C4graphGraph forms for C4 [ 300, 48 ] = UG(Cmap(600,12){12,4|15}_10)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 300, 48 ] = UG(Cmap(600,12){12,4|15}_10).

(I) Following is a form readable by MAGMA:

g:=Graph<300|{ {2, 3}, {294, 295}, {264, 265}, {222, 223}, {4, 6}, {68, 70}, {1, 2}, {216, 219}, {180, 183}, {1, 4}, {10, 15}, {8, 13}, {1, 7}, {217, 223}, {3, 5}, {106, 108}, {9, 14}, {280, 287}, {16, 24}, {291, 299}, {18, 26}, {17, 25}, {288, 297}, {20, 30}, {1, 10}, {295, 300}, {7, 11}, {293, 297}, {260, 264}, {5, 8}, {256, 269}, {2, 12}, {19, 29}, {6, 9}, {279, 280}, {256, 271}, {167, 168}, {3, 19}, {265, 281}, {260, 276}, {100, 116}, {33, 49}, {32, 48}, {4, 20}, {234, 251}, {195, 209}, {2, 17}, {271, 284}, {207, 220}, {100, 119}, {137, 154}, {40, 60}, {227, 247}, {43, 63}, {42, 62}, {41, 61}, {34, 55}, {68, 81}, {67, 84}, {106, 125}, {165, 178}, {3, 27}, {263, 287}, {15, 23}, {14, 22}, {13, 21}, {4, 28}, {236, 245}, {270, 279}, {262, 287}, {258, 283}, {5, 31}, {257, 283}, {37, 63}, {36, 62}, {11, 16}, {65, 90}, {35, 56}, {132, 159}, {36, 57}, {264, 277}, {38, 59}, {166, 187}, {12, 18}, {258, 284}, {65, 95}, {64, 94}, {37, 58}, {42, 53}, {84, 117}, {66, 96}, {67, 97}, {71, 100}, {75, 104}, {128, 163}, {82, 118}, {222, 250}, {83, 119}, {70, 99}, {263, 290}, {80, 117}, {78, 107}, {77, 104}, {76, 105}, {158, 187}, {6, 32}, {7, 33}, {69, 98}, {267, 300}, {77, 106}, {135, 175}, {268, 292}, {210, 250}, {159, 183}, {5, 44}, {215, 254}, {208, 249}, {197, 236}, {7, 46}, {65, 107}, {214, 252}, {200, 226}, {154, 176}, {6, 45}, {265, 290}, {223, 244}, {129, 173}, {269, 289}, {72, 101}, {85, 120}, {74, 103}, {195, 237}, {213, 251}, {73, 102}, {86, 121}, {31, 47}, {193, 241}, {128, 176}, {192, 240}, {22, 39}, {211, 226}, {71, 118}, {78, 124}, {282, 296}, {280, 298}, {212, 230}, {131, 177}, {23, 36}, {283, 296}, {27, 40}, {209, 229}, {22, 35}, {281, 300}, {278, 291}, {198, 243}, {30, 43}, {28, 41}, {153, 172}, {132, 178}, {286, 296}, {275, 293}, {274, 292}, {200, 254}, {196, 242}, {153, 175}, {21, 34}, {211, 228}, {200, 255}, {29, 42}, {282, 290}, {134, 191}, {8, 50}, {285, 295}, {284, 294}, {221, 231}, {205, 247}, {204, 246}, {199, 253}, {12, 54}, {9, 51}, {135, 189}, {79, 116}, {205, 246}, {83, 111}, {144, 172}, {24, 37}, {201, 244}, {26, 39}, {147, 174}, {159, 162}, {10, 52}, {11, 53}, {25, 38}, {144, 208}, {143, 206}, {10, 72}, {20, 86}, {17, 83}, {16, 82}, {13, 79}, {11, 73}, {155, 217}, {190, 252}, {42, 105}, {153, 218}, {166, 227}, {12, 74}, {19, 85}, {18, 84}, {161, 230}, {188, 251}, {136, 192}, {132, 205}, {139, 194}, {142, 196}, {138, 193}, {150, 218}, {22, 