C4graphGraph forms for C4 [ 306, 8 ] = TAG(F102)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 306, 8 ] = TAG(F102).

(I) Following is a form readable by MAGMA:

g:=Graph<306|{ {32, 34}, {192, 194}, {60, 62}, {9, 10}, {292, 295}, {224, 227}, {90, 94}, {193, 197}, {97, 101}, {169, 173}, {2, 7}, {107, 110}, {123, 126}, {89, 94}, {87, 95}, {243, 251}, {224, 232}, {165, 173}, {263, 270}, {288, 298}, {80, 92}, {49, 60}, {85, 88}, {52, 58}, {243, 253}, {55, 57}, {113, 127}, {119, 121}, {135, 137}, {257, 270}, {291, 300}, {68, 84}, {265, 281}, {102, 118}, {105, 121}, {175, 191}, {74, 88}, {102, 116}, {108, 127}, {164, 183}, {77, 89}, {98, 118}, {79, 91}, {165, 176}, {171, 190}, {34, 52}, {98, 116}, {68, 82}, {39, 49}, {9, 30}, {68, 83}, {35, 52}, {4, 28}, {166, 190}, {36, 61}, {263, 286}, {39, 62}, {169, 176}, {78, 82}, {174, 178}, {78, 83}, {103, 122}, {137, 151}, {259, 285}, {257, 286}, {91, 122}, {257, 288}, {151, 182}, {24, 58}, {270, 300}, {202, 232}, {256, 292}, {219, 254}, {12, 42}, {128, 166}, {77, 106}, {259, 292}, {213, 242}, {79, 103}, {271, 295}, {76, 101}, {13, 39}, {257, 299}, {84, 126}, {2, 41}, {27, 48}, {25, 53}, {139, 166}, {219, 245}, {149, 186}, {4, 52}, {88, 104}, {80, 96}, {154, 170}, {25, 40}, {66, 115}, {135, 182}, {16, 34}, {285, 303}, {19, 33}, {66, 113}, {259, 304}, {88, 107}, {25, 45}, {220, 232}, {95, 107}, {90, 110}, {158, 170}, {203, 254}, {89, 110}, {205, 250}, {201, 254}, {202, 242}, {264, 304}, {87, 110}, {158, 167}, {199, 253}, {196, 255}, {281, 290}, {27, 39}, {199, 251}, {13, 48}, {213, 232}, {201, 244}, {146, 175}, {154, 167}, {28, 34}, {132, 186}, {5, 58}, {220, 227}, {203, 244}, {68, 123}, {12, 76}, {190, 254}, {21, 85}, {149, 213}, {12, 77}, {26, 89}, {43, 104}, {9, 77}, {166, 226}, {47, 106}, {143, 201}, {187, 253}, {5, 66}, {51, 116}, {139, 204}, {164, 227}, {129, 201}, {154, 210}, {171, 226}, {51, 120}, {190, 245}, {128, 204}, {184, 244}, {187, 247}, {178, 255}, {184, 245}, {161, 239}, {155, 212}, {189, 242}, {160, 239}, {35, 115}, {177, 225}, {13, 92}, {59, 106}, {132, 213}, {182, 231}, {35, 113}, {55, 101}, {154, 207}, {46, 120}, {62, 104}, {164, 242}, {57, 97}, {61, 101}, {161, 249}, {160, 249}, {12, 86}, {46, 116}, {24, 66}, {131, 217}, {189, 227}, {9, 86}, {21, 74}, {146, 205}, {59, 90}, {164, 197}, {184, 217}, {136, 234}, {177, 212}, {143, 233}, {156, 250}, {58, 93}, {131, 228}, {177, 214}, {36, 76}, {129, 233}, {177, 217}, {62, 87}, {179, 218}, {129, 234}, {163, 207}, {13, 96}, {138, 231}, {18, 124}, {155, 245}, {174, 192}, {179, 221}, {184, 214}, {155, 244}, {26, 106}, {135, 247}, {136, 248}, {178, 194}, {14, 127}, {163, 210}, {15, 125}, {191, 205}, {1, 114}, {174, 221}, {174, 218}, {47, 90}, {183, 193}, {8, 127}, {129, 248}, {135, 253}, {155, 225}, {157, 231}, {1, 125}, {43, 87}, {23, 107}, {15, 114}, {35, 93}, {23, 104}, {30, 158}, {84, 212}, {82, 208}, {103, 229}, {84, 215}, {93, 222}, {111, 236}, {38, 