157)(156, 160)(158, 163)(159, 165)(161, 168)(164, 172)(166,
175)(167, 177)(169, 180)(171, 182)(173, 185)(174, 187)(176, 190)(178, 192)(179,
194)(181, 197)(183, 200)(184, 202)(186, 205)(188, 207)(189, 209)(191, 212)(193,
214)(195, 217)(196, 219)(198, 221)(199, 223)(201, 220)(203, 225)(204, 227)(206,
229)(208, 231)(210, 234)(211, 235)(213, 237)(215, 239)(216, 241)(218, 228)(222,
245)(224, 247)(226, 250)(230, 254)(232, 256)(233, 258)(236, 260)(238, 262)(240,
265)(242, 267)(243, 269)(244, 271)(246, 253)(248, 275)(249, 276)(251, 279)(252,
272)(255, 281)(257, 282)(259, 284)(261, 285)(263, 286)(264, 270)(266, 288)(268,
277)(273, 289)(274, 290)(278, 293)(280, 295)(283, 296)(287, 299)(291, 298)(292,
300)(294, 297)
C4[ 300, 47 ]
300
-1 155 151 152 153
-2 154 156 159 151
-3 165 157 160 152
-4 166 158 161 153
-5 154 167 162 174
-6 155 168 163 175
-7 176 156 169 164
-8 187 177 157 162
-9 188 178 158 170
-10 189 179 159 171
-11 190 180 160 172
-12 169 191 161 173
-13 170 192 163 207
-14 181 193 164 208
-15 165 209 182 194
-16 166 210 183 195
-17 167 211 184 196
-18 168 212 180 185
-19 169 161 186 197
-20 213 181 171 205
-21 231 214 172 197
-22 198 232 215 173
-23 199 233 216 174
-24 200 234 217 175
-25 176 201 217 218
-26 177 202 235 219
-27 220 178 203 236
-28 179 212 204 196
-29 168 180 181 205
-30 221 156 169 206
-31 182 237 186 197
-32 198 213 183 229
-33 191 227 238 184
-34 221 256 239 185
-35 222 257 240 186
-36 187 223 258 241
-37 242 188 199 259
-38 210 189 224 248
-39 220 190 195 228
-40 191 194 227 219
-41 201 192 225 260
-42 243 193 226 261
-43 179 170 196 207
-44 198 180 160 229
-45 244 161 153 230
-46 199 191 259 173
-47 221 200 237 206
-48 253 222 201 192
-49 212 202 204 262
-50 176 203 218 263
-51 264 244 204 260
-52 265 245 205 282
-53 266 246 206 283
-54 223 267 207 284
-55 268 182 237 208
-56 209 275 234 247
-57 243 211 218 252
-58 231 216 197 241
-59 256 213 183 249
-60 214 269 250 285
-61 215 270 261 251
-62 188 170 194 219
-63 187 220 162 195
-64 253 167 222 196
-65 155 254 168 271
-66 156 255 151 272
-67 212 223 185 284
-68 176 199 233 164
-69 244 224 259 230
-70 220 178 245 246
-71 177 245 246 219
-72 286 190 225 228
-73 166 287 226 195
-74 236 270 227 271
-75 235 269 228 272
-76 267 291 207 273
-77 253 288 229 296
-78 286 297 230 274
-79 265 202 205 262
-80 231 277 213 171
-81 232 276 200 237
-82 233 255 248 272
-83 181 216 208 241
-84 242 221 256 267
-85 298 278 281 238
-86 264 279 239 285
-87 277 236 271 240
-88 201 162 217 174
-89 177 243 157 218
-90 179 159 280 251
-91 160 281 152 252
-92 275 247 151 153
-93 190 223 258 172
-94 209 166 158 182
-95 254 247 271 284
-96 243 193 273 274
-97 187 273 241 274
-98 211 266 249 252
-99 299 217 250 175
-100 231 277 261 251
-101 275 258 281 252
-102 242 188 298 289
-103 254 290 294 263
-104 255 291 293 262
-105 238 184 240 186
-106 286 288 225 229
-107 192 270 227 163
-108 224 257 259 292
-109 198 242 232 267
-110 265 244 268 260
-111 264 298 289 239
-112 165 210 157 183
-113 154 167 269 228
-114 165 279 194 295
-115 155 224 248 152
-116 211 202 235 184
-117 189 171 163 175
-118 154 200 234 159
-119 255 280 251 262
-120 289 290 214 269
-121 291 215 270 273
-122 289 290 216 174
-123 276 288 235 272
-124 210 189 278 294
-125 268 279 208 285