91}, {134, 203}, {8, 70}, {63, 113}, {9, 71}, {141, 195}, {131, 204}, {156, 204}, {157, 205}, {158, 207}, {165, 244}, {179, 226}, {152, 202}, {160, 243}, {167, 244}, {51, 103}, {179, 231}, {180, 224}, {130, 215}, {146, 199}, {54, 96}, {181, 227}, {184, 238}, {41, 126}, {140, 219}, {145, 198}, {32, 120}, {141, 213}, {186, 227}, {190, 231}, {59, 97}, {177, 235}, {188, 230}, {57, 98}, {168, 243}, {148, 200}, {172, 240}, {185, 229}, {14, 80}, {15, 81}, {151, 201}, {144, 207}, {155, 196}, {44, 76}, {61, 93}, {60, 92}, {162, 194}, {13, 108}, {59, 90}, {57, 88}, {55, 86}, {19, 114}, {17, 112}, {15, 110}, {137, 235}, {14, 109}, {58, 89}, {18, 113}, {24, 124}, {27, 127}, {26, 126}, {25, 125}, {190, 216}, {20, 115}, {55, 95}, {145, 249}, {170, 194}, {176, 216}, {177, 217}, {135, 236}, {23, 123}, {47, 67}, {46, 66}, {45, 65}, {44, 64}, {167, 202}, {21, 122}, {56, 87}, {29, 109}, {183, 199}, {45, 92}, {163, 209}, {48, 67}, {48, 68}, {49, 69}, {164, 210}, {165, 211}, {54, 78}, {50, 75}, {52, 77}, {136, 241}, {174, 215}, {178, 203}, {34, 89}, {129, 253}, {168, 212}, {152, 229}, {171, 214}, {140, 242}, {154, 228}, {16, 111}, {51, 76}, {150, 233}, {170, 213}, {171, 212}, {61, 189}, {90, 216}, {60, 191}, {108, 232}, {124, 248}, {52, 177}, {115, 245}, {53, 178}, {119, 255}, {52, 189}, {54, 191}, {33, 171}, {49, 187}, {123, 241}, {53, 190}, {69, 206}, {47, 163}, {94, 210}, {50, 188}, {80, 192}, {34, 179}, {75, 218}, {39, 182}, {59, 169}, {38, 181}, {43, 184}, {48, 164}, {99, 247}, {87, 195}, {44, 185}, {47, 186}, {107, 253}, {35, 180}, {46, 185}, {88, 192}, {109, 245}, {84, 206}, {91, 193}, {88, 194}, {114, 232}, {122, 225}, {28, 128}, {31, 131}, {30, 130}, {29, 129}, {77, 208}, {40, 183}, {79, 238}, {122, 219}, {38, 133}, {32, 132}, {33, 133}, {85, 240}, {49, 151}, {74, 237}, {36, 140}, {76, 228}, {37, 141}, {110, 198}, {125, 213}, {117, 220}, {70, 237}, {64, 236}, {123, 214}, {94, 240}, {107, 196}, {58, 136}, {23, 163}, {28, 168}, {31, 170}, {83, 230}, {81, 231}, {112, 198}, {113, 199}, {21, 162}, {30, 169}, {24, 164}, {27, 167}, {26, 166}, {25, 165}, {106, 215}, {43, 149}, {56, 134}, {55, 137}, {80, 239}, {97, 161}, {110, 174}, {62, 255}, {85, 148}, {111, 173}, {121, 187}, {86, 146}, {87, 147}, {101, 160}, {72, 142}, {73, 143}, {102, 161}, {127, 184}, {117, 189}, {71, 142}, {92, 149}, {93, 151}, {93, 150}, {98, 169}, {116, 191}, {78, 130}, {81, 156}, {75, 133}, {120, 182}, {69, 138}, {82, 157}, {56, 232}, {95, 143}, {94, 142}, {126, 174}, {127, 175}, {98, 179}, {50, 224}, {91, 137}, {90, 136}, {87, 133}, {51, 225}, {99, 176}, {60, 233}, {62, 235}, {92, 138}, {93, 139}, {122, 172}, {123, 