[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 312, 34 ] =
Pr_104(1,37,41,77).
(I) Following is a form readable by MAGMA:
g:=Graph<312|{ {2, 3}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80,
81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64,
65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {4, 5}, {6, 7}, {8, 9}, {10, 11},
{12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27},
{28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43},
{44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {92, 93}, {94, 95},
{96, 97}, {98, 99}, {100, 101}, {102, 103}, {1, 2}, {89, 90}, {85, 86}, {81,
82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9,
10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41,
42}, {45, 46}, {49, 50}, {53, 54}, {93, 94}, {97, 98}, {101, 102}, {3, 4}, {91,
92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35,
36}, {43, 44}, {51, 52}, {99, 100}, {7, 8}, {87, 88}, {71, 72}, {23, 24}, {39,
40}, {55, 56}, {103, 104}, {224, 251}, {260, 287}, {256, 283}, {228, 255}, {225,
252}, {259, 286}, {257, 284}, {227, 254}, {15, 16}, {258, 285}, {226, 253}, {79,
80}, {47, 48}, {213, 240}, {285, 312}, {279, 306}, {277, 304}, {271, 298}, {269,
296}, {263, 290}, {261, 288}, {223, 250}, {221, 248}, {215, 242}, {214, 241},
{278, 305}, {270, 297}, {262, 289}, {222, 249}, {192, 233}, {208, 249}, {198,
239}, {196, 237}, {194, 235}, {193, 234}, {284, 311}, {280, 307}, {268, 295},
{264, 291}, {220, 247}, {216, 243}, {197, 238}, {217, 244}, {283, 310}, {281,
308}, {267, 294}, {265, 292}, {219, 246}, {195, 236}, {282, 309}, {266, 293},
{218, 245}, {199, 240}, {207, 248}, {200, 241}, {206, 247}, {204, 245}, {202,
243}, {201, 242}, {276, 303}, {272, 299}, {212, 239}, {205, 246}, {209, 236},
{275, 302}, {273, 300}, {211, 238}, {31, 32}, {274, 301}, {210, 237}, {203,
244}, {95, 96}, {40, 107}, {60, 127}, {56, 123}, {44, 111}, {48, 115}, {52,
119}, {41, 108}, {59, 126}, {57, 124}, {43, 110}, {49, 116}, {51, 118}, {42,
109}, {58, 125}, {50, 117}, {39, 106}, {53, 120}, {55, 122}, {38, 105}, {54,
121}, {183, 224}, {191, 232}, {184, 225}, {190, 231}, {186, 227}, {188, 229},
{185, 226}, {189, 230}, {45, 112}, {47, 114}, {46, 113}, {187, 228}, {1, 105},
{2, 106}, {3, 107}, {4, 108}, {5, 109}, {6, 110}, {7, 111}, {16, 120}, {17,
121}, {18, 122}, {19, 123}, {20, 124}, {21, 125}, {22, 126}, {23, 127}, {128,
232}, {129, 233}, {130, 234}, {131, 235}, {132, 236}, {133, 237}, {134, 238},
{135, 239}, {144, 248}, {145, 249}, {146, 250}, {147, 251}, {148, 252}, {149,
253}, {150, 254}, {151, 255}, {1, 104}, {176, 217}, {178, 219}, {180, 221},
{182, 223}, {177, 218}, {181, 222}, {179, 220}, {175, 216}, {8, 112}, {9, 113},
