[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 312, 21 ] =
PS(3,104;9).
(I) Following is a form readable by MAGMA:
g:=Graph<312|{ {104, 105}, {208, 217}, {207, 216}, {200, 209}, {206, 215}, {204,
213}, {202, 211}, {201, 210}, {205, 214}, {203, 212}, {128, 223}, {160, 255},
{129, 224}, {159, 254}, {157, 252}, {155, 250}, {153, 248}, {151, 246}, {149,
244}, {147, 242}, {145, 240}, {143, 238}, {141, 236}, {131, 226}, {133, 228},
{135, 230}, {137, 232}, {139, 234}, {130, 225}, {158, 253}, {154, 249}, {150,
245}, {146, 241}, {142, 237}, {134, 229}, {138, 233}, {8, 111}, {156, 251},
{148, 243}, {140, 235}, {16, 119}, {24, 127}, {132, 227}, {2, 107}, {3, 106},
{4, 109}, {5, 108}, {6, 111}, {7, 110}, {16, 121}, {17, 120}, {18, 123}, {19,
122}, {20, 125}, {21, 124}, {22, 127}, {23, 126}, {1, 106}, {2, 105}, {5, 110},
{6, 109}, {17, 122}, {18, 121}, {21, 126}, {22, 125}, {3, 108}, {152, 247}, {4,
107}, {19, 124}, {20, 123}, {136, 231}, {128, 241}, {142, 255}, {140, 253},
{130, 243}, {132, 245}, {134, 247}, {136, 249}, {138, 251}, {129, 242}, {141,
254}, {133, 246}, {137, 250}, {7, 112}, {139, 252}, {15, 120}, {131, 244}, {8,
113}, {9, 112}, {10, 115}, {11, 114}, {12, 117}, {13, 116}, {14, 119}, {15,
118}, {9, 114}, {10, 113}, {13, 118}, {14, 117}, {11, 116}, {144, 239}, {12,
115}, {135, 248}, {83, 210}, {85, 212}, {87, 214}, {89, 216}, {91, 218}, {93,
220}, {95, 222}, {97, 224}, {99, 226}, {101, 228}, {103, 230}, {82, 209}, {86,
213}, {90, 217}, {94, 221}, {98, 225}, {102, 229}, {84, 211}, {92, 219}, {100,
227}, {88, 215}, {104, 231}, {111, 224}, {127, 240}, {112, 225}, {114, 227},
{116, 229}, {118, 231}, {120, 233}, {122, 235}, {124, 237}, {126, 239}, {113,
226}, {117, 230}, {121, 234}, {125, 238}, {23, 128}, {63, 168}, {55, 160}, {31,
136}, {87, 192}, {95, 200}, {115, 228}, {123, 236}, {24, 129}, {63, 166}, {62,
167}, {61, 164}, {60, 165}, {59, 162}, {58, 163}, {57, 160}, {56, 161}, {25,
128}, {26, 131}, {27, 130}, {28, 133}, {29, 132}, {30, 135}, {31, 134}, {88,
193}, {89, 192}, {90, 195}, {91, 194}, {92, 197}, {93, 196}, {94, 199}, {95,
198}, {25, 130}, {62, 165}, {61, 166}, {58, 161}, {57, 162}, {26, 129}, {29,
134}, {30, 133}, {89, 194}, {90, 193}, {93, 198}, {94, 197}, {27, 132}, {60,
163}, {59, 164}, {28, 131}, {91, 196}, {92, 195}, {119, 232}, {115, 210}, {117,
212}, {119, 214}, {121, 216}, {123, 218}, {125, 220}, {127, 222}, {114, 209},
{118, 213}, {122, 217}, {126, 221}, {32, 135}, {56, 159}, {48, 151}, {40, 143},
{96, 199}, {104, 207}, {116, 211}, {124, 219}, {32, 137}, {55, 158}, {54, 159},
{53, 156}, {52, 157}, {51, 154}, {50, 155}, {49, 152}, {48, 153}, {33, 136},
{34, 139}, {35, 138}, {36, 141}, {37, 140}, {38, 143}, {39, 142}, {96, 201},
{97, 200}, {98, 203}, {99, 202}, {100, 205}, {101, 204}, {102, 207}, {103, 206},