173}, {61, 234}, {120, 160}, {121, 161}, {127, 166}, {58, 224}, {68, 158}, {88, 134}, {100, 186}, {89, 135}, {124, 162}, {115, 155}, {118, 158}, {119, 159}, {104, 129}, {105, 130}, {112, 155}, {102, 139}, {114, 156}, {115, 157}, {89, 182}, {101, 138}, {96, 144}, {46, 223}, {99, 145}, {125, 143}, {45, 222}, {103, 148}, {40, 220}, {63, 203}, {41, 221}, {102, 147}, {109, 152}, {111, 154}, {121, 140}, {39, 208}, {101, 146}, {110, 153}, {35, 219}, {66, 184}, {108, 151}, {57, 197}, {104, 149}, {105, 150}, {72, 264}, {73, 265}, {66, 263}, {79, 266}, {64, 262}, {103, 289}, {74, 260}, {91, 266}, {112, 290}, {95, 268}, {82, 267}, {96, 258}, {113, 282}, {116, 261}, {114, 263}, {118, 271}, {97, 286}, {126, 257}, {145, 273}, {148, 278}, {141, 266}, {139, 259}, {170, 289}, {152, 279}, {128, 272}, {131, 273}, {188, 292}, {149, 270}, {156, 259}, {164, 261}, {181, 274}, {186, 285}, {173, 262}, {185, 276}, {171, 261}, {182, 280}, {147, 291}, {175, 286}, {146, 288}, {157, 298}, {181, 258}, {169, 275}, {160, 285}, {180, 267}, {207, 268}, {197, 257}, {239, 299}, {238, 297}, {220, 276}, {221, 277}, {217, 272}, {218, 272}, {234, 288}, {222, 277}, {225, 298}, {233, 293}, {197, 266}, {201, 281}, {251, 299}, {250, 298}, {248, 296}, {212, 260}, {202, 282}, {248, 297}, {206, 284}, {249, 299}, {193, 274}, {211, 261}, {242, 293}, {221, 256}, {209, 271}, {254, 288}, {253, 291}, {225, 257}, {243, 275}, {242, 274}, {241, 273}, {224, 259}, {234, 270}, {232, 269}, {238, 267}, {229, 259}, {255, 281}, {245, 285}, {246, 286}, {250, 275}, {204, 294}, {252, 278}, {228, 270}, {202, 289}, {252, 279}, {235, 256}, {203, 295}, {249, 277}, {248, 276}, {201, 292}, {237, 287}, {226, 273}, {210, 294}, {239, 283}, {254, 262}, {214, 300}, {247, 269}, {246, 268}, {233, 278}, {239, 272} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 10, 7, 4)(3, 15, 11, 6)(5, 23, 16, 9)(8, 36, 24, 14)(12, 52, 33, 20)(13, 57, 37, 22)(17, 72, 46, 28)(18, 77, 49, 30)(19, 81, 53, 32)(21, 88, 58, 35)(25, 101, 66, 41)(26, 106, 69, 43)(27, 110, 73, 45)(29, 68, 42, 48)(31, 123, 82, 51)(34, 134, 89, 56)(38, 146, 96, 61)(39, 108, 98, 63)(40, 153, 102, 65)(44, 163, 111, 71)(47, 173, 118, 76)(50, 140, 124, 80)(54, 189, 133, 86)(55, 191, 135, 87)(59, 199, 144, 93)(60, 175, 147, 95)(62, 164, 109, 70)(64, 209, 154, 100)(67, 129, 158, 105)(74, 177, 171, 115)(75, 121, 78, 117)(79, 197, 141, 91)(83, 142, 185, 128)(84, 104, 187, 130)(85, 156, 190, 132)(90, 183, 172, 139)(92, 127, 174, 143)(94, 229, 176, 119)(97, 253, 207, 150)(99, 255, 210, 152)(103, 131, 214, 157)(107, 220, 218, 161)(112, 264, 223, 168)(113, 208, 151, 169)(114, 231, 178, 