C4graphGraph forms for C4 [ 306, 6 ] = PS(6,51;16)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 306, 6 ] = PS(6,51;16).

(I) Following is a form readable by MAGMA:

g:=Graph<306|{ {153, 154}, {51, 52}, {96, 112}, {204, 220}, {203, 219}, {202, 218}, {201, 217}, {99, 115}, {98, 114}, {97, 113}, {100, 116}, {101, 117}, {102, 118}, {192, 208}, {193, 209}, {194, 210}, {195, 211}, {196, 212}, {197, 213}, {198, 214}, {199, 215}, {200, 216}, {68, 103}, {204, 239}, {92, 127}, {88, 123}, {84, 119}, {80, 115}, {76, 111}, {72, 107}, {192, 227}, {196, 231}, {200, 235}, {73, 108}, {203, 238}, {201, 236}, {91, 126}, {89, 124}, {83, 118}, {81, 116}, {75, 110}, {193, 228}, {195, 230}, {74, 109}, {202, 237}, {90, 125}, {82, 117}, {194, 229}, {69, 104}, {87, 122}, {85, 120}, {71, 106}, {197, 232}, {199, 234}, {70, 105}, {86, 121}, {198, 233}, {87, 103}, {95, 111}, {94, 110}, {93, 109}, {92, 108}, {91, 107}, {90, 106}, {89, 105}, {88, 104}, {4, 54}, {5, 55}, {8, 58}, {9, 59}, {12, 62}, {13, 63}, {128, 178}, {129, 179}, {132, 182}, {133, 183}, {136, 186}, {137, 187}, {140, 190}, {141, 191}, {1, 53}, {2, 54}, {3, 55}, {8, 60}, {9, 61}, {10, 62}, {11, 63}, {128, 180}, {129, 181}, {130, 182}, {131, 183}, {136, 188}, {137, 189}, {138, 190}, {139, 191}, {2, 52}, {3, 53}, {10, 60}, {11, 61}, {130, 180}, {131, 181}, {138, 188}, {139, 189}, {4, 56}, {5, 57}, {6, 58}, {7, 59}, {132, 184}, {133, 185}, {134, 186}, {135, 187}, {77, 112}, {79, 114}, {6, 56}, {7, 57}, {134, 184}, {135, 185}, {78, 113}, {52, 119}, {60, 127}, {56, 123}, {156, 223}, {160, 227}, {164, 231}, {168, 235}, {172, 239}, {176, 243}, {180, 247}, {184, 251}, {188, 255}, {57, 124}, {59, 126}, {155, 222}, {161, 228}, {163, 230}, {169, 236}, {171, 238}, {177, 244}, {179, 246}, {185, 252}, {187, 254}, {58, 125}, {154, 221}, {162, 229}, {170, 237}, {178, 245}, {186, 253}, {12, 64}, {47, 99}, {46, 98}, {45, 97}, {44, 96}, {13, 65}, {14, 66}, {15, 67}, {28, 80}, {29, 81}, {30, 82}, {31, 83}, {140, 192}, {141, 193}, {142, 194}, {143, 195}, {53, 120}, {55, 122}, {165, 232}, {167, 234}, {181, 248}, {183, 250}, {14, 64}, {47, 97}, {46, 96}, {15, 65}, {30, 80}, {31, 81}, {142, 192}, {143, 193}, {54, 121}, {166, 233}, {182, 249}, {16, 66}, {49, 99}, {48, 98}, {17, 67}, {20, 70}, {21, 71}, {24, 74}, {25, 75}, {28, 78}, {29, 79}, {144, 194}, {145, 195}, {148, 198}, {149, 199}, {152, 202}, {153, 203}, {16, 68}, {50, 102}, {49, 101}, {48, 100}, {17, 69}, {18, 70}, {19, 71}, {24, 76}, {25, 77}, {26, 78}, {27, 79}, {144, 196}, {145, 197}, {146, 198}, {147, 199}, {152, 204}, {18, 68}, {51, 101}, {50, 100}, {19, 69}, {26, 76}, {27, 77}, {146, 196}, {147, 197}, {160, 246}, {161, 247}, {168, 254}, {169, 255}, {162, 248}, {163, 249}, {166, 252}, {167, 253}, {20, 72}, {21, 73}, {22, 74}, {23, 75}, {148, 200}, {149, 201}, {150, 202}, {151, 