-126 256 226 249 261
-127 287 299 280 295
-128 300 247 282 284
-129 214 215 172 173
-130 266 203 206 263
-131 253 266 249 296
-132 264 178 158 204
-133 233 300 248 283
-134 265 222 257 268
-135 203 225 236 260
-136 279 281 238 295
-137 286 287 226 230
-138 277 245 282 240
-139 275 258 292 296
-140 209 297 234 293
-141 232 276 250 285
-142 193 239 185 164
-143 276 288 246 283
-144 254 299 250 263
-145 298 278 257 292
-146 297 292 274 296
-147 287 278 280 294
-148 300 291 282 293
-149 300 290 283 294
-150 297 299 293 295
-151 66 1 2 92
-152 1 3 91 115
-153 1 45 4 92
-154 2 113 5 118
-155 1 115 6 65
-156 66 2 7 30
-157 89 112 3 8
-158 132 4 94 9
-159 2 90 118 10
-160 11 44 3 91
-161 12 45 4 19
-162 88 5 8 63
-163 13 6 117 107
-164 68 14 7 142
-165 112 3 15 114
-166 4 16 94 73
-167 113 5 17 64
-168 6 18 29 65
-169 12 7 19 30
-170 13 62 9 43
-171 80 117 20 10
-172 11 93 129 21
-173 22 12 46 129
-174 88 23 122 5
-175 99 24 6 117
-176 68 25 50 7
-177 89 26 71 8
-178 132 70 27 9
-179 90 28 10 43
-180 11 44 18 29
-181 14 83 29 20
-182 55 15 94 31
-183 112 59 16 32
-184 33 17 105 116
-185 34 67 18 142
-186 35 105 19 31
-187 36 8 63 97
-188 102 37 62 9
-189 124 38 117 10
-190 11 93 39 72
-191 33 12 46 40
-192 13 48 41 107
-193 14 96 42 142
-194 15 114 40 62
-195 16 39 73 63
-196 17 28 64 43
-197 58 19 31 21
-198 22 44 32 109
-199 23 46 68 37
-200 24 47 81 118
-201 88 25 48 41
-202 79 26 49 116
-203 135 27 50 130
-204 132 49 28 51
-205 79 29 52 20
-206 47 30 53 130
-207 13 43 54 76
-208 55 14 125 83
-209 56 15 94 140
-210 112 124 16 38
-211 57 17 116 98
-212 67 49 28 18
-213 80 59 20 32
-214 60 129 21 120
-215 22 121 61 129
-216 23 122 58 83
-217 88 99 24 25
-218 89 57 25 50
-219 26 71 40 62
-220 70 27 39 63
-221 34 47 84 30
-222 35 134 48 64
-223 67 36 93 54
-224 69 38 115 108
-225 135 72 106 41
-226 126 137 73 42
-227 33 40 74 107
-228 113 39 72 75
-229 44 77 106 32
-230 45 78 69 137
-231 100 58 80 21
-232 22 81 141 109
-233 23 133 68 82
-234 56 24 118 140
-235 123 26 116 75
-236 135 27 74 87
-237 55 47 81 31
-238 33 136 105 85
-239 34 111 86 142
-240 35 105 138 87
-241 36 58 83 97
-242 102 37 84 109
-243 89 57 96 42
-244 110 45 69 51
-245 70 71 138 52
-246 143 70 71 53
-247 56 92 95 128
-248 133 38 82 115
-249 59 126 98 131
-250 99 144 60 141
-251 100 90 61 119
-252 57 101 91 98
-253 77 48 64 131
-254 144 103 95 65
-255 66 82 104 119
-256 34 59 126 84
-257 35 134 145 108
-258 101 36 93 139
-259 46 69 37 108
-260 110 135 51 41
-261 100 126 61 42
-262 79 49 104 119
-263 144 103 50 130
-264 132 111 51 86
-265 110 79 134 52
-266 53 130 98 131
-267 84 54 76 109
-268 55 110 134 125
-269 113 60 75 120
-270 121 61 74 107
-271 95 74 65 87
-272 66 123 82 75
-273 121 96 97 76
-274 78 146 96 97
-275 56 101 92 139
-276 143 123 81 141
-277 100 80 138 87
-278 145 124 147 85
-279 114 125 136 86
-280 90 147 127 119
-281 101 91 136 85
-282 148 138 128 52
-283 143 133 149 53
-284 67 95 128 54
-285 125 60 86 141
-286 78 137 72 106
-287 147 137 127 73
-288 77 143 123 106
-289 111 122 102 120
-290 122 103 149 120
-291 121 104 148 76
-292 145 146 139 108
-293 104 148 150 140
-294 124 103 147 149
-295 114 136 127 150
-296 77 146 139 131
-297 78 146 150 140
-298 111 145 102 85
-299 99 144 127 150
-300 133 148 149 128
0