{33, 138}, {54, 157}, {53, 158}, {50, 153}, {49, 154}, {34, 137}, {37, 142},
{38, 141}, {97, 202}, {98, 201}, {101, 206}, {102, 205}, {35, 140}, {52, 155},
{51, 156}, {36, 139}, {99, 204}, {100, 203}, {120, 215}, {106, 219}, {108, 221},
{110, 223}, {105, 218}, {109, 222}, {39, 144}, {47, 152}, {103, 208}, {107,
220}, {40, 145}, {70, 255}, {68, 253}, {66, 251}, {64, 249}, {47, 150}, {46,
151}, {45, 148}, {41, 144}, {42, 147}, {43, 146}, {44, 149}, {41, 146}, {69,
254}, {65, 250}, {46, 149}, {45, 150}, {42, 145}, {43, 148}, {67, 252}, {44,
147}, {96, 223}, {31, 216}, {63, 248}, {55, 240}, {47, 232}, {39, 224}, {24,
209}, {62, 247}, {60, 245}, {58, 243}, {56, 241}, {46, 231}, {44, 229}, {26,
211}, {28, 213}, {30, 215}, {40, 225}, {42, 227}, {25, 210}, {61, 246}, {57,
242}, {45, 230}, {29, 214}, {41, 226}, {27, 212}, {59, 244}, {43, 228}, {1,
208}, {48, 233}, {54, 239}, {52, 237}, {50, 235}, {49, 234}, {53, 238}, {51,
236}, {8, 239}, {64, 167}, {16, 247}, {24, 255}, {72, 175}, {80, 183}, {88,
191}, {1, 232}, {71, 174}, {70, 175}, {69, 172}, {68, 173}, {67, 170}, {66,
171}, {65, 168}, {64, 169}, {3, 234}, {5, 236}, {7, 238}, {17, 248}, {19, 250},
{21, 252}, {23, 254}, {80, 185}, {81, 184}, {82, 187}, {83, 186}, {84, 189},
{85, 188}, {86, 191}, {87, 190}, {2, 233}, {70, 173}, {69, 174}, {66, 169}, {65,
170}, {6, 237}, {18, 249}, {22, 253}, {81, 186}, {82, 185}, {85, 190}, {86,
189}, {4, 235}, {68, 171}, {67, 172}, {20, 251}, {83, 188}, {84, 187}, {71,
176}, {79, 184}, {9, 240}, {11, 242}, {13, 244}, {15, 246}, {32, 217}, {34,
219}, {36, 221}, {38, 223}, {72, 177}, {73, 176}, {74, 179}, {75, 178}, {76,
181}, {77, 180}, {78, 183}, {79, 182}, {10, 241}, {14, 245}, {33, 218}, {37,
222}, {73, 178}, {74, 177}, {77, 182}, {78, 181}, {12, 243}, {35, 220}, {75,
180}, {76, 179}, {25, 256}, {63, 294}, {61, 292}, {59, 290}, {57, 288}, {27,
258}, {29, 260}, {31, 262}, {26, 257}, {62, 293}, {58, 289}, {30, 261}, {28,
259}, {60, 291}, {2, 291}, {4, 293}, {6, 295}, {8, 297}, {10, 299}, {12, 301},
{14, 303}, {16, 305}, {18, 307}, {20, 309}, {22, 311}, {1, 290}, {5, 294}, {9,
298}, {13, 302}, {17, 306}, {21, 310}, {3, 292}, {56, 287}, {48, 279}, {11,
300}, {19, 308}, {32, 263}, {40, 271}, {33, 264}, {55, 286}, {53, 284}, {51,
282}, {49, 280}, {35, 266}, {37, 268}, {39, 270}, {34, 265}, {54, 285}, {50,
281}, {38, 269}, {7, 296}, {52, 283}, {23, 312}, {36, 267}, {41, 272}, {47,
278}, {45, 276}, {43, 274}, {42, 273}, {46, 277}, {15, 304}, {44, 275}, {71,
256}, {79, 264}, {87, 272}, {95, 280}, {103, 288}, {112, 311}, {72, 257}, {74,
259}, {76, 261}, {78, 263}, {88, 273}, {90, 275}, {92, 277}, {94, 279}, {104,
289}, {113, 312}, {73, 258}, {77, 262}, {89, 274}, {93, 278}, {75, 260}, {91,