203}, {173, 240}, {175, 242}, {189, 224}, {191, 226}, {22, 72}, {23, 73}, {150, 200}, {151, 201}, {164, 250}, {165, 251}, {174, 241}, {190, 225}, {172, 207}, {176, 211}, {180, 215}, {184, 219}, {188, 223}, {171, 206}, {177, 212}, {179, 214}, {185, 220}, {187, 222}, {1, 102}, {170, 205}, {178, 213}, {186, 221}, {154, 240}, {155, 241}, {158, 244}, {159, 245}, {181, 216}, {183, 218}, {156, 242}, {157, 243}, {182, 217}, {189, 205}, {190, 206}, {191, 207}, {32, 82}, {45, 95}, {44, 94}, {33, 83}, {36, 86}, {37, 87}, {40, 90}, {41, 91}, {32, 84}, {43, 95}, {42, 94}, {33, 85}, {34, 86}, {35, 87}, {40, 92}, {41, 93}, {34, 84}, {43, 93}, {42, 92}, {35, 85}, {36, 88}, {37, 89}, {38, 90}, {39, 91}, {157, 224}, {159, 226}, {173, 208}, {175, 210}, {38, 88}, {39, 89}, {158, 225}, {174, 209}, {58, 144}, {63, 149}, {62, 148}, {59, 145}, {103, 204}, {60, 146}, {61, 147}, {56, 142}, {57, 143}, {54, 140}, {55, 141}, {61, 128}, {63, 130}, {52, 138}, {53, 139}, {62, 129}, {64, 131}, {84, 151}, {80, 147}, {76, 143}, {72, 139}, {68, 135}, {65, 132}, {83, 150}, {81, 148}, {75, 142}, {73, 140}, {67, 134}, {66, 133}, {82, 149}, {74, 141}, {108, 160}, {109, 161}, {110, 162}, {111, 163}, {124, 176}, {125, 177}, {126, 178}, {127, 179}, {69, 136}, {85, 152}, {71, 138}, {110, 160}, {111, 161}, {126, 176}, {127, 177}, {70, 137}, {86, 153}, {112, 162}, {113, 163}, {116, 166}, {117, 167}, {120, 170}, {121, 171}, {124, 174}, {125, 175}, {112, 164}, {113, 165}, {114, 166}, {115, 167}, {120, 172}, {121, 173}, {122, 174}, {123, 175}, {64, 150}, {65, 151}, {114, 164}, {115, 165}, {122, 172}, {123, 173}, {66, 152}, {67, 153}, {116, 168}, {117, 169}, {118, 170}, {119, 171}, {77, 144}, {95, 130}, {93, 128}, {79, 146}, {118, 168}, {119, 169}, {78, 145}, {94, 129}, {96, 131}, {100, 135}, {97, 132}, {99, 134}, {98, 133}, {101, 136}, {102, 137}, {104, 154}, {105, 155}, {108, 158}, {109, 159}, {104, 156}, {105, 157}, {106, 158}, {107, 159}, {106, 156}, {107, 157}, {103, 155}, {16, 287}, {32, 303}, {1, 272}, {51, 290}, {49, 288}, {3, 274}, {5, 276}, {7, 278}, {9, 280}, {11, 282}, {13, 284}, {15, 286}, {17, 256}, {19, 258}, {21, 260}, {23, 262}, {25, 264}, {27, 266}, {29, 268}, {31, 270}, {33, 304}, {35, 306}, {2, 273}, {50, 289}, {6, 277}, {10, 281}, {14, 285}, {18, 257}, {22, 261}, {26, 265}, {30, 269}, {34, 305}, {4, 275}, {12, 283}, {20, 259}, {28, 267}, {8, 279}, {24, 263}, {1, 291}, {4, 294}, {5, 295}, {8, 298}, {9, 299}, {12, 302}, {13, 303}, {16, 306}, {36, 256}, {47, 267}, {46, 266}, {45, 265}, {44, 264}, {37, 257}, {38, 258}, {39, 259}, {2, 292}, {3, 293}, {10, 300}, {11, 301}, {40, 260}, {43, 263}, {42, 262}, {41, 261}, {6, 296}, {7, 297}, {32, 271}, {48, 287}, {17, 288}, {47, 286}, {45, 284}, {43, 282}, {19, 290}, {21, 292}, {23, 294}, {25, 296}, {27, 298}, {29, 300}, {31, 302}, {33, 