{10, 114}, {11, 115}, {12, 116}, {13, 117}, {14, 118}, {15, 119}, {136, 240},
{137, 241}, {138, 242}, {139, 243}, {140, 244}, {141, 245}, {142, 246}, {143,
247}, {168, 209}, {170, 211}, {172, 213}, {174, 215}, {169, 210}, {173, 214},
{63, 64}, {171, 212}, {106, 251}, {108, 253}, {110, 255}, {105, 250}, {109,
254}, {107, 252}, {24, 128}, {91, 195}, {90, 194}, {89, 193}, {88, 192}, {63,
167}, {62, 166}, {61, 165}, {60, 164}, {59, 163}, {58, 162}, {57, 161}, {56,
160}, {25, 129}, {26, 130}, {27, 131}, {28, 132}, {29, 133}, {30, 134}, {31,
135}, {92, 196}, {93, 197}, {94, 198}, {95, 199}, {120, 224}, {121, 225}, {122,
226}, {123, 227}, {124, 228}, {125, 229}, {126, 230}, {127, 231}, {32, 136},
{33, 137}, {34, 138}, {35, 139}, {36, 140}, {37, 141}, {38, 142}, {39, 143},
{48, 152}, {49, 153}, {50, 154}, {51, 155}, {52, 156}, {53, 157}, {54, 158},
{55, 159}, {96, 200}, {97, 201}, {98, 202}, {99, 203}, {100, 204}, {101, 205},
{102, 206}, {103, 207}, {112, 216}, {113, 217}, {114, 218}, {115, 219}, {116,
220}, {117, 221}, {118, 222}, {119, 223}, {4, 175}, {16, 187}, {20, 191}, {1,
172}, {3, 174}, {17, 188}, {19, 190}, {2, 173}, {18, 189}, {5, 176}, {7, 178},
{13, 184}, {15, 186}, {6, 177}, {14, 185}, {40, 144}, {41, 145}, {42, 146}, {43,
147}, {44, 148}, {45, 149}, {46, 150}, {47, 151}, {104, 208}, {105, 209}, {106,
210}, {107, 211}, {108, 212}, {109, 213}, {110, 214}, {111, 215}, {8, 179}, {12,
183}, {9, 180}, {63, 130}, {61, 128}, {11, 182}, {10, 181}, {62, 129}, {64,
131}, {88, 155}, {84, 151}, {80, 147}, {76, 143}, {72, 139}, {68, 135}, {92,
159}, {96, 163}, {100, 167}, {104, 171}, {65, 132}, {91, 158}, {89, 156}, {83,
150}, {81, 148}, {75, 142}, {73, 140}, {67, 134}, {97, 164}, {99, 166}, {66,
133}, {90, 157}, {82, 149}, {74, 141}, {98, 165}, {69, 136}, {87, 154}, {85,
152}, {71, 138}, {101, 168}, {103, 170}, {70, 137}, {86, 153}, {102, 169}, {21,
192}, {23, 194}, {29, 200}, {31, 202}, {22, 193}, {30, 201}, {24, 195}, {28,
199}, {25, 196}, {79, 146}, {77, 144}, {27, 198}, {26, 197}, {78, 145}, {64,
168}, {87, 191}, {86, 190}, {85, 189}, {84, 188}, {83, 187}, {82, 186}, {81,
185}, {80, 184}, {71, 175}, {70, 174}, {69, 173}, {68, 172}, {67, 171}, {66,
170}, {65, 169}, {32, 203}, {36, 207}, {33, 204}, {35, 206}, {34, 205}, {37,
208}, {72, 176}, {79, 183}, {78, 182}, {77, 181}, {76, 180}, {75, 179}, {74,
178}, {73, 177}, {93, 160}, {95, 162}, {94, 161}, {111, 256}, {127, 272}, {112,
257}, {114, 259}, {116, 261}, {118, 263}, {120, 265}, {122, 267}, {124, 269},
{126, 271}, {113, 258}, {117, 262}, {121, 266}, {125, 270}, {115, 260}, {123,
268}, {119, 264}, {128, 273}, {130, 275}, {132, 277}, {134, 279}, {136, 281},
{138, 283}, {140, 285}, {142, 287}, {160, 305}, {162, 307}, {164, 309}, {166,