162}, {38, 163}, {81, 212}, {22, 144}, {81, 215}, {112, 246}, {19, 148}, {20, 157}, {22, 156}, {82, 216}, {14, 133}, {103, 236}, {53, 185}, {8, 133}, {3, 141}, {15, 159}, {81, 193}, {37, 181}, {125, 236}, {20, 134}, {99, 241}, {98, 240}, {117, 231}, {17, 130}, {99, 240}, {98, 241}, {38, 181}, {22, 133}, {119, 228}, {69, 209}, {16, 134}, {70, 208}, {60, 171}, {100, 243}, {18, 138}, {55, 175}, {6, 159}, {17, 139}, {2, 153}, {48, 171}, {20, 137}, {63, 162}, {53, 168}, {70, 216}, {19, 140}, {73, 214}, {6, 167}, {115, 210}, {14, 172}, {125, 222}, {108, 200}, {92, 249}, {67, 229}, {75, 237}, {11, 172}, {109, 202}, {10, 162}, {37, 141}, {15, 167}, {32, 137}, {71, 237}, {2, 169}, {61, 150}, {55, 156}, {20, 191}, {80, 252}, {73, 228}, {61, 147}, {100, 202}, {119, 217}, {7, 168}, {67, 236}, {41, 134}, {16, 191}, {111, 222}, {63, 141}, {44, 152}, {100, 209}, {3, 181}, {71, 241}, {69, 243}, {46, 152}, {92, 235}, {38, 158}, {93, 229}, {46, 150}, {22, 175}, {79, 246}, {42, 147}, {44, 150}, {75, 241}, {123, 193}, {7, 188}, {41, 146}, {11, 176}, {115, 200}, {42, 150}, {30, 163}, {32, 157}, {14, 176}, {108, 210}, {10, 181}, {6, 198}, {29, 221}, {1, 195}, {91, 153}, {28, 222}, {75, 136}, {75, 143}, {6, 195}, {126, 187}, {123, 189}, {1, 198}, {65, 134}, {37, 226}, {64, 136}, {72, 128}, {40, 225}, {99, 170}, {69, 140}, {29, 215}, {94, 148}, {72, 130}, {45, 230}, {95, 148}, {69, 142}, {44, 224}, {102, 170}, {3, 206}, {54, 249}, {64, 143}, {94, 142}, {56, 233}, {95, 142}, {5, 214}, {65, 146}, {51, 224}, {31, 203}, {120, 172}, {120, 173}, {109, 186}, {85, 141}, {78, 151}, {67, 153}, {118, 172}, {3, 216}, {31, 196}, {118, 173}, {33, 252}, {54, 235}, {4, 218}, {100, 186}, {31, 192}, {72, 168}, {5, 228}, {109, 140}, {113, 144}, {4, 230}, {36, 199}, {109, 142}, {97, 133}, {67, 165}, {27, 252}, {57, 209}, {59, 211}, {65, 168}, {126, 151}, {51, 223}, {81, 189}, {105, 132}, {45, 221}, {71, 183}, {60, 204}, {56, 200}, {72, 185}, {97, 144}, {50, 192}, {44, 223}, {71, 180}, {56, 203}, {119, 132}, {64, 180}, {36, 209}, {78, 187}, {31, 233}, {50, 196}, {56, 207}, {85, 162}, {64, 183}, {28, 229}, {102, 159}, {50, 200}, {29, 230}, {29, 225}, {99, 159}, {48, 204}, {108, 144}, {50, 207}, {65, 188}, {59, 198}, {37, 219}, {91, 165}, {57, 199}, {40, 215}, {23, 278}, {21, 278}, {43, 296}, {40, 299}, {8, 268}, {54, 306}, {45, 299}, {11, 268}, {42, 301}, {26, 275}, {16, 284}, {47, 291}, {41, 293}, {24, 276}, {19, 285}, {33, 303}, {23, 262}, {21, 262}, {54, 293}, {53, 288}, {8, 273}, {49, 296}, {11, 273}, {18, 265}, {17, 271}, {63, 289}, {27, 261}, {47, 270}, {7, 293}, {43, 269}, {10, 301}, {33, 264}, {63, 276}, {18, 290}, {25, 298}, {30, 301}, {17, 292}, {32, 284}, {49, 269}, {26, 295}, {24, 294}, {83, 274}, {105, 296}, {117, 305}, {86, 275}, {96, 293}, {79, 263}, {70, 266}, {124, 305}, {96, 306}, {124, 303}, {70, 274}, {80, 261}, {124, 297}, {83, 266}, {117, 303}, {73, 276}, {74, 276}, {76, 