272}, {35, 274}, {37, 276}, {39, 278}, {41, 280}, {18, 289}, {46, 285}, {42, 281}, {22, 293}, {26, 297}, {30, 301}, {34, 273}, {38, 277}, {20, 291}, {44, 283}, {28, 299}, {36, 275}, {48, 268}, {51, 271}, {50, 270}, {49, 269}, {14, 304}, {15, 305}, {24, 295}, {40, 279}, {205, 257}, {254, 306}, {253, 305}, {252, 304}, {239, 291}, {238, 290}, {237, 289}, {236, 288}, {223, 275}, {222, 274}, {221, 273}, {220, 272}, {207, 259}, {206, 258}, {206, 256}, {255, 305}, {254, 304}, {239, 289}, {238, 288}, {223, 273}, {222, 272}, {207, 257}, {208, 258}, {253, 303}, {252, 302}, {249, 299}, {248, 298}, {245, 295}, {244, 294}, {241, 291}, {240, 290}, {221, 271}, {220, 270}, {217, 267}, {216, 266}, {213, 263}, {212, 262}, {209, 259}, {208, 260}, {251, 303}, {250, 302}, {249, 301}, {248, 300}, {243, 295}, {242, 294}, {241, 293}, {240, 292}, {219, 271}, {218, 270}, {217, 269}, {216, 268}, {211, 263}, {210, 262}, {209, 261}, {210, 260}, {251, 301}, {250, 300}, {243, 293}, {242, 292}, {219, 269}, {218, 268}, {211, 261}, {212, 264}, {247, 299}, {246, 298}, {245, 297}, {244, 296}, {215, 267}, {214, 266}, {213, 265}, {214, 264}, {247, 297}, {246, 296}, {215, 265}, {224, 274}, {237, 287}, {236, 286}, {233, 283}, {232, 282}, {229, 279}, {228, 278}, {225, 275}, {224, 276}, {235, 287}, {234, 286}, {233, 285}, {232, 284}, {227, 279}, {226, 278}, {225, 277}, {226, 276}, {235, 285}, {234, 284}, {227, 277}, {228, 280}, {231, 283}, {230, 282}, {229, 281}, {230, 280}, {231, 281}, {205, 306}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {153, 154} under the group generated by the following permutations:

a: (1, 2)(3, 51)(4, 50)(5, 49)(6, 48)(7, 47)(8, 46)(9, 45)(10, 44)(11, 43)(12, 42)(13, 41)(14, 40)(15, 39)(16, 38)(17, 37)(18, 36)(19, 35)(20, 34)(21, 33)(22, 32)(23, 31)(24, 30)(25, 29)(26, 28)(52, 53)(54, 102)(55, 101)(56, 100)(57, 99)(58, 98)(59, 97)(60, 96)(61, 95)(62, 94)(63, 93)(64, 92)(65, 91)(66, 90)(67, 89)(68, 88)(69, 87)(70, 86)(71, 85)(72, 84)(73, 83)(74, 82)(75, 81)(76, 80)(77, 79)(103, 104)(105, 153)(106, 152)(107, 151)(108, 150)(109, 149)(110, 148)(111, 147)(112, 146)(113, 145)(114, 144)(115, 143)(116, 142)(117, 141)(118, 140)(119, 139)(120, 138)(121, 137)(122, 136)(123, 135)(124, 134)(125, 133)(126, 132)(127, 131)(128, 130)(154, 155)(156, 204)(157, 203)(158, 202)(159, 201)(160, 200)(161, 199)(162, 198)(163, 197)(164, 196)(165, 195)(166, 194)(167, 193)(168, 192)(169, 191)(170, 190)(171, 189)(172, 188)(173, 187)(174, 186)(175, 185)(176, 184)(177, 183)(178, 182)(179, 181)(205, 206)(207, 255)(208, 254)(209, 253)(210, 252)(211, 251)(212, 250)(213, 249)(214, 248)(215, 247)(216, 246)(217, 245)(218, 244)(219, 243)(220, 242)(221, 241)(222, 240)(223, 239)(224, 238)(225, 237)(226, 236)(227, 235)(228, 234)(229, 233)(230, 232)(256, 257)(258, 306)(259, 305)(260, 304)(261, 303)(262, 302)(263, 301)(264, 300)(265, 299)(266, 298)(267, 297)(268, 296)(269, 295)(270, 294)(271, 293)(272, 292)(273, 291)(274, 290)(275, 289)(276, 288)(277, 287)(278, 286)(279, 285)(280, 284)(281, 283)