120)(116, 236, 195, 137)(122, 194, 136, 180)(125, 138, 184, 126)(145, 281, 250, 202)(148, 204, 252, 205)(149, 166, 215, 206)(155, 260, 217, 212)(159, 240, 259, 216)(160, 263, 221, 165)(162, 192, 224, 219)(167, 198, 265, 222)(170, 241, 267, 225)(179, 203, 182, 232)(181, 288, 258, 234)(186, 262, 271, 228)(188, 242, 248, 239)(193, 238, 257, 213)(196, 276, 272, 230)(200, 294, 279, 247)(201, 275, 282, 249)(211, 285, 287, 256)(226, 295, 280, 269)(227, 254, 284, 270)(233, 286, 291, 268)(235, 261, 245, 237)(243, 290, 277, 244)(246, 278)(251, 274, 297, 283)(273, 300, 298, 289)(292, 293, 296, 299)
b: (1, 2, 3, 5, 8, 13, 21, 34, 55, 86, 20, 4)(6, 10, 17, 27, 44, 70, 108, 162, 89, 137, 121, 30)(7, 12, 19, 31, 50, 79, 122, 179, 95, 146, 115, 28)(9, 15, 25, 40, 64, 99, 151, 124, 182, 235, 161, 43)(11, 18, 29, 47, 75, 116, 172, 226, 268, 288, 157, 41)(14, 23, 38, 60, 94, 145, 201, 248, 280, 256, 102, 63)(16, 26, 42, 67, 104, 100, 153, 211, 207, 254, 205, 61)(22, 36, 59, 92, 142, 198, 244, 276, 287, 269, 139, 37)(24, 39, 62, 97, 149, 71, 110, 165, 220, 262, 247, 93)(32, 52, 83, 127, 76, 68, 106, 159, 135, 154, 187, 130)(33, 54, 85, 131, 188, 238, 225, 231, 143, 199, 245, 128)(35, 57, 90, 138, 196, 243, 223, 260, 263, 289, 259, 141)(45, 72, 112, 167, 185, 237, 232, 194, 58, 91, 140, 169)(46, 74, 114, 170, 224, 266, 219, 98, 65, 101, 155, 168)(48, 77, 119, 175, 228, 158, 215, 132, 189, 111, 166, 105)(49, 78, 120, 177, 230, 184, 51, 81, 125, 183, 236, 176)(53, 84, 129, 186, 218, 261, 144, 200, 246, 234, 82, 126)(56, 88, 136, 193, 242, 275, 222, 264, 290, 202, 229, 195)(66, 103, 156, 213, 180, 197, 216, 69, 107, 160, 217, 212)(73, 113, 109, 163, 133, 191, 240, 273, 292, 297, 298, 221)(80, 123, 181, 233, 210, 249, 281, 296, 279, 271, 147, 203)(87, 134, 192, 241, 274, 293, 250, 277, 265, 282, 152, 209)(96, 148, 204, 251, 267, 257, 190, 206, 253, 285, 272, 171)(117, 173, 227, 150, 164, 208, 255, 286, 270, 118, 174, 178)(214, 258, 278, 294, 299, 300, 283, 252, 284, 291, 295, 239)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 300, 48 ]
300
-1 2 4 7 10
-2 1 12 3 17
-3 2 5 27 19
-4 1 6 28 20
-5 44 3 8 31
-6 45 4 9 32
-7 11 33 1 46
-8 13 70 5 50
-9 14 71 6 51
-10 1 15 72 52
-11 16 7 73 53
-12 2 18 74 54
-13 79 8 108 21
-14 22 80 9 109
-15 110 23 81 10
-16 11 111 24 82
-17 2 112 25 83
-18 12 113 26 84
-19 3 114 29 85
-20 4 115 30 86
-21 34 122 13 162
-22 35 14 91 39
-23 123 36 15 163
-24 124 37 16 164
-25 165 125 38 17
-26 166 126 39 18
-27 167 3 127 40
-28 168 4 128 41
-29 19 129 42 109
-30 169 20 130 43
-31 47 5 170 131
-32 132 48 6 120
-33 133 49 171 7
-34 55 89 179 21
-35 22 56 180 219