311}, {129, 274}, {133, 278}, {137, 282}, {141, 286}, {161, 306}, {165, 310},
{131, 276}, {139, 284}, {163, 308}, {152, 256}, {191, 295}, {190, 294}, {189,
293}, {153, 257}, {154, 258}, {155, 259}, {156, 260}, {157, 261}, {158, 262},
{159, 263}, {184, 288}, {185, 289}, {186, 290}, {187, 291}, {188, 292}, {135,
280}, {167, 312}, {160, 264}, {161, 265}, {162, 266}, {163, 267}, {164, 268},
{165, 269}, {166, 270}, {167, 271}, {176, 280}, {177, 281}, {178, 282}, {179,
283}, {180, 284}, {181, 285}, {182, 286}, {183, 287}, {143, 288}, {159, 304},
{144, 289}, {146, 291}, {148, 293}, {150, 295}, {152, 297}, {154, 299}, {156,
301}, {158, 303}, {145, 290}, {149, 294}, {153, 298}, {157, 302}, {147, 292},
{155, 300}, {168, 272}, {169, 273}, {170, 274}, {171, 275}, {172, 276}, {173,
277}, {174, 278}, {175, 279}, {151, 296}, {210, 287}, {226, 303}, {224, 301},
{209, 286}, {225, 302}, {227, 304}, {235, 312}, {231, 308}, {228, 305}, {230,
307}, {229, 306}, {232, 309}, {234, 311}, {233, 310}, {229, 256}, {255, 282},
{253, 280}, {247, 274}, {245, 272}, {239, 266}, {237, 264}, {231, 258}, {230,
257}, {254, 281}, {246, 273}, {238, 265}, {192, 296}, {208, 312}, {199, 303},
{198, 302}, {197, 301}, {196, 300}, {195, 299}, {194, 298}, {193, 297}, {232,
259}, {252, 279}, {248, 275}, {236, 263}, {233, 260}, {251, 278}, {249, 276},
{235, 262}, {234, 261}, {250, 277}, {211, 288}, {223, 300}, {219, 296}, {215,
292}, {212, 289}, {222, 299}, {220, 297}, {214, 291}, {213, 290}, {221, 298},
{200, 304}, {207, 311}, {206, 310}, {205, 309}, {204, 308}, {203, 307}, {202,
306}, {201, 305}, {240, 267}, {244, 271}, {216, 293}, {243, 270}, {241, 268},
{218, 295}, {217, 294}, {242, 269} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104)(105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208)(209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292,
293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308,
309, 310, 311, 312) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 172)(3, 213)(4, 109)(6, 176)(7, 217)(8, 113)(10, 180)(11, 221)(12,
117)(14, 184)(15, 225)(16, 121)(18, 188)(19, 229)(20, 125)(22, 192)(23, 233)(24,
129)(26, 196)(27, 237)(28, 133)(30, 200)(31, 241)(32, 137)(34, 204)(35, 245)(36,
141)(38, 208)(39, 249)(40, 145)(42, 108)(43, 253)(44, 149)(46, 112)(47, 257)(48,
153)(50, 116)(51, 261)(52, 157)(54, 120)(55, 265)(56, 161)(58, 124)(59, 269)(60,
165)(62, 128)(63, 273)(64, 169)(66, 132)(67, 277)(68, 173)(70, 136)(71, 281)(72,
177)(74, 140)(75, 285)(76, 181)(78, 144)(79, 289)(80, 185)(82, 148)(83, 293)(84,
189)(86, 152)(87, 297)(88, 193)(90, 156)(91, 301)(92, 197)(94, 160)(95, 305)(96,
201)(98, 164)(99, 309)(100, 205)(102, 168)(103, 209)(104, 105)(106, 276)(107,