b: (2, 121)(3, 241)(5, 124)(6, 244)(8, 127)(9, 247)(11, 130)(12, 250)(14, 133)(15, 253)(17, 136)(18, 205)(20, 139)(21, 208)(23, 142)(24, 211)(26, 145)(27, 214)(29, 148)(30, 217)(32, 151)(33, 220)(35, 103)(36, 223)(38, 106)(39, 226)(41, 109)(42, 229)(44, 112)(45, 232)(47, 115)(48, 235)(50, 118)(51, 238)(52, 171)(53, 291)(55, 174)(56, 294)(58, 177)(59, 297)(61, 180)(62, 300)(64, 183)(65, 303)(67, 186)(68, 306)(70, 189)(71, 258)(73, 192)(74, 261)(76, 195)(77, 264)(79, 198)(80, 267)(82, 201)(83, 270)(85, 204)(86, 273)(88, 156)(89, 276)(91, 159)(92, 279)(94, 162)(95, 282)(97, 165)(98, 285)(100, 168)(101, 288)(105, 224)(108, 227)(111, 230)(114, 233)(117, 236)(120, 239)(123, 242)(126, 245)(129, 248)(132, 251)(135, 254)(138, 206)(141, 209)(144, 212)(147, 215)(150, 218)(153, 221)(155, 274)(158, 277)(161, 280)(164, 283)(167, 286)(170, 289)(173, 292)(176, 295)(179, 298)(182, 301)(185, 304)(188, 256)(191, 259)(194, 262)(197, 265)(200, 268)(203, 271)
c: (1, 52)(2, 53)(3, 54)(4, 55)(5, 56)(6, 57)(7, 58)(8, 59)(9, 60)(10, 61)(11, 62)(12, 63)(13, 64)(14, 65)(15, 66)(16, 67)(17, 68)(18, 69)(19, 70)(20, 71)(21, 72)(22, 73)(23, 74)(24, 75)(25, 76)(26, 77)(27, 78)(28, 79)(29, 80)(30, 81)(31, 82)(32, 83)(33, 84)(34, 85)(35, 86)(36, 87)(37, 88)(38, 89)(39, 90)(40, 91)(41, 92)(42, 93)(43, 94)(44, 95)(45, 96)(46, 97)(47, 98)(48, 99)(49, 100)(50, 101)(51, 102)(103, 256)(104, 257)(105, 258)(106, 259)(107, 260)(108, 261)(109, 262)(110, 263)(111, 264)(112, 265)(113, 266)(114, 267)(115, 268)(116, 269)(117, 270)(118, 271)(119, 272)(120, 273)(121, 274)(122, 275)(123, 276)(124, 277)(125, 278)(126, 279)(127, 280)(128, 281)(129, 282)(130, 283)(131, 284)(132, 285)(133, 286)(134, 287)(135, 288)(136, 289)(137, 290)(138, 291)(139, 292)(140, 293)(141, 294)(142, 295)(143, 296)(144, 297)(145, 298)(146, 299)(147, 300)(148, 301)(149, 302)(150, 303)(151, 304)(152, 305)(153, 306)(154, 205)(155, 206)(156, 207)(157, 208)(158, 209)(159, 210)(160, 211)(161, 212)(162, 213)(163, 214)(164, 215)(165, 216)(166, 217)(167, 218)(168, 219)(169, 220)(170, 221)(171, 222)(172, 223)(173, 224)(174, 225)(175, 226)(176, 227)(177, 228)(178, 229)(179, 230)(180, 231)(181, 232)(182, 233)(183, 234)(184, 235)(185, 236)(186, 237)(187, 238)(188, 239)(189, 240)(190, 241)(191, 242)(192, 243)(193, 244)(194, 245)(195, 246)(196, 247)(197, 248)(198, 249)(199, 250)(200, 251)(201, 252)(202, 253)(203, 254)(204, 255)
