[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 306, 7 ] =
UG(ATD[306,11]).
(I) Following is a form readable by MAGMA:
g:=Graph<306|{ {116, 117}, {206, 207}, {192, 193}, {138, 139}, {1, 3}, {1, 2},
{301, 302}, {57, 58}, {4, 7}, {2, 6}, {2, 4}, {281, 287}, {90, 92}, {3, 5}, {67,
68}, {299, 300}, {218, 221}, {105, 110}, {80, 87}, {258, 266}, {273, 281}, {288,
297}, {1, 11}, {66, 72}, {23, 29}, {7, 13}, {6, 12}, {5, 15}, {3, 8}, {289,
298}, {277, 286}, {263, 268}, {226, 233}, {5, 9}, {292, 296}, {257, 269}, {37,
41}, {16, 29}, {64, 77}, {4, 10}, {208, 222}, {167, 169}, {1, 14}, {288, 303},
{275, 284}, {256, 271}, {224, 239}, {65, 81}, {290, 306}, {101, 117}, {143,
159}, {173, 189}, {8, 25}, {235, 250}, {66, 83}, {132, 149}, {192, 210}, {291,
305}, {265, 283}, {258, 272}, {9, 26}, {231, 244}, {225, 242}, {202, 217}, {15,
28}, {6, 18}, {237, 249}, {230, 242}, {11, 31}, {10, 30}, {7, 19}, {164, 176},
{14, 27}, {106, 127}, {38, 48}, {295, 305}, {192, 214}, {104, 126}, {39, 49},
{3, 20}, {294, 305}, {261, 274}, {8, 16}, {9, 17}, {163, 187}, {261, 284}, {2,
24}, {228, 254}, {12, 23}, {299, 304}, {297, 306}, {262, 285}, {13, 17}, {11,
22}, {260, 281}, {34, 63}, {32, 61}, {128, 157}, {204, 210}, {261, 283}, {224,
254}, {10, 21}, {267, 276}, {103, 120}, {33, 62}, {18, 50}, {259, 291}, {256,
288}, {75, 107}, {23, 55}, {22, 54}, {21, 53}, {20, 52}, {19, 51}, {92, 125},
{197, 228}, {71, 101}, {266, 296}, {31, 60}, {257, 290}, {199, 227}, {270, 298},
{264, 300}, {204, 232}, {15, 42}, {211, 246}, {30, 59}, {25, 63}, {221, 251},
{5, 34}, {278, 305}, {14, 41}, {144, 183}, {146, 181}, {148, 179}, {67, 107},
{282, 306}, {258, 298}, {17, 56}, {216, 241}, {200, 226}, {263, 301}, {27, 48},
{85, 126}, {4, 40}, {197, 233}, {13, 33}, {12, 32}, {28, 49}, {271, 290}, {269,
288}, {153, 180}, {196, 234}, {201, 231}, {27, 52}, {77, 98}, {67, 108}, {8,
57}, {277, 292}, {276, 293}, {22, 39}, {20, 37}, {18, 35}, {31, 45}, {9, 58},
{76, 127}, {72, 123}, {68, 119}, {21, 38}, {203, 255}, {260, 304}, {24, 45},
{74, 127}, {73, 124}, {26, 47}, {75, 125}, {279, 289}, {200, 254}, {19, 36},
{280, 303}, {276, 291}, {220, 235}, {25, 46}, {155, 172}, {156, 171}, {138,
178}, {287, 295}, {285, 293}, {277, 301}, {196, 252}, {198, 255}, {76, 118},
{287, 293}, {280, 290}, {199, 253}, {196, 254}, {193, 251}, {82, 104}, {16, 43},
{285, 294}, {275, 296}, {273, 298}, {272, 299}, {69, 126}, {133, 190}, {147,
175}, {279, 299}, {17, 44}, {275, 302}, {273, 300}, {216, 229}, {71, 122}, {69,
120}, {130, 191}, {141, 176}, {195, 253}, {270, 304}, {70, 121}, {274, 301},
{137, 182}, {149, 170}, {152, 167}, {29, 93}, {131, 195}, {139, 203}, {161,
225}, {43, 106}, {130, 195}, {132, 197}, {134, 199}, {136, 201}, {162, 224},
{163, 225}, {166, 228}, {7, 68}, {133, 198}, {137, 202}, {40, 108}, {60, 120},
{130, 198}, {136, 204}, {181, 241}, {183, 243}, {6, 67}, {191, 250}, {189, 248},