290)(110, 280)(111, 294)(114, 284)(115, 298)(118, 288)(119, 302)(122, 292)(123,
306)(126, 296)(127, 310)(130, 300)(131, 210)(134, 304)(135, 214)(138, 308)(139,
218)(142, 312)(143, 222)(146, 212)(147, 226)(150, 216)(151, 230)(154, 220)(155,
234)(158, 224)(159, 238)(162, 228)(163, 242)(166, 232)(167, 246)(170, 236)(171,
250)(174, 240)(175, 254)(178, 244)(179, 258)(182, 248)(183, 262)(186, 252)(187,
266)(190, 256)(191, 270)(194, 260)(195, 274)(198, 264)(199, 278)(202, 268)(203,
282)(206, 272)(207, 286)(211, 263)(215, 267)(219, 271)(223, 275)(227, 279)(231,
283)(235, 287)(239, 291)(243, 295)(247, 299)(251, 303)(255, 307)(259, 311)
c: (2, 104)(3, 103)(4, 102)(5, 101)(6, 100)(7, 99)(8, 98)(9, 97)(10, 96)(11,
95)(12, 94)(13, 93)(14, 92)(15, 91)(16, 90)(17, 89)(18, 88)(19, 87)(20, 86)(21,
85)(22, 84)(23, 83)(24, 82)(25, 81)(26, 80)(27, 79)(28, 78)(29, 77)(30, 76)(31,
75)(32, 74)(33, 73)(34, 72)(35, 71)(36, 70)(37, 69)(38, 68)(39, 67)(40, 66)(41,
65)(42, 64)(43, 63)(44, 62)(45, 61)(46, 60)(47, 59)(48, 58)(49, 57)(50, 56)(51,
55)(52, 54)(105, 172)(106, 171)(107, 170)(108, 169)(109, 168)(110, 167)(111,
166)(112, 165)(113, 164)(114, 163)(115, 162)(116, 161)(117, 160)(118, 159)(119,
158)(120, 157)(121, 156)(122, 155)(123, 154)(124, 153)(125, 152)(126, 151)(127,
150)(128, 149)(129, 148)(130, 147)(131, 146)(132, 145)(133, 144)(134, 143)(135,
142)(136, 141)(137, 140)(138, 139)(173, 208)(174, 207)(175, 206)(176, 205)(177,
204)(178, 203)(179, 202)(180, 201)(181, 200)(182, 199)(183, 198)(184, 197)(185,
196)(186, 195)(187, 194)(188, 193)(189, 192)(190, 191)(209, 213)(210, 212)(214,
312)(215, 311)(216, 310)(217, 309)(218, 308)(219, 307)(220, 306)(221, 305)(222,
304)(223, 303)(224, 302)(225, 301)(226, 300)(227, 299)(228, 298)(229, 297)(230,
296)(231, 295)(232, 294)(233, 293)(234, 292)(235, 291)(236, 290)(237, 289)(238,
288)(239, 287)(240, 286)(241, 285)(242, 284)(243, 283)(244, 282)(245, 281)(246,
280)(247, 279)(248, 278)(249, 277)(250, 276)(251, 275)(252, 274)(253, 273)(254,
272)(255, 271)(256, 270)(257, 269)(258, 268)(259, 267)(260, 266)(261, 265)(262,
264)
C4[ 312, 34 ]
312
-1 2 104 105 172
-2 1 3 106 173
-3 2 4 107 174
-4 3 5 108 175
-5 176 4 6 109
-6 110 177 5 7
-7 111 178 6 8
-8 112 179 7 9
-9 113 180 8 10
-10 11 114 181 9
-11 12 115 182 10
-12 11 13 116 183
-13 12 14 117 184
-14 13 15 118 185
-15 14 16 119 186
-16 187 15 17 120
-17 121 188 16 18
-18 122 189 17 19
-19 123 190 18 20
-20 124 191 19 21
-21 22 125 192 20
-22 23 126 193 21
-23 22 24 127 194
-24 23 25 128 195
-25 24 26 129 196
-26 25 27 130 197
-27 198 26 28 131
-28 132 199 27 29
-29 133 200 28 30
-30 134 201 29 31
-31 135 202 30 32
-32 33 136 203 31
-33 34 137 204 32
-34 33 35 138 205
-35 34 36 139 206