d: (2, 36)(3, 20)(5, 39)(6, 23)(8, 42)(9, 26)(11, 45)(12, 29)(14, 48)(15, 32)(17, 51)(18, 35)(21, 38)(24, 41)(27, 44)(30, 47)(33, 50)(52, 256)(53, 291)(54, 275)(55, 259)(56, 294)(57, 278)(58, 262)(59, 297)(60, 281)(61, 265)(62, 300)(63, 284)(64, 268)(65, 303)(66, 287)(67, 271)(68, 306)(69, 290)(70, 274)(71, 258)(72, 293)(73, 277)(74, 261)(75, 296)(76, 280)(77, 264)(78, 299)(79, 283)(80, 267)(81, 302)(82, 286)(83, 270)(84, 305)(85, 289)(86, 273)(87, 257)(88, 292)(89, 276)(90, 260)(91, 295)(92, 279)(93, 263)(94, 298)(95, 282)(96, 266)(97, 301)(98, 285)(99, 269)(100, 304)(101, 288)(102, 272)(103, 205)(104, 240)(105, 224)(106, 208)(107, 243)(108, 227)(109, 211)(110, 246)(111, 230)(112, 214)(113, 249)(114, 233)(115, 217)(116, 252)(117, 236)(118, 220)(119, 255)(120, 239)(121, 223)(122, 207)(123, 242)(124, 226)(125, 210)(126, 245)(127, 229)(128, 213)(129, 248)(130, 232)(131, 216)(132, 251)(133, 235)(134, 219)(135, 254)(136, 238)(137, 222)(138, 206)(139, 241)(140, 225)(141, 209)(142, 244)(143, 228)(144, 212)(145, 247)(146, 231)(147, 215)(148, 250)(149, 234)(150, 218)(151, 253)(152, 237)(153, 221)(155, 189)(156, 173)(158, 192)(159, 176)(161, 195)(162, 179)(164, 198)(165, 182)(167, 201)(168, 185)(170, 204)(171, 188)(174, 191)(177, 194)(180, 197)(183, 200)(186, 203)
e: (2, 17)(3, 33)(4, 49)(5, 14)(6, 30)(7, 46)(8, 11)(9, 27)(10, 43)(12, 24)(13, 40)(15, 21)(16, 37)(19, 34)(20, 50)(22, 31)(23, 47)(25, 28)(26, 44)(29, 41)(32, 38)(36, 51)(39, 48)(42, 45)(52, 256)(53, 272)(54, 288)(55, 304)(56, 269)(57, 285)(58, 301)(59, 266)(60, 282)(61, 298)(62, 263)(63, 279)(64, 295)(65, 260)(66, 276)(67, 292)(68, 257)(69, 273)(70, 289)(71, 305)(72, 270)(73, 286)(74, 302)(75, 267)(76, 283)(77, 299)(78, 264)(79, 280)(80, 296)(81, 261)(82, 277)(83, 293)(84, 258)(85, 274)(86, 290)(87, 306)(88, 271)(89, 287)(90, 303)(91, 268)(92, 284)(93, 300)(94, 265)(95, 281)(96, 297)(97, 262)(98, 278)(99, 294)(100, 259)(101, 275)(102, 291)(103, 205)(104, 221)(105, 237)(106, 253)(107, 218)(108, 234)(109, 250)(110, 215)(111, 231)(112, 247)(113, 212)(114, 228)(115, 244)(116, 209)(117, 225)(118, 241)(119, 206)(120, 222)(121, 238)(122, 254)(123, 219)(124, 235)(125, 251)(126, 216)(127, 232)(128, 248)(129, 213)(130, 229)(131, 245)(132, 210)(133, 226)(134, 242)(135, 207)(136, 223)(137, 239)(138, 255)(139, 220)(140, 236)(141, 252)(142, 217)(143, 233)(144, 249)(145, 214)(146, 230)(147, 246)(148, 211)(149, 227)(150, 243)(151, 208)(152, 224)(153, 240)(155, 170)(156, 186)(157, 202)(158, 167)(159, 183)(160, 199)(161, 164)(162, 180)(163, 196)(165, 177)(166, 193)(168, 174)(169, 190)(172, 187)(173, 203)(175, 184)(176, 200)(178, 181)(179, 197)(182, 194)(185, 191)(189, 204)(192, 201)(195, 198)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 306, 6 ]
306
-1 102 291 272 53
-2 292 52 273 54
-3 55 293 53 274
-4 275 56 294 54
-5 55 276 57 295
-6 56 277 58 296
-7 297 57 278 59
-8 298 58 279 60
-9 299 59 280 61
-10 300 60 281 62
-11 301 61 282 63
-12 302 62 283 64
-13 303 63 284 65
-14 66 304 64 285
-15 286 67 305 65
-16 66 287 68 306
-17 67 288 69 256