{48, 117}, {42, 111}, {40, 109}, {13, 75}, {150, 208}, {164, 226}, {165, 227},
{177, 247}, {41, 110}, {190, 249}, {131, 196}, {16, 88}, {153, 209}, {175, 231},
{30, 84}, {31, 85}, {173, 231}, {162, 233}, {188, 247}, {187, 240}, {42, 102},
{186, 246}, {185, 245}, {184, 244}, {168, 229}, {51, 125}, {62, 113}, {135,
200}, {169, 230}, {14, 94}, {15, 95}, {50, 96}, {54, 100}, {51, 97}, {22, 69},
{27, 72}, {133, 214}, {28, 73}, {63, 106}, {61, 104}, {39, 114}, {52, 98}, {53,
99}, {170, 252}, {174, 248}, {29, 74}, {135, 223}, {175, 246}, {188, 229}, {177,
232}, {43, 112}, {47, 116}, {138, 209}, {58, 102}, {59, 103}, {146, 206}, {147,
207}, {24, 69}, {56, 101}, {55, 106}, {52, 105}, {46, 115}, {44, 113}, {26, 71},
{144, 205}, {18, 76}, {25, 70}, {45, 114}, {32, 127}, {144, 207}, {165, 250},
{181, 213}, {10, 107}, {187, 218}, {23, 118}, {12, 109}, {145, 240}, {63, 93},
{141, 239}, {147, 241}, {35, 64}, {40, 76}, {43, 79}, {42, 78}, {41, 77}, {36,
65}, {137, 236}, {151, 242}, {154, 255}, {166, 195}, {167, 194}, {57, 95}, {139,
237}, {155, 253}, {11, 108}, {57, 94}, {56, 95}, {55, 80}, {54, 81}, {37, 66},
{174, 201}, {128, 232}, {182, 222}, {30, 119}, {171, 194}, {131, 233}, {172,
198}, {48, 91}, {184, 211}, {182, 218}, {134, 235}, {184, 213}, {60, 82}, {132,
234}, {160, 206}, {129, 238}, {49, 65}, {186, 202}, {62, 74}, {38, 83}, {148,
225}, {32, 86}, {33, 87}, {152, 238}, {163, 219}, {173, 212}, {34, 88}, {35,
89}, {150, 236}, {168, 210}, {39, 92}, {34, 94}, {47, 83}, {46, 82}, {45, 81},
{44, 80}, {161, 220}, {162, 223}, {174, 211}, {36, 90}, {37, 91}, {160, 222},
{161, 223}, {36, 166}, {97, 228}, {78, 201}, {84, 222}, {19, 159}, {38, 170},
{35, 172}, {124, 239}, {28, 136}, {26, 143}, {24, 142}, {65, 217}, {50, 171},
{20, 142}, {89, 194}, {99, 252}, {98, 192}, {115, 209}, {120, 218}, {121, 219},
{111, 204}, {112, 212}, {113, 213}, {114, 214}, {115, 215}, {125, 217}, {100,
193}, {122, 220}, {123, 221}, {47, 135}, {105, 194}, {124, 215}, {116, 216},
{33, 143}, {126, 209}, {50, 130}, {51, 131}, {53, 132}, {55, 134}, {58, 136},
{59, 137}, {122, 200}, {44, 159}, {54, 133}, {21, 160}, {60, 138}, {61, 139},
{103, 208}, {62, 134}, {53, 140}, {46, 148}, {118, 205}, {49, 141}, {111, 211},
{110, 210}, {56, 135}, {64, 129}, {109, 172}, {88, 153}, {92, 158}, {111, 173},
{115, 176}, {84, 144}, {87, 147}, {86, 146}, {85, 145}, {118, 178}, {93, 152},
{116, 177}, {109, 171}, {124, 180}, {122, 179}, {121, 179}, {88, 148}, {91,
151}, {90, 150}, {89, 149}, {66, 140}, {79, 129}, {78, 128}, {81, 158}, {94,
142}, {95, 143}, {73, 158}, {101, 188}, {99, 185}, {64, 156}, {119, 170}, {96,
190}, {97, 191}, {112, 174}, {113, 175}, {70, 153}, {89, 185}, {93, 189}, {91,
187}, {90, 186}, {84, 181}, {86, 183}, {98, 128}, {108, 142}, {85, 182}, {68,
160}, {86, 178}, {71, 162}, {78, 168}, {82, 180}, {79, 169}, {70, 161}, {105,
129}, {112, 152}, {114, 154}, {77, 167}, {123, 145}, {72, 163}, {102, 141},