301}, {114, 272}, {112, 279}, {111, 262}, {74, 289}, {122, 279}, {73, 294}, {86, 295}, {114, 262}, {121, 268}, {112, 263}, {117, 258}, {122, 269}, {112, 269}, {121, 260}, {105, 279}, {111, 272}, {145, 272}, {147, 274}, {152, 282}, {145, 278}, {138, 258}, {147, 282}, {152, 274}, {130, 275}, {149, 260}, {179, 290}, {145, 258}, {131, 279}, {157, 267}, {139, 275}, {149, 268}, {145, 267}, {169, 306}, {156, 256}, {180, 297}, {138, 297}, {161, 258}, {185, 282}, {148, 305}, {188, 282}, {130, 298}, {128, 298}, {161, 267}, {131, 296}, {153, 306}, {179, 280}, {180, 281}, {160, 272}, {185, 266}, {160, 278}, {188, 266}, {140, 305}, {178, 271}, {182, 267}, {223, 286}, {220, 286}, {208, 277}, {218, 284}, {195, 265}, {250, 304}, {196, 271}, {211, 280}, {226, 302}, {252, 304}, {205, 256}, {208, 287}, {206, 287}, {247, 294}, {246, 288}, {247, 289}, {194, 280}, {251, 289}, {211, 265}, {195, 280}, {206, 277}, {197, 281}, {246, 299}, {251, 294}, {194, 290}, {206, 302}, {234, 264}, {238, 264}, {250, 285}, {248, 273}, {198, 300}, {238, 260}, {238, 261}, {240, 283}, {197, 297}, {234, 261}, {240, 287}, {235, 283}, {237, 287}, {239, 283}, {219, 302}, {216, 302}, {237, 283}, {230, 284}, {239, 277}, {223, 291}, {255, 259}, {248, 260}, {235, 277}, {211, 300}, {255, 256}, {238, 273}, {220, 291} }>;

(II) A more general form is to represent the graph as the orbit of {32, 34} under the group generated by the following permutations:

a: (1, 2, 255)(3, 302, 37)(4, 34, 284)(5, 135, 215)(6, 306, 292)(7, 196, 114)(8, 305, 286)(9, 240, 48)(10, 287, 171)(11, 19, 291)(12, 241, 39)(13, 86, 99)(14, 303, 270)(15, 293, 271)(16, 218, 28)(17, 167, 54)(18, 79, 22)(20, 221, 93)(21, 266, 203)(23, 282, 233)(24, 151, 225)(25, 115, 267)(26, 102, 80)(27, 77, 98)(29, 58, 137)(30, 283, 204)(31, 262, 188)(32, 230, 52)(33, 47, 172)(35, 157, 45)(36, 183, 296)(38, 277, 166)(40, 66, 182)(41, 178, 125)(42, 75, 62)(43, 61, 64)(44, 248, 95)(46, 234, 110)(49, 76, 71)(50, 272, 168)(51, 238, 94)(53, 200, 145)(55, 281, 122)(56, 278, 185)(57, 197, 279)(59, 173, 304)(60, 301, 237)(63, 82, 245)(65, 192, 111)(67, 205, 280)(68, 184, 289)(69, 227, 121)(70, 254, 85)(72, 207, 160)(73, 187, 212)(74, 83, 244)(78, 155, 276)(81, 228, 253)(84, 214, 247)(87, 150, 136)(88, 274, 201)(89, 116, 261)(90, 120, 264)(91, 156, 265)(92, 275, 170)(96, 295, 159)(97, 297, 112)(100, 242, 132)(101, 180, 269)(103, 175, 290)(104, 147, 143)(105, 209, 164)(106, 118, 252)(107, 152, 129)(108, 258, 288)(109, 232, 149)(113, 231, 299)(117, 257, 127)(119, 243, 189)(123, 217, 251)(124, 263, 133)(126, 177, 294)(128, 163, 239)(130, 154, 249)(131, 199, 193)(134, 174, 222)(138, 246, 144)(139, 158, 235)(140, 220, 268)(141, 216, 219)(142, 224, 260)(146, 194, 236)(148, 223, 273)(153, 256, 195)(161, 298, 210)(162, 208, 190)(165, 250, 211)(169, 259, 198)(176, 285, 300)(179, 229, 191)(181, 206, 226)(186, 202, 213)