-18 68 289 70 257
-19 69 290 71 258
-20 70 291 72 259
-21 71 292 73 260
-22 72 293 74 261
-23 73 294 75 262
-24 74 295 76 263
-25 77 264 75 296
-26 297 78 265 76
-27 77 298 79 266
-28 78 299 80 267
-29 79 300 81 268
-30 80 301 82 269
-31 81 302 83 270
-32 82 303 84 271
-33 83 304 85 272
-34 84 305 86 273
-35 85 306 87 274
-36 88 275 256 86
-37 89 276 257 87
-38 88 90 277 258
-39 89 91 278 259
-40 90 92 279 260
-41 91 93 280 261
-42 92 94 281 262
-43 93 95 282 263
-44 264 94 96 283
-45 265 95 97 284
-46 266 96 98 285
-47 99 286 267 97
-48 100 287 268 98
-49 99 101 288 269
-50 100 102 289 270
-51 101 290 271 52
-52 2 138 51 119
-53 1 3 139 120
-54 121 2 4 140
-55 122 3 5 141
-56 123 4 6 142
-57 143 124 5 7
-58 144 125 6 8
-59 145 126 7 9
-60 146 127 8 10
-61 11 147 128 9
-62 12 148 129 10
-63 11 13 149 130
-64 12 14 150 131
-65 132 13 15 151
-66 133 14 16 152
-67 134 15 17 153
-68 135 103 16 18
-69 136 104 17 19
-70 137 105 18 20
-71 138 106 19 21
-72 22 139 107 20
-73 23 140 108 21
-74 22 24 141 109
-75 110 23 25 142
-76 143 111 24 26
-77 144 112 25 27
-78 145 113 26 28
-79 146 114 27 29
-80 147 115 28 30
-81 148 116 29 31
-82 149 117 30 32
-83 33 150 118 31
-84 34 151 119 32
-85 33 35 152 120
-86 121 34 36 153
-87 122 35 37 103
-88 123 36 38 104
-89 124 37 39 105
-90 125 38 40 106
-91 126 39 41 107
-92 127 40 42 108
-93 128 41 43 109
-94 44 110 129 42
-95 45 111 130 43
-96 44 46 112 131
-97 132 45 47 113
-98 133 46 48 114
-99 134 47 49 115
-100 135 48 50 116
-101 136 49 51 117
-102 1 137 50 118
-103 155 68 204 87
-104 88 154 156 69
-105 89 155 157 70
-106 90 156 158 71
-107 91 157 159 72
-108 92 158 160 73
-109 93 159 161 74
-110 94 160 162 75
-111 95 161 163 76
-112 77 96 162 164
-113 165 78 97 163
-114 166 79 98 164
-115 99 165 167 80
-116 100 166 168 81
-117 101 167 169 82
-118 102 168 170 83
-119 169 171 84 52
-120 170 172 85 53
-121 171 173 86 54
-122 55 172 174 87
-123 88 56 173 175
-124 176 89 57 174
-125 177 90 58 175
-126 176 178 91 59
-127 177 179 92 60
-128 178 180 93 61
-129 179 181 94 62
-130 180 182 95 63
-131 181 183 96 64
-132 182 184 97 65
-133 66 183 185 98
-134 99 67 184 186
-135 187 100 68 185
-136 188 101 69 186
-137 187 189 102 70
-138 188 190 71 52
-139 189 191 72 53
-140 190 192 73 54
-141 55 191 193 74
-142 56 192 194 75
-143 57 193 195 76
-144 77 58 194 196
-145 78 59 195 197
-146 198 79 60 196
-147 199 80 61 197
-148 198 200 81 62
-149 199 201 82 63
-150 200 202 83 64
-151 201 203 84 65
-152 66 202 204 85
-153 154 67 203 86
-154 221 104 240 153
-155 222 103 105 241
-156 242 223 104 106
-157 243 224 105 107
-158 244 225 106 108
-159 245 226 107 109
-160 110 246 227 108
-161 111 247 228 109
-162 110 112 248 229
-163 111 113 249 230
-164 231 112 114 250
-165 232 113 115 251
-166 233 114 116 252
-167 253 234 115 117
-168 254 235 116 118