{123, 151}, {73, 164}, {75, 166}, {121, 151}, {74, 165}, {87, 184}, {83, 188},
{61, 205}, {79, 189}, {110, 157}, {107, 159}, {59, 206}, {80, 165}, {103, 145},
{102, 158}, {100, 157}, {117, 140}, {96, 154}, {97, 155}, {96, 155}, {119, 140},
{100, 154}, {99, 156}, {104, 259}, {156, 282}, {149, 282}, {157, 260}, {146,
265}, {150, 264}, {176, 274}, {164, 256}, {180, 274}, {168, 257}, {169, 258},
{191, 272}, {177, 257}, {178, 259}, {190, 271}, {185, 269}, {186, 270}, {179,
267}, {183, 268}, {232, 297}, {221, 287}, {203, 271}, {205, 265}, {216, 285},
{219, 286}, {245, 306}, {237, 293}, {207, 262}, {220, 278}, {215, 284}, {251,
304}, {229, 297}, {193, 273}, {255, 303}, {247, 295}, {215, 263}, {212, 261},
{219, 266}, {217, 264}, {214, 260}, {213, 262}, {223, 267}, {240, 294}, {249,
303}, {241, 295}, {199, 272}, {212, 268}, {252, 292}, {242, 296}, {246, 300},
{250, 289}, {253, 289}, {251, 294}, {224, 256}, {197, 292}, {248, 283}, {202,
302}, {238, 266}, {203, 291}, {243, 283}, {227, 267}, {240, 281}, {243, 282},
{236, 284}, {230, 279}, {247, 262}, {234, 286}, {227, 278}, {239, 280}, {230,
286}, {234, 275}, {245, 268}, {238, 279}, {236, 277}, {226, 280}, {249, 259},
{244, 270}, {237, 278}, {244, 264}, {245, 265}, {208, 302}, {243, 269}, {235,
276}, {248, 263} }>;
(II) A more general form is to represent the graph as the orbit of {116, 117}
under the group generated by the following permutations:
a: (2, 14, 11, 3)(4, 27, 31, 8, 6, 41, 22, 5)(7, 48, 85, 25, 12, 77, 54, 15)(9,
10, 72, 60, 16, 18, 110, 39)(13, 38, 145, 46, 23, 64, 100, 28)(17, 21, 123, 82,
29, 35, 157, 49)(19, 117, 182, 70, 32, 167, 133, 42)(20, 24, 94, 108)(26, 30,
163, 138, 43, 50, 210, 92)(33, 170, 240, 115, 55, 156, 193, 73)(34, 40, 52, 45,
57, 67, 37, 69)(36, 101, 222, 121, 61, 152, 198, 78)(44, 53, 221, 180, 74, 89,
260, 141)(47, 59, 225, 178, 79, 96, 204, 125)(51, 116, 137, 161, 86, 169, 190,
111)(56, 160, 151, 104, 93, 172, 128, 65)(58, 107, 66, 120, 88, 76, 105,
114)(62, 149, 281, 176, 80, 99, 251, 124)(63, 109, 98, 81, 95, 68, 91, 126)(71,
84, 219, 139, 112, 130, 168, 90)(75, 83, 103, 148, 118, 129, 154, 136)(87, 252,
294, 215, 134, 282, 273, 164)(97, 177, 202, 223, 146, 230, 249, 173)(102, 159,
140, 218, 153, 127, 194, 214)(106, 171, 192, 158, 143, 119, 187, 209)(113, 132,
287, 274, 165, 185, 304, 239)(122, 144, 266, 203, 174, 195, 229, 150)(131, 216,
236, 220, 183, 258, 271, 211)(135, 206, 242, 259, 189, 155, 232, 217)(147, 292,
305, 263, 199, 306, 300, 226)(162, 181, 286, 237, 212, 191, 257, 186)(166, 188,
208, 179, 205, 238, 255, 201)(175, 197, 295, 301, 227, 245, 299, 280)(184, 196,
285, 284, 235, 243, 298, 256)(200, 207, 296, 291, 248, 253, 297, 264)(213, 234,
293, 261, 250, 269, 270, 224)(228, 247, 302, 267, 265, 279, 303, 231)(233, 241,
277, 278, 268, 272, 290, 246)(244, 254, 262, 275, 276, 283, 289, 288) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 4)(5, 7)(6, 14)(8, 10)(9, 13)(11, 24)(12, 27)(15, 19)(16, 21)(18,