b: (2, 193)(3, 42)(4, 218)(5, 255)(6, 15)(7, 123)(8, 129)(9, 162)(11, 136)(12, 141)(13, 202)(14, 143)(16, 29)(17, 294)(18, 103)(19, 296)(20, 40)(21, 106)(22, 244)(23, 90)(24, 271)(25, 137)(26, 74)(27, 186)(28, 179)(30, 38)(31, 113)(32, 45)(33, 105)(34, 221)(35, 192)(36, 226)(37, 76)(39, 109)(41, 81)(43, 148)(44, 277)(46, 287)(47, 278)(48, 100)(49, 140)(50, 115)(51, 283)(52, 174)(53, 151)(54, 227)(55, 245)(56, 108)(57, 190)(58, 178)(59, 262)(60, 69)(61, 302)(62, 142)(63, 86)(64, 176)(65, 84)(66, 196)(67, 281)(68, 188)(70, 274)(71, 173)(72, 187)(73, 292)(75, 172)(77, 85)(78, 185)(79, 138)(80, 213)(82, 282)(83, 266)(87, 95)(88, 89)(91, 297)(92, 232)(93, 194)(94, 104)(96, 242)(97, 254)(99, 102)(101, 219)(107, 110)(111, 211)(112, 117)(114, 198)(116, 240)(118, 241)(119, 304)(120, 237)(121, 264)(122, 124)(125, 195)(126, 168)(127, 233)(128, 253)(130, 247)(131, 285)(132, 252)(133, 201)(134, 215)(135, 298)(139, 251)(144, 203)(145, 270)(146, 212)(147, 216)(149, 261)(150, 206)(152, 208)(153, 197)(155, 175)(156, 184)(157, 299)(160, 291)(161, 286)(164, 306)(165, 180)(166, 199)(169, 183)(171, 209)(177, 205)(181, 301)(182, 288)(189, 293)(191, 225)(204, 243)(207, 210)(214, 256)(217, 250)(220, 249)(222, 280)(223, 239)(224, 235)(228, 259)(229, 290)(230, 284)(231, 246)(234, 268)(236, 265)(238, 260)(248, 273)(257, 267)(258, 263)(269, 305)(272, 300)(275, 289)(276, 295)(279, 303)
c: (2, 255, 92, 275)(3, 150, 127, 143)(4, 138, 107, 263)(5, 193, 289, 232)(6, 15)(7, 256, 80, 139)(8, 201, 216, 61)(9, 173, 50, 283)(10, 120, 200, 237)(11, 203, 208, 76)(12, 176, 31, 277)(13, 130, 41, 259)(14, 233, 206, 42)(16, 303, 62, 288)(17, 293, 292, 96)(18, 23, 270, 28)(19, 49, 25, 20)(21, 291, 93, 281)(22, 234, 226, 282)(24, 164, 276, 227)(26, 153, 178, 249)(27, 128, 65, 250)(29, 182, 142, 279)(30, 118, 207, 240)(32, 305, 43, 299)(33, 60, 53, 191)(34, 124, 104, 257)(35, 180, 85, 223)(36, 268, 244, 82)(37, 152, 144, 136)(38, 116, 210, 241)(39, 298, 134, 285)(40, 137, 140, 296)(44, 113, 64, 141)(45, 157, 148, 269)(46, 108, 75, 181)(47, 229, 290, 278)(48, 72, 146, 304)(51, 115, 71, 162)(52, 297, 88, 286)(54, 295, 306, 271)(55, 238, 190, 266)(56, 287, 301, 172)(57, 260, 245, 83)(58, 197, 74, 220)(59, 236, 280, 272)(63, 224, 66, 183)(67, 194, 160, 106)(68, 199, 149, 184)(69, 105, 225, 151)(70, 101, 273, 254)(73, 189, 294, 242)(77, 165, 192, 239)(78, 209, 121, 155)(79, 218, 258, 110)(81, 247, 202, 228)(84, 253, 186, 217)(86, 169, 196, 235)(87, 246, 284, 117)(89, 91, 174, 161)(90, 103, 179, 145)(94, 122, 221, 267)(95, 112, 230, 231)(97, 248, 219, 274)(98, 163)(99, 158, 102, 154)(100, 119, 212, 187)(109, 131, 215, 135)(111, 211)(114, 198, 125, 195)(123, 251, 213, 214)(126, 243, 132, 177)(129, 302, 147, 133)(156, 261, 166, 188)(159, 167)(168, 205, 252, 204)(171, 185, 175, 264)(222, 265, 262, 300)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 306, 8 ]
306
-1 198 114 125 195
-2 169 7 41 153
-3 181 216 206 141
-4 28 52 218 230
-5 66 58 214 228