276}, {80, 265}, {82, 267}, {84, 269}, {86, 271}, {105, 304}, {107, 306}, {109,
308}, {111, 310}, {81, 266}, {85, 270}, {106, 305}, {110, 309}, {83, 268}, {108,
307}, {64, 295}, {72, 303}, {80, 311}, {65, 296}, {69, 300}, {67, 298}, {71,
302}, {81, 312}, {66, 297}, {70, 301}, {68, 299}, {73, 304}, {75, 306}, {77,
308}, {79, 310}, {96, 281}, {98, 283}, {100, 285}, {102, 287}, {74, 305}, {78,
309}, {97, 282}, {101, 286}, {76, 307}, {99, 284}, {143, 256}, {191, 304}, {175,
288}, {159, 272}, {144, 257}, {190, 303}, {188, 301}, {186, 299}, {184, 297},
{182, 295}, {180, 293}, {178, 291}, {176, 289}, {158, 271}, {156, 269}, {154,
267}, {152, 265}, {150, 263}, {148, 261}, {146, 259}, {145, 258}, {189, 302},
{185, 298}, {181, 294}, {177, 290}, {157, 270}, {153, 266}, {149, 262}, {147,
260}, {187, 300}, {179, 292}, {155, 268}, {151, 264}, {183, 296}, {161, 256},
{191, 286}, {189, 284}, {187, 282}, {185, 280}, {183, 278}, {181, 276}, {179,
274}, {177, 272}, {175, 270}, {173, 268}, {171, 266}, {169, 264}, {167, 262},
{165, 260}, {163, 258}, {162, 257}, {190, 285}, {186, 281}, {182, 277}, {178,
273}, {174, 269}, {170, 265}, {166, 261}, {164, 259}, {188, 283}, {180, 275},
{172, 267}, {168, 263}, {184, 279}, {160, 273}, {174, 287}, {172, 285}, {170,
283}, {168, 281}, {166, 279}, {164, 277}, {162, 275}, {161, 274}, {173, 286},
{169, 282}, {165, 278}, {163, 276}, {171, 284}, {167, 280}, {176, 271}, {192,
287}, {193, 288}, {207, 302}, {205, 300}, {203, 298}, {201, 296}, {199, 294},
{197, 292}, {195, 290}, {194, 289}, {206, 301}, {202, 297}, {198, 293}, {196,
291}, {204, 299}, {200, 295}, {192, 305}, {198, 311}, {196, 309}, {194, 307},
{193, 306}, {197, 310}, {195, 308}, {199, 312}, {208, 303} }>;
(II) A more general form is to represent the graph as the orbit of {104, 105}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104)(105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208)(209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292,
293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308,
309, 310, 311, 312) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 105, 209)(2, 114, 290)(3, 123, 267)(4, 132, 244)(5, 141, 221)(6, 150,
302)(7, 159, 279)(8, 168, 256)(9, 177, 233)(10, 186, 210)(11, 195, 291)(12, 204,
268)(13, 109, 245)(14, 118, 222)(15, 127, 303)(16, 136, 280)(17, 145, 257)(18,
154, 234)(19, 163, 211)(20, 172, 292)(21, 181, 269)(22, 190, 246)(23, 199,
223)(24, 208, 304)(25, 113, 281)(26, 122, 258)(27, 131, 235)(28, 140, 212)(29,
149, 293)(30, 158, 270)(31, 167, 247)(32, 176, 224)(33, 185, 305)(34, 194,
282)(35, 203, 259)(36, 108, 236)(37, 117, 213)(38, 126, 294)(39, 135, 271)(40,
144, 248)(41, 153, 225)(42, 162, 306)(43, 171, 283)(44, 180, 260)(45, 189,
237)(46, 198, 214)(47, 207, 295)(48, 112, 272)(49, 121, 249)(50, 130, 226)(51,