-36 35 37 140 207
-37 36 38 141 208
-38 37 39 105 142
-39 143 38 40 106
-40 144 39 41 107
-41 145 40 42 108
-42 146 41 43 109
-43 44 110 147 42
-44 45 111 148 43
-45 44 46 112 149
-46 45 47 113 150
-47 46 48 114 151
-48 47 49 115 152
-49 48 50 116 153
-50 154 49 51 117
-51 155 50 52 118
-52 156 51 53 119
-53 157 52 54 120
-54 55 121 158 53
-55 56 122 159 54
-56 55 57 123 160
-57 56 58 124 161
-58 57 59 125 162
-59 58 60 126 163
-60 59 61 127 164
-61 165 60 62 128
-62 166 61 63 129
-63 167 62 64 130
-64 168 63 65 131
-65 66 132 169 64
-66 67 133 170 65
-67 66 68 134 171
-68 67 69 135 172
-69 68 70 136 173
-70 69 71 137 174
-71 70 72 138 175
-72 176 71 73 139
-73 177 72 74 140
-74 178 73 75 141
-75 179 74 76 142
-76 77 143 180 75
-77 78 144 181 76
-78 77 79 145 182
-79 78 80 146 183
-80 79 81 147 184
-81 80 82 148 185
-82 81 83 149 186
-83 187 82 84 150
-84 188 83 85 151
-85 189 84 86 152
-86 190 85 87 153
-87 88 154 191 86
-88 89 155 192 87
-89 88 90 156 193
-90 89 91 157 194
-91 90 92 158 195
-92 91 93 159 196
-93 92 94 160 197
-94 198 93 95 161
-95 199 94 96 162
-96 200 95 97 163
-97 201 96 98 164
-98 99 165 202 97
-99 100 166 203 98
-100 99 101 167 204
-101 100 102 168 205
-102 101 103 169 206
-103 102 104 170 207
-104 1 103 171 208
-105 209 1 38 250
-106 210 2 39 251
-107 211 3 40 252
-108 253 212 4 41
-109 254 213 5 42
-110 255 214 6 43
-111 44 256 215 7
-112 45 257 216 8
-113 46 258 217 9
-114 47 259 218 10
-115 11 48 260 219
-116 220 12 49 261
-117 221 13 50 262
-118 222 14 51 263
-119 264 223 15 52
-120 265 224 16 53
-121 266 225 17 54
-122 55 267 226 18
-123 56 268 227 19
-124 57 269 228 20
-125 58 270 229 21
-126 22 59 271 230
-127 231 23 60 272
-128 232 24 61 273
-129 233 25 62 274
-130 275 234 26 63
-131 276 235 27 64
-132 277 236 28 65
-133 66 278 237 29
-134 67 279 238 30
-135 68 280 239 31
-136 69 281 240 32
-137 33 70 282 241
-138 242 34 71 283
-139 243 35 72 284
-140 244 36 73 285
-141 286 245 37 74
-142 287 246 38 75
-143 288 247 39 76
-144 77 289 248 40
-145 78 290 249 41
-146 79 291 250 42
-147 80 292 251 43
-148 44 81 293 252
-149 253 45 82 294
-150 254 46 83 295
-151 255 47 84 296
-152 297 256 48 85
-153 298 257 49 86
-154 299 258 50 87
-155 88 300 259 51
-156 89 301 260 52
-157 90 302 261 53
-158 91 303 262 54
-159 55 92 304 263
-160 264 56 93 305
-161 265 57 94 306
-162 266 58 95 307
-163 308 267 59 96
-164 309 268 60 97
-165 310 269 61 98
-166 99 311 270 62
-167 100 312 271 63
-168 209 101 272 64
-169 210 102 273 65
-170 66 211 103 274
-171 275 67 212 104
-172 1 276 68 213
-173 2 277 69 214
-174 3 278 70 215
-175 4 279 71 216
-176 5 280 72 217
-177 6 281 73 218
-178 7 282 74 219
-179 220 8 283 75
-180 221 9 284 76
-181 77 222 10 285
