[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 312, 48 ] =
UG(ATD[312,38]).
(I) Following is a form readable by MAGMA:
g:=Graph<312|{ {29, 31}, {173, 175}, {1, 2}, {304, 307}, {205, 206}, {105, 106},
{1, 5}, {242, 246}, {203, 207}, {64, 68}, {3, 7}, {2, 6}, {305, 308}, {152,
159}, {20, 28}, {147, 155}, {148, 156}, {149, 157}, {83, 90}, {179, 186}, {177,
184}, {48, 58}, {161, 171}, {167, 173}, {86, 93}, {178, 185}, {2, 14}, {279,
283}, {4, 8}, {3, 15}, {224, 237}, {257, 268}, {132, 138}, {245, 251}, {226,
236}, {13, 28}, {237, 254}, {4, 16}, {290, 310}, {77, 89}, {13, 25}, {12, 24},
{7, 19}, {6, 18}, {5, 17}, {4, 18}, {160, 182}, {259, 276}, {72, 80}, {174,
182}, {129, 155}, {302, 308