-36 23 57 62 140
-37 24 58 63 141
-38 133 25 59 181
-39 22 26 182 208
-40 220 27 60 183
-41 221 126 28 61
-42 105 29 62 53
-43 149 30 63 184
-44 5 64 185 76
-45 222 92 6 65
-46 66 223 7 185
-47 67 31 163 186
-48 67 68 32 164
-49 33 187 69 151
-50 188 224 8 75
-51 103 225 9 76
-52 77 177 189 10
-53 11 178 190 42
-54 12 78 191 96
-55 34 137 95 86
-56 232 35 134 87
-57 88 36 98 197
-58 89 37 136 224
-59 90 169 38 97
-60 233 92 191 40
-61 189 234 93 41
-62 255 36 235 42
-63 113 37 203 43
-64 44 236 94 262
-65 45 90 95 107
-66 46 96 184 263
-67 47 48 84 97
-68 70 158 81 48
-69 49 138 206 98
-70 99 68 237 8
-71 100 118 9 142
-72 264 101 10 142
-73 11 143 265 102
-74 12 103 237 260
-75 133 104 50 218
-76 44 105 51 228
-77 104 106 52 208
-78 124 107 130 54
-79 13 266 116 238
-80 14 192 117 239
-81 231 68 156 15
-82 157 267 16 118
-83 111 17 119 230
-84 67 18 117 206
-85 148 19 240 120
-86 55 121 146 20
-87 56 133 147 195
-88 57 134 192 194
-89 34 58 135 182
-90 59 136 216 65
-91 22 266 137 193
-92 45 60 138 149
-93 61 139 150 151
-94 210 64 240 142
-95 55 143 268 65
-96 66 144 258 54
-97 286 67 59 161
-98 57 69 179 169
-99 176 145 70 247
-100 71 116 119 186
-101 146 72 138 160
-102 147 73 139 161
-103 289 148 51 74
-104 77 149 129 75
-105 150 42 130 76
-106 77 125 215 108
-107 253 78 196 65
-108 232 13 106 151
-109 14 245 29 152
-110 198 15 174 153
-111 154 16 83 173
-112 198 155 290 17
-113 199 18 282 63
-114 232 156 19 263
-115 155 157 245 20
-116 100 79 191 261
-117 220 189 80 84
-118 158 71 82 271
-119 100 255 159 83
-120 160 182 85 32
-121 187 161 140 86
-122 225 172 21 219
-123 23 214 173 241
-124 78 24 248 162
-125 143 25 213 106
-126 26 257 41 174
-127 166 27 184 175
-128 176 28 272 163
-129 253 104 29 173
-130 78 105 215 30
-131 177 204 31 273
-132 178 159 205 32
-133 33 38 75 87
-134 88 56 191 203
-135 89 189 236 175
-136 90 58 192 241
-137 55 154 91 235
-138 101 69 92 193
-139 102 93 259 194
-140 121 242 36 219
-141 266 37 213 195
-142 71 72 94 196
-143 125 73 95 206
-144 172 96 207 208
-145 99 198 249 273
-146 199 101 288 86
-147 102 291 174 87
-148 200 278 103 85
-149 92 104 270 43
-150 233 93 105 218
-151 201 49 93 108
-152 202 279 229 109
-153 110 172 218 175
-154 176 111 137 228
-155 112 115 217 196
-156 81 114 204 259
-157 298 82 115 205
-158 187 68 118 207
-159 132 183 162 119
-160 243 101 120 285
-161 121 102 97 230
-162 124 159 194 21
-163 209 23 47 128
-164 210 24 48 261
-165 178 211 244 25
-166 187 26 127 227
-167 244 168 202 27
-168 243 167 212 28
-169 275 59 30 98
-170 289 213 194 31
-171 33 212 214 261
-172 122 144 240 153
-173 111 123 129 262