-182 11 286 78 223
-183 12 287 79 224
-184 13 288 80 225
-185 14 289 81 226
-186 15 290 82 227
-187 16 291 83 228
-188 17 292 84 229
-189 18 293 85 230
-190 231 19 294 86
-191 232 20 295 87
-192 88 233 21 296
-193 22 297 89 234
-194 23 298 90 235
-195 24 299 91 236
-196 25 300 92 237
-197 26 301 93 238
-198 27 302 94 239
-199 28 303 95 240
-200 29 304 96 241
-201 242 30 305 97
-202 243 31 306 98
-203 99 244 32 307
-204 33 308 100 245
-205 34 309 101 246
-206 35 310 102 247
-207 36 311 103 248
-208 37 312 104 249
-209 286 168 236 105
-210 287 169 237 106
-211 288 170 238 107
-212 289 171 239 108
-213 290 172 240 109
-214 110 291 173 241
-215 242 111 292 174
-216 243 112 293 175
-217 176 244 113 294
-218 177 245 114 295
-219 178 246 115 296
-220 297 179 247 116
-221 298 180 248 117
-222 299 181 249 118
-223 300 182 250 119
-224 301 183 251 120
-225 121 302 184 252
-226 253 122 303 185
-227 254 123 304 186
-228 187 255 124 305
-229 188 256 125 306
-230 189 257 126 307
-231 308 190 258 127
-232 309 191 259 128
-233 310 192 260 129
-234 311 193 261 130
-235 312 194 262 131
-236 132 209 195 263
-237 264 133 210 196
-238 265 134 211 197
-239 198 266 135 212
-240 199 267 136 213
-241 200 268 137 214
-242 201 269 138 215
-243 202 270 139 216
-244 203 271 140 217
-245 204 272 141 218
-246 205 273 142 219
-247 143 220 206 274
-248 275 144 221 207
-249 276 145 222 208
-250 277 146 223 105
-251 278 147 224 106
-252 279 148 225 107
-253 280 149 226 108
-254 281 150 227 109
-255 110 282 151 228
-256 111 283 152 229
-257 112 284 153 230
-258 154 231 113 285
-259 286 155 232 114
-260 287 156 233 115
-261 288 157 234 116
-262 289 158 235 117
-263 290 159 236 118
-264 291 160 237 119
-265 292 161 238 120
-266 121 293 162 239
-267 122 294 163 240
-268 123 295 164 241
-269 165 242 124 296
-270 297 166 243 125
-271 298 167 244 126
-272 299 168 245 127
-273 300 169 246 128
-274 301 170 247 129
-275 302 171 248 130
-276 303 172 249 131
-277 132 304 173 250
-278 133 305 174 251
-279 134 306 175 252
-280 176 253 135 307
-281 308 177 254 136
-282 309 178 255 137
-283 310 179 256 138
-284 311 180 257 139
-285 312 181 258 140
-286 209 182 259 141
-287 210 183 260 142
-288 143 211 184 261
-289 144 212 185 262
-290 145 213 186 263
-291 187 264 146 214
-292 188 265 147 215
-293 189 266 148 216
-294 190 267 149 217
-295 191 268 150 218
-296 192 269 151 219
-297 220 193 270 152
-298 221 194 271 153
-299 154 222 195 272
-300 155 223 196 273
-301 156 224 197 274
-302 198 275 157 225
-303 199 276 158 226
-304 200 277 159 227
-305 201 278 160 228
-306 202 279 161 229
-307 203 280 162 230
-308 231 204 281 163
-309 232 205 282 164
-310 165 233 206 283
-311 166 234 207 284
-312 167 235 208 285
0