41)(20, 40)(22, 45)(23, 48)(25, 30)(26, 33)(28, 36)(29, 38)(31, 69)(32, 72)(34,
68)(35, 77)(37, 76)(39, 81)(42, 51)(43, 53)(44, 56)(46, 59)(47, 62)(49, 65)(50,
110)(52, 109)(54, 114)(55, 117)(57, 107)(58, 75)(60, 120)(61, 123)(63, 119)(66,
127)(67, 94)(70, 84)(71, 87)(73, 90)(74, 83)(78, 97)(79, 99)(80, 101)(82,
103)(85, 126)(86, 163)(88, 160)(89, 167)(91, 118)(92, 158)(93, 170)(95, 159)(96,
157)(98, 172)(100, 154)(102, 125)(104, 145)(105, 171)(106, 140)(108, 142)(111,
131)(112, 132)(113, 135)(115, 137)(116, 134)(121, 144)(122, 147)(124, 150)(128,
155)(129, 156)(130, 210)(133, 214)(136, 166)(138, 218)(139, 221)(141, 217)(146,
225)(148, 206)(149, 152)(151, 205)(153, 222)(161, 181)(162, 184)(164, 186)(165,
188)(168, 191)(169, 185)(173, 196)(174, 197)(175, 200)(176, 202)(177, 199)(178,
187)(179, 207)(180, 208)(182, 209)(183, 219)(189, 252)(190, 260)(192, 198)(193,
255)(195, 204)(201, 228)(203, 251)(211, 233)(212, 234)(213, 223)(215, 236)(216,
235)(220, 241)(224, 244)(226, 246)(227, 247)(229, 250)(230, 245)(231, 254)(232,
253)(237, 287)(238, 282)(239, 264)(240, 259)(242, 265)(243, 266)(248, 292)(249,
281)(256, 270)(257, 272)(258, 269)(261, 275)(262, 267)(263, 277)(268, 286)(271,
304)(273, 303)(274, 302)(276, 285)(278, 295)(279, 306)(280, 300)(283, 296)(288,
298)(289, 297)(290, 299)(291, 294)
c: (2, 3)(4, 5)(6, 8)(7, 9)(10, 15)(11, 14)(12, 16)(13, 17)(18, 25)(19, 26)(20,
24)(21, 28)(22, 27)(23, 29)(30, 42)(31, 41)(32, 43)(33, 44)(34, 40)(35, 46)(36,
47)(37, 45)(38, 49)(39, 48)(50, 70)(51, 71)(52, 69)(53, 73)(54, 72)(55, 74)(56,
75)(57, 67)(58, 68)(59, 78)(60, 77)(61, 79)(62, 80)(63, 76)(64, 82)(65, 83)(66,
81)(84, 111)(85, 110)(86, 112)(87, 113)(88, 109)(89, 115)(90, 116)(91, 114)(92,
117)(93, 118)(94, 108)(95, 107)(96, 121)(97, 122)(98, 120)(99, 124)(100,
123)(101, 125)(102, 119)(103, 128)(104, 129)(105, 126)(106, 127)(130, 161)(131,
162)(132, 164)(133, 163)(134, 165)(135, 166)(136, 160)(137, 168)(138, 167)(139,
169)(140, 158)(141, 170)(143, 159)(144, 173)(145, 157)(146, 174)(147, 175)(148,
172)(149, 176)(150, 177)(151, 154)(152, 178)(153, 171)(155, 179)(156, 180)(181,
211)(182, 210)(183, 212)(184, 213)(185, 215)(186, 216)(187, 214)(188, 217)(189,
205)(190, 219)(191, 220)(192, 218)(193, 221)(194, 209)(195, 223)(196, 224)(197,
226)(198, 225)(199, 227)(200, 228)(201, 206)(202, 229)(203, 230)(204, 222)(207,
231)(208, 232)(234, 256)(235, 250)(236, 257)(237, 258)(238, 259)(239, 252)(240,
260)(241, 246)(242, 255)(243, 261)(244, 262)(245, 263)(247, 264)(248, 265)(249,
266)(253, 267)(269, 284)(270, 285)(271, 286)(272, 278)(273, 287)(274, 282)(275,
288)(276, 289)(277, 290)(279, 291)(280, 292)(293, 298)(294, 304)(295, 300)(296,
303)(297, 302)(299, 305)(301, 306)
C4[ 306, 7 ]
306
-1 11 2 3 14
-2 1 24 4 6
-3 1 5 8 20
-4 2 7 40 10
-5 34 3 15 9
-6 12 67 2 18
-7 13 68 4 19
-8 57 3 25 16