-174 110 147 126 215
-175 286 135 127 153
-176 99 154 128 216
-177 235 52 217 131
-178 132 165 203 53
-179 231 34 226 98
-180 35 267 224 183
-181 38 258 227 274
-182 89 280 39 120
-183 199 180 159 40
-184 66 127 238 43
-185 44 276 46 229
-186 100 47 227 285
-187 121 166 158 49
-188 50 292 251 230
-189 135 61 117 52
-190 231 216 53 252
-191 134 60 116 54
-192 88 80 136 240
-193 91 138 241 274
-194 88 170 139 162
-195 209 237 141 87
-196 242 155 107 142
-197 57 266 257 236
-198 110 243 112 145
-199 253 113 146 183
-200 254 255 148 226
-201 244 281 292 151
-202 167 289 282 152
-203 134 178 63 295
-204 156 246 294 131
-205 132 157 246 247
-206 143 69 84 284
-207 220 144 158 268
-208 77 144 39 249
-209 271 195 163 229
-210 94 250 294 164
-211 165 226 228 261
-212 168 171 260 230
-213 125 170 141 251
-214 123 300 171 252
-215 254 106 130 174
-216 176 90 190 219
-217 155 177 223 272
-218 150 272 75 153
-219 122 35 216 140
-220 276 40 117 207
-221 231 277 256 41
-222 45 277 223 250
-223 46 222 244 217
-224 58 180 50 259
-225 122 298 257 51
-226 200 211 179 273
-227 166 181 247 186
-228 154 211 270 76
-229 209 259 152 185
-230 188 212 83 161
-231 221 179 190 81
-232 56 114 269 108
-233 278 60 150 293
-234 288 61 270 251
-235 177 256 137 62
-236 135 245 64 197
-237 287 70 74 195
-238 297 79 267 184
-239 299 80 272 283
-240 192 94 172 85
-241 123 136 193 273
-242 293 140 196 274
-243 198 275 168 160
-244 165 167 201 223
-245 115 236 109 285
-246 286 268 204 205
-247 99 269 205 227
-248 297 276 124 296
-249 145 277 299 208
-250 275 210 298 222
-251 188 299 234 213
-252 190 278 279 214
-253 199 291 107 129
-254 200 288 215 262
-255 200 281 62 119
-256 221 235 269 271
-257 126 225 283 197
-258 181 96 283 284
-259 156 224 139 229
-260 264 276 212 74
-261 211 116 171 164
-262 254 287 173 64
-263 66 287 114 290
-264 265 277 72 260
-265 264 290 281 73
-266 79 91 141 197
-267 300 180 82 238
-268 246 292 95 207
-269 232 256 289 247
-270 234 279 149 228
-271 209 256 118 284
-272 128 217 239 218
-273 145 226 131 241
-274 242 181 193 292
-275 243 169 293 250
-276 220 248 260 185
-277 264 221 222 249
-278 233 148 291 252
-279 280 270 152 252
-280 287 298 279 182
-281 265 255 201 300
-282 113 202 290 296
-283 257 258 239 296
-284 258 271 206 294
-285 245 160 295 186
-286 246 97 175 296
-287 280 237 262 263
-288 297 254 146 234
-289 103 202 170 269
-290 265 112 282 263
-291 253 299 278 147
-292 188 201 268 274
-293 242 275 297 233
-294 210 204 284 295
-295 300 203 294 285
-296 286 248 282 283
-297 288 248 238 293
-298 157 225 280 250
-299 291 249 239 251
-300 267 214 281 295
0

**************