139, 307)(52, 148, 284)(53, 157, 261)(54, 166, 238)(55, 175, 215)(56, 184,
296)(57, 193, 273)(58, 202, 250)(59, 107, 227)(60, 116, 308)(61, 125, 285)(62,
134, 262)(63, 143, 239)(64, 152, 216)(65, 161, 297)(66, 170, 274)(67, 179,
251)(68, 188, 228)(69, 197, 309)(70, 206, 286)(71, 111, 263)(72, 120, 240)(73,
129, 217)(74, 138, 298)(75, 147, 275)(76, 156, 252)(77, 165, 229)(78, 174,
310)(79, 183, 287)(80, 192, 264)(81, 201, 241)(82, 106, 218)(83, 115, 299)(84,
124, 276)(85, 133, 253)(86, 142, 230)(87, 151, 311)(88, 160, 288)(89, 169,
265)(90, 178, 242)(91, 187, 219)(92, 196, 300)(93, 205, 277)(94, 110, 254)(95,
119, 231)(96, 128, 312)(97, 137, 289)(98, 146, 266)(99, 155, 243)(100, 164,
220)(101, 173, 301)(102, 182, 278)(103, 191, 255)(104, 200, 232)
c: (2, 104)(3, 103)(4, 102)(5, 101)(6, 100)(7, 99)(8, 98)(9, 97)(10, 96)(11,
95)(12, 94)(13, 93)(14, 92)(15, 91)(16, 90)(17, 89)(18, 88)(19, 87)(20, 86)(21,
85)(22, 84)(23, 83)(24, 82)(25, 81)(26, 80)(27, 79)(28, 78)(29, 77)(30, 76)(31,
75)(32, 74)(33, 73)(34, 72)(35, 71)(36, 70)(37, 69)(38, 68)(39, 67)(40, 66)(41,
65)(42, 64)(43, 63)(44, 62)(45, 61)(46, 60)(47, 59)(48, 58)(49, 57)(50, 56)(51,
55)(52, 54)(106, 208)(107, 207)(108, 206)(109, 205)(110, 204)(111, 203)(112,
202)(113, 201)(114, 200)(115, 199)(116, 198)(117, 197)(118, 196)(119, 195)(120,
194)(121, 193)(122, 192)(123, 191)(124, 190)(125, 189)(126, 188)(127, 187)(128,
186)(129, 185)(130, 184)(131, 183)(132, 182)(133, 181)(134, 180)(135, 179)(136,
178)(137, 177)(138, 176)(139, 175)(140, 174)(141, 173)(142, 172)(143, 171)(144,
170)(145, 169)(146, 168)(147, 167)(148, 166)(149, 165)(150, 164)(151, 163)(152,
162)(153, 161)(154, 160)(155, 159)(156, 158)(210, 312)(211, 311)(212, 310)(213,
309)(214, 308)(215, 307)(216, 306)(217, 305)(218, 304)(219, 303)(220, 302)(221,
301)(222, 300)(223, 299)(224, 298)(225, 297)(226, 296)(227, 295)(228, 294)(229,
293)(230, 292)(231, 291)(232, 290)(233, 289)(234, 288)(235, 287)(236, 286)(237,
285)(238, 284)(239, 283)(240, 282)(241, 281)(242, 280)(243, 279)(244, 278)(245,
277)(246, 276)(247, 275)(248, 274)(249, 273)(250, 272)(251, 271)(252, 270)(253,
269)(254, 268)(255, 267)(256, 266)(257, 265)(258, 264)(259, 263)(260, 262)
C4[ 312, 21 ]
312
-1 232 290 106 208
-2 233 291 105 107
-3 234 292 106 108
-4 235 293 107 109
-5 110 236 294 108
-6 111 237 295 109
-7 110 112 238 296
-8 297 111 113 239
-9 298 112 114 240
-10 299 113 115 241
-11 242 300 114 116
-12 243 301 115 117
-13 244 302 116 118
-14 245 303 117 119
-15 246 304 118 120
-16 121 247 305 119
-17 122 248 306 120
-18 121 123 249 307
-19 308 122 124 250
-20 309 123 125 251
-21 310 124 126 252
-22 253 311 125 127
-23 254 312 126 128
-24 209 255 127 129
-25 210 256 128 130
-26 211 257 129 131