-9 58 26 5 17
-10 4 30 107 21
-11 22 1 31 108
-12 23 6 32 109
-13 33 17 7 75
-14 1 27 94 41
-15 5 28 95 42
-16 88 29 8 43
-17 44 56 13 9
-18 35 6 50 76
-19 36 159 7 51
-20 3 37 52 142
-21 38 160 53 10
-22 11 69 39 54
-23 55 12 29 118
-24 45 2 69 142
-25 46 70 8 63
-26 143 47 71 9
-27 14 48 72 52
-28 15 136 49 73
-29 23 16 93 74
-30 59 84 119 10
-31 11 45 60 85
-32 12 61 127 86
-33 143 13 62 87
-34 88 5 94 63
-35 89 18 172 64
-36 166 90 19 65
-37 66 91 41 20
-38 48 170 83 21
-39 22 92 114 49
-40 4 108 76 109
-41 77 110 14 37
-42 78 111 102 15
-43 79 112 16 106
-44 80 113 159 17
-45 24 81 114 31
-46 25 82 115 148
-47 135 26 83 116
-48 91 27 38 117
-49 28 39 141 65
-50 171 18 96 130
-51 125 19 97 131
-52 27 105 20 98
-53 99 132 140 21
-54 22 100 133 81
-55 23 134 80 106
-56 101 135 17 95
-57 58 94 95 8
-58 57 102 136 9
-59 103 137 30 206
-60 82 138 31 120
-61 104 139 205 32
-62 33 134 113 74
-63 34 25 93 106
-64 77 35 156 129
-65 36 81 49 217
-66 37 72 83 140
-67 68 6 107 108
-68 67 160 7 119
-69 22 24 126 120
-70 121 25 161 153
-71 122 101 26 162
-72 66 123 27 163
-73 124 158 28 164
-74 165 127 29 62
-75 166 13 125 107
-76 127 18 40 118
-77 167 41 64 98
-78 168 201 128 42
-79 189 169 129 43
-80 44 55 165 87
-81 45 158 54 65
-82 46 180 60 104
-83 66 188 47 38
-84 144 222 181 30
-85 145 126 182 31
-86 178 146 183 32
-87 33 80 147 184
-88 34 16 148 153
-89 35 149 194 185
-90 36 92 150 186
-91 187 37 48 151
-92 90 125 158 39
-93 189 29 63 152
-94 34 57 14 142
-95 143 56 57 15
-96 154 155 190 50
-97 155 191 51 228
-98 77 192 128 52
-99 156 53 185 252
-100 154 157 193 54
-101 56 188 71 117
-102 58 158 42 141
-103 145 59 120 208
-104 82 126 61 259
-105 110 194 52 129
-106 55 127 63 43
-107 67 159 75 10
-108 11 67 40 142
-109 12 171 40 172
-110 210 157 105 41
-111 211 204 173 42
-112 212 152 174 43
-113 44 213 62 175
-114 154 45 214 39
-115 176 209 46 215
-116 177 47 117 216
-117 101 48 116 140
-118 23 178 205 76
-119 68 170 30 140
-120 69 103 60 218
-121 179 70 151 219
-122 220 200 179 71
-123 221 145 72 151
-124 180 215 73 239
-125 92 51 217 75
-126 209 69 104 85
-127 106 74 32 76
-128 78 232 157 98
-129 79 105 238 64
-130 198 191 50 195
-131 233 51 195 196
-132 234 149 53 197
-133 198 190 214 54
-134 55 199 235 62
-135 56 200 47 223
-136 58 201 28 204
-137 59 202 236 182
-138 209 178 60 139
-139 203 61 138 237
-140 66 117 53 119
-141 176 102 49 239
-142 24 94 20 108
-143 33 26 159 95
-144 84 183 205 207
-145 123 103 85 240
-146 265 181 206 86
-147 207 87 175 241
-148 88 46 179 225
-149 132 89 170 282
-150 264 90 236 208
-151 121 242 123 91
-152 112 167 93 238
-153 88 209 70 180
-154 100 255 114 96
-155 253 172 96 97
-156 99 171 282 64
-157 110 100 128 260
-158 102 81 92 73
-159 44 143 19 107
-160 68 222 206 21
-161 220 223 70 225
-162 233 223 224 71
-163 187 225 72 219
-164 176 256 226 73
-165 80 227 74 250
-166 36 195 228 75
-167 77 169 194 152