-6 198 167 159 195
-7 188 2 168 293
-8 133 268 127 273
-9 77 30 86 10
-10 301 181 162 9
-11 176 268 172 273
-12 77 42 86 76
-13 48 92 39 96
-14 176 133 127 172
-15 167 114 125 159
-16 34 134 191 284
-17 292 139 271 130
-18 265 124 290 138
-19 33 148 140 285
-20 134 157 191 137
-21 278 74 85 262
-22 133 144 156 175
-23 278 104 107 262
-24 66 276 58 294
-25 45 298 40 53
-26 275 89 106 295
-27 48 39 261 252
-28 34 222 4 229
-29 221 225 215 230
-30 158 301 9 163
-31 233 192 203 196
-32 34 157 137 284
-33 264 303 19 252
-34 16 28 52 32
-35 113 93 115 52
-36 209 199 61 76
-37 181 226 141 219
-38 158 181 162 163
-39 13 27 49 62
-40 299 25 225 215
-41 2 134 146 293
-42 12 147 301 150
-43 104 269 87 296
-44 223 224 150 152
-45 221 299 25 230
-46 116 150 152 120
-47 90 291 270 106
-48 13 27 171 204
-49 60 269 39 296
-50 200 192 196 207
-51 223 224 116 120
-52 34 35 58 4
-53 288 25 168 185
-54 235 249 293 306
-55 57 101 156 175
-56 200 233 203 207
-57 55 209 199 97
-58 24 5 93 52
-59 198 90 211 106
-60 49 171 204 62
-61 101 36 147 150
-62 60 104 39 87
-63 276 289 162 141
-64 143 136 180 183
-65 188 134 146 168
-66 24 113 5 115
-67 165 236 229 153
-68 123 82 83 84
-69 209 243 140 142
-70 266 216 208 274
-71 180 237 183 241
-72 168 128 130 185
-73 276 214 228 294
-74 88 276 289 21
-75 143 136 237 241
-76 12 101 36 301
-77 12 89 106 9
-78 187 82 83 151
-79 91 103 246 263
-80 92 96 261 252
-81 189 212 193 215
-82 78 68 216 208
-83 78 68 266 274
-84 68 212 126 215
-85 88 162 141 21
-86 275 12 9 295
-87 110 62 95 43
-88 104 74 85 107
-89 77 110 26 94
-90 110 47 59 94
-91 165 122 79 153
-92 13 80 235 249
-93 35 222 58 229
-94 89 90 148 142
-95 148 107 87 142
-96 13 80 293 306
-97 133 144 57 101
-98 116 118 240 241
-99 159 170 240 241
-100 209 243 202 186
-101 55 61 97 76
-102 159 170 116 118
-103 122 79 236 229
-104 88 23 62 43
-105 121 132 279 296
-106 77 47 26 59
-107 88 110 23 95
-108 144 210 200 127
-109 202 140 142 186
-110 89 90 107 87
-111 222 236 272 262
-112 246 279 269 263
-113 66 144 35 127
-114 1 15 272 262
-115 66 210 35 200
-116 46 102 51 98
-117 231 258 303 305
-118 102 172 173 98
-119 121 132 217 228
-120 46 51 172 173
-121 268 105 260 119
-122 91 103 279 269
-123 68 189 126 193
-124 297 303 18 305
-125 1 222 15 236
-126 187 123 84 151
-127 14 113 8 108
-128 166 298 72 204
-129 233 201 234 248
-130 275 298 17 72
-131 279 217 228 296
-132 213 105 119 186
-133 22 14 8 97
-134 16 41 20 65
-135 253 137 247 182
-136 234 248 64 75
-137 135 151 20 32
-138 231 297 258 18
-139 275 166 17 204
-140 69 19 305 109
-141 3 37 63 85
-142 69 94 95 109
-143 233 201 64 75
-144 22 113 97 108
-145 267 278 258 272
-146 205 41 65 175
-147 61 282 42 274
-148 94 95 19 305
-149 213 268 260 186
-150 44 46 61 42
-151 78 126 137 182
-152 44 46 282 274
-153 67 2 91 306
-154 210 167 170 207
-155 244 212 245 225
-156 22 55 256 250
-157 231 267 20 32
-158 167 38 170 30
-159 99 102 15 6