-27 132 212 258 130
-28 133 213 259 131
-29 132 134 214 260
-30 133 135 215 261
-31 134 136 216 262
-32 135 137 217 263
-33 264 136 138 218
-34 265 137 139 219
-35 220 266 138 140
-36 221 267 139 141
-37 222 268 140 142
-38 143 223 269 141
-39 144 224 270 142
-40 143 145 225 271
-41 144 146 226 272
-42 145 147 227 273
-43 146 148 228 274
-44 275 147 149 229
-45 276 148 150 230
-46 231 277 149 151
-47 232 278 150 152
-48 233 279 151 153
-49 154 234 280 152
-50 155 235 281 153
-51 154 156 236 282
-52 155 157 237 283
-53 156 158 238 284
-54 157 159 239 285
-55 286 158 160 240
-56 287 159 161 241
-57 242 288 160 162
-58 243 289 161 163
-59 244 290 162 164
-60 165 245 291 163
-61 166 246 292 164
-62 165 167 247 293
-63 166 168 248 294
-64 167 169 249 295
-65 168 170 250 296
-66 297 169 171 251
-67 298 170 172 252
-68 253 299 171 173
-69 254 300 172 174
-70 255 301 173 175
-71 176 256 302 174
-72 177 257 303 175
-73 176 178 258 304
-74 177 179 259 305
-75 178 180 260 306
-76 179 181 261 307
-77 308 180 182 262
-78 309 181 183 263
-79 264 310 182 184
-80 265 311 183 185
-81 266 312 184 186
-82 187 209 267 185
-83 188 210 268 186
-84 187 189 211 269
-85 188 190 212 270
-86 189 191 213 271
-87 190 192 214 272
-88 191 193 215 273
-89 192 194 216 274
-90 275 193 195 217
-91 276 194 196 218
-92 277 195 197 219
-93 198 220 278 196
-94 199 221 279 197
-95 198 200 222 280
-96 199 201 223 281
-97 200 202 224 282
-98 201 203 225 283
-99 202 204 226 284
-100 203 205 227 285
-101 286 204 206 228
-102 287 205 207 229
-103 288 206 208 230
-104 231 289 105 207
-105 2 104 304 218
-106 1 3 305 219
-107 220 2 4 306
-108 221 3 5 307
-109 308 222 4 6
-110 309 223 5 7
-111 310 224 6 8
-112 311 225 7 9
-113 312 226 8 10
-114 11 209 227 9
-115 12 210 228 10
-116 11 13 211 229
-117 12 14 212 230
-118 231 13 15 213
-119 232 14 16 214
-120 233 15 17 215
-121 234 16 18 216
-122 235 17 19 217
-123 236 18 20 218
-124 237 19 21 219
-125 22 220 238 20
-126 23 221 239 21
-127 22 24 222 240
-128 23 25 223 241
-129 242 24 26 224
-130 243 25 27 225
-131 244 26 28 226
-132 245 27 29 227
-133 246 28 30 228
-134 247 29 31 229
-135 248 30 32 230
-136 33 231 249 31
-137 34 232 250 32
-138 33 35 233 251
-139 34 36 234 252
-140 253 35 37 235
-141 254 36 38 236
-142 255 37 39 237
-143 256 38 40 238
-144 257 39 41 239
-145 258 40 42 240
-146 259 41 43 241
-147 44 242 260 42
-148 45 243 261 43
-149 44 46 244 262
-150 45 47 245 263
-151 264 46 48 246
-152 265 47 49 247
-153 266 48 50 248
-154 267 49 51 249
-155 268 50 52 250
-156 269 51 53 251
-157 270 52 54 252
-158 55 253 271 53
-159 56 254 272 54
-160 55 57 255 273
-161 56 58 256 274
-162 275 57 59 257
-163 276 58 60 258
-164 277 59 61 259
-165 278 60 62 260
-166 279 61 63 261
-167 280 62 64 262