-168 78 210 257 229
-169 79 167 258 230
-170 38 149 119 252
-171 156 50 194 109
-172 198 155 35 109
-173 231 111 189 212
-174 112 211 201 248
-175 231 113 147 246
-176 115 141 164 274
-177 232 257 247 116
-178 138 259 118 86
-179 121 122 267 148
-180 124 82 153 274
-181 146 213 84 241
-182 222 137 85 218
-183 144 243 268 86
-184 211 244 213 87
-185 99 89 245 269
-186 90 202 246 270
-187 91 163 218 240
-188 101 247 83 229
-189 79 93 248 173
-190 133 249 271 96
-191 250 272 97 130
-192 210 214 193 98
-193 100 192 251 273
-194 89 167 105 171
-195 253 166 130 131
-196 254 234 131 252
-197 132 233 292 228
-198 133 255 172 130
-199 253 134 227 272
-200 122 254 135 226
-201 231 78 136 174
-202 137 302 217 186
-203 255 291 139 271
-204 111 210 232 136
-205 144 265 61 118
-206 146 59 160 207
-207 144 147 206 262
-208 222 103 302 150
-209 115 126 138 153
-210 110 168 192 204
-211 111 246 184 174
-212 112 268 173 261
-213 113 181 184 262
-214 133 114 192 260
-215 124 115 284 263
-216 116 229 241 285
-217 264 125 202 65
-218 187 221 182 120
-219 121 286 266 163
-220 122 278 235 161
-221 287 123 218 251
-222 160 182 84 208
-223 135 267 161 162
-224 254 256 162 239
-225 242 148 161 163
-226 200 233 280 164
-227 165 199 267 278
-228 166 254 97 197
-229 297 188 168 216
-230 242 286 169 279
-231 244 201 173 175
-232 297 177 204 128
-233 226 162 131 197
-234 132 275 286 196
-235 220 276 134 250
-236 277 137 150 284
-237 278 139 249 293
-238 266 279 129 152
-239 124 224 280 141
-240 187 145 281 294
-241 147 181 216 295
-242 225 151 230 296
-243 269 183 282 283
-244 231 264 270 184
-245 265 268 185 306
-246 211 300 175 186
-247 177 188 262 295
-248 189 283 174 263
-249 190 237 259 303
-250 165 289 191 235
-251 221 193 304 294
-252 99 170 292 196
-253 155 199 289 195
-254 200 224 228 196
-255 154 198 203 303
-256 288 224 271 164
-257 177 168 290 269
-258 298 266 169 272
-259 178 104 291 249
-260 157 214 281 304
-261 212 283 284 274
-262 213 247 207 285
-263 268 301 215 248
-264 244 300 150 217
-265 146 245 205 283
-266 258 238 219 296
-267 276 179 223 227
-268 212 245 183 263
-269 243 288 257 185
-270 298 244 304 186
-271 190 256 290 203
-272 199 299 191 258
-273 298 300 193 281
-274 176 180 301 261
-275 234 302 284 296
-276 267 235 291 293
-277 286 301 236 292
-278 220 237 227 305
-279 299 289 238 230
-280 290 226 303 239
-281 287 260 240 273
-282 243 156 149 306
-283 243 265 248 261
-284 275 236 215 261
-285 216 293 294 262
-286 277 234 219 230
-287 221 281 293 295
-288 297 256 269 303
-289 253 298 279 250
-290 257 280 271 306
-291 276 203 259 305
-292 277 197 252 296
-293 276 287 237 285
-294 305 240 251 285
-295 287 247 305 241
-296 242 275 266 292
-297 232 288 229 306
-298 289 258 270 273
-299 300 279 304 272
-300 264 299 246 273
-301 277 302 263 274
-302 275 202 301 208
-303 255 288 280 249
-304 299 270 260 251
-305 278 291 294 295
-306 297 245 290 282
0