-169 255 236 117 119
-170 237 205 118 120
-171 121 238 206 119
-172 122 239 207 120
-173 121 123 240 208
-174 209 122 124 241
-175 242 210 123 125
-176 243 211 124 126
-177 244 212 125 127
-178 245 213 126 128
-179 246 214 127 129
-180 247 215 128 130
-181 248 216 129 131
-182 132 249 217 130
-183 133 250 218 131
-184 132 134 251 219
-185 220 133 135 252
-186 253 221 134 136
-187 254 222 135 137
-188 255 223 136 138
-189 224 137 139 205
-190 225 138 140 206
-191 226 139 141 207
-192 227 140 142 208
-193 143 209 228 141
-194 144 210 229 142
-195 143 145 211 230
-196 231 144 146 212
-197 232 145 147 213
-198 233 146 148 214
-199 234 147 149 215
-200 235 148 150 216
-201 236 149 151 217
-202 237 150 152 218
-203 238 151 153 219
-204 220 103 239 152
-205 189 257 170 306
-206 190 256 258 171
-207 191 257 259 172
-208 192 258 260 173
-209 193 259 261 174
-210 194 260 262 175
-211 176 195 261 263
-212 264 177 196 262
-213 265 178 197 263
-214 198 264 266 179
-215 199 265 267 180
-216 200 266 268 181
-217 201 267 269 182
-218 202 268 270 183
-219 203 269 271 184
-220 204 270 272 185
-221 154 271 273 186
-222 187 155 272 274
-223 275 188 156 273
-224 276 189 157 274
-225 275 277 190 158
-226 276 278 191 159
-227 277 279 192 160
-228 278 280 193 161
-229 279 281 194 162
-230 280 282 195 163
-231 281 283 196 164
-232 165 282 284 197
-233 198 166 283 285
-234 286 199 167 284
-235 287 200 168 285
-236 286 288 201 169
-237 287 289 202 170
-238 288 290 203 171
-239 289 291 204 172
-240 154 290 292 173
-241 155 291 293 174
-242 156 292 294 175
-243 176 157 293 295
-244 177 158 294 296
-245 297 178 159 295
-246 298 179 160 296
-247 297 299 180 161
-248 298 300 181 162
-249 299 301 182 163
-250 300 302 183 164
-251 165 301 303 184
-252 166 302 304 185
-253 167 303 305 186
-254 187 168 304 306
-255 188 256 169 305
-256 255 36 17 206
-257 37 18 205 207
-258 38 19 206 208
-259 209 39 20 207
-260 210 40 21 208
-261 22 209 211 41
-262 23 210 212 42
-263 24 211 213 43
-264 44 25 212 214
-265 45 26 213 215
-266 46 27 214 216
-267 47 28 215 217
-268 48 29 216 218
-269 49 30 217 219
-270 220 50 31 218
-271 221 51 32 219
-272 33 220 1 222
-273 34 221 2 223
-274 35 222 3 224
-275 36 223 4 225
-276 37 224 5 226
-277 38 225 6 227
-278 39 226 7 228
-279 40 227 8 229
-280 41 228 9 230
-281 231 42 229 10
-282 11 232 43 230
-283 44 231 12 233
-284 45 232 13 234
-285 46 233 14 235
-286 47 234 15 236
-287 48 235 16 237
-288 49 236 17 238
-289 50 237 18 239
-290 51 238 19 240
-291 1 239 20 241
-292 242 2 240 21
-293 22 243 3 241
-294 242 23 244 4
-295 243 24 245 5
-296 244 25 246 6
-297 245 26 247 7
-298 246 27 248 8
-299 247 28 249 9
-300 248 29 250 10
-301 11 249 30 251
-302 12 250 31 252
-303 253 13 251 32
-304 33 254 14 252
-305 253 34 255 15
-306 254 35 16 205
0

**************