-160 278 249 239 272
-161 267 258 249 239
-162 38 63 85 10
-163 210 38 30 207
-164 242 183 227 197
-165 176 67 91 173
-166 190 226 128 139
-167 154 15 158 6
-168 72 7 53 65
-169 176 2 173 306
-170 99 154 102 158
-171 190 48 60 226
-172 11 14 118 120
-173 165 169 118 120
-174 221 178 192 218
-175 22 55 146 191
-176 11 165 14 169
-177 212 214 225 217
-178 255 194 271 174
-179 221 290 280 218
-180 297 71 281 64
-181 3 37 38 10
-182 231 135 267 151
-183 71 193 64 164
-184 244 245 214 217
-185 266 72 282 53
-186 132 100 149 109
-187 253 78 126 247
-188 266 7 282 65
-189 242 123 81 227
-190 166 254 245 171
-191 16 205 20 175
-192 50 194 31 174
-193 123 81 183 197
-194 178 290 192 280
-195 1 265 280 6
-196 255 50 271 31
-197 297 193 281 164
-198 1 300 59 6
-199 253 57 36 251
-200 56 115 50 108
-201 143 254 244 129
-202 242 100 232 109
-203 56 254 244 31
-204 48 60 128 139
-205 146 256 191 250
-206 287 277 3 302
-207 154 56 50 163
-208 287 277 70 82
-209 100 57 36 69
-210 154 115 108 163
-211 265 300 59 280
-212 155 177 81 84
-213 132 242 232 149
-214 177 5 73 184
-215 81 29 40 84
-216 3 70 82 302
-217 177 184 119 131
-218 179 4 174 284
-219 254 245 37 302
-220 286 232 291 227
-221 45 179 29 174
-222 111 125 93 28
-223 44 286 291 51
-224 44 232 51 227
-225 155 177 29 40
-226 166 37 302 171
-227 220 189 224 164
-228 5 73 119 131
-229 67 103 93 28
-230 45 4 29 284
-231 157 138 182 117
-232 220 202 213 224
-233 143 56 129 31
-234 264 136 129 261
-235 277 92 283 54
-236 67 111 103 125
-237 287 71 283 75
-238 264 260 261 273
-239 277 160 161 283
-240 99 287 283 98
-241 99 71 75 98
-242 189 202 213 164
-243 253 100 69 251
-244 155 201 203 184
-245 155 190 184 219
-246 112 299 79 288
-247 187 135 289 294
-248 136 260 129 273
-249 92 160 161 54
-250 156 205 304 285
-251 199 243 289 294
-252 33 80 27 304
-253 187 199 243 135
-254 190 201 203 219
-255 178 256 259 196
-256 156 255 292 205
-257 286 288 299 270
-258 145 138 117 161
-259 255 292 304 285
-260 121 149 248 238
-261 80 234 27 238
-262 23 111 114 21
-263 286 79 112 270
-264 33 234 238 304
-265 211 281 18 195
-266 188 70 83 185
-267 145 157 182 161
-268 11 121 149 8
-269 122 112 49 43
-270 47 300 257 263
-271 178 17 196 295
-272 111 145 114 160
-273 11 248 238 8
-274 70 147 83 152
-275 26 139 86 130
-276 24 73 63 74
-277 235 206 239 208
-278 23 145 160 21
-279 122 112 105 131
-280 211 179 194 195
-281 265 180 290 197
-282 188 147 152 185
-283 235 237 239 240
-284 16 218 32 230
-285 259 303 19 250
-286 220 223 257 263
-287 237 206 240 208
-288 298 246 257 53
-289 247 63 74 251
-290 179 281 18 194
-291 220 47 223 300
-292 256 17 259 295
-293 7 41 96 54
-294 24 247 73 251
-295 26 292 271 86
-296 49 105 43 131
-297 124 180 138 197
-298 288 25 128 130
-299 45 246 257 40
-300 198 211 291 270
-301 30 42 10 76
-302 226 216 206 219
-303 33 124 117 285
-304 264 259 250 252
-305 124 148 117 140
-306 169 96 54 153
0

**************