-168 281 63 65 263
-169 66 264 282 64
-170 67 265 283 65
-171 66 68 266 284
-172 67 69 267 285
-173 286 68 70 268
-174 287 69 71 269
-175 288 70 72 270
-176 289 71 73 271
-177 290 72 74 272
-178 291 73 75 273
-179 292 74 76 274
-180 77 275 293 75
-181 78 276 294 76
-182 77 79 277 295
-183 78 80 278 296
-184 297 79 81 279
-185 298 80 82 280
-186 299 81 83 281
-187 300 82 84 282
-188 301 83 85 283
-189 302 84 86 284
-190 303 85 87 285
-191 88 286 304 86
-192 89 287 305 87
-193 88 90 288 306
-194 89 91 289 307
-195 308 90 92 290
-196 309 91 93 291
-197 310 92 94 292
-198 311 93 95 293
-199 312 94 96 294
-200 209 95 97 295
-201 210 96 98 296
-202 99 297 211 97
-203 100 298 212 98
-204 99 101 299 213
-205 100 102 300 214
-206 101 103 301 215
-207 102 104 302 216
-208 1 103 303 217
-209 24 200 114 82
-210 25 201 115 83
-211 26 202 116 84
-212 27 203 117 85
-213 28 204 118 86
-214 29 205 119 87
-215 88 30 206 120
-216 121 89 31 207
-217 122 90 32 208
-218 33 123 91 105
-219 34 124 92 106
-220 35 125 93 107
-221 36 126 94 108
-222 37 127 95 109
-223 110 38 128 96
-224 111 39 129 97
-225 112 40 130 98
-226 99 113 41 131
-227 132 100 114 42
-228 133 101 115 43
-229 44 134 102 116
-230 45 135 103 117
-231 46 136 104 118
-232 1 47 137 119
-233 2 48 138 120
-234 121 3 49 139
-235 122 4 50 140
-236 123 5 51 141
-237 124 6 52 142
-238 143 125 7 53
-239 144 126 8 54
-240 55 145 127 9
-241 56 146 128 10
-242 11 57 147 129
-243 12 58 148 130
-244 13 59 149 131
-245 132 14 60 150
-246 133 15 61 151
-247 134 16 62 152
-248 135 17 63 153
-249 154 136 18 64
-250 155 137 19 65
-251 66 156 138 20
-252 67 157 139 21
-253 22 68 158 140
-254 23 69 159 141
-255 24 70 160 142
-256 143 25 71 161
-257 144 26 72 162
-258 145 27 73 163
-259 146 28 74 164
-260 165 147 29 75
-261 166 148 30 76
-262 77 167 149 31
-263 78 168 150 32
-264 33 79 169 151
-265 34 80 170 152
-266 35 81 171 153
-267 154 36 82 172
-268 155 37 83 173
-269 156 38 84 174
-270 157 39 85 175
-271 176 158 40 86
-272 177 159 41 87
-273 88 178 160 42
-274 89 179 161 43
-275 44 90 180 162
-276 45 91 181 163
-277 46 92 182 164
-278 165 47 93 183
-279 166 48 94 184
-280 167 49 95 185
-281 168 50 96 186
-282 187 169 51 97
-283 188 170 52 98
-284 99 189 171 53
-285 100 190 172 54
-286 55 101 191 173
-287 56 102 192 174
-288 57 103 193 175
-289 176 58 104 194
-290 1 177 59 195
-291 2 178 60 196
-292 3 179 61 197
-293 198 4 180 62
-294 199 5 181 63
-295 200 6 182 64
-296 201 7 183 65
-297 66 202 8 184
-298 67 203 9 185
-299 68 204 10 186
-300 11 187 69 205
-301 12 188 70 206
-302 13 189 71 207
-303 14 190 72 208
-304 15 191 105 73
-305 16 192 106 74
-306 17 193 107 75
-307 18 194 108 76
-308 77 19 195 109
-309 110 78 20 196
-310 111 79 21 197
-311 22 198 112 80
-312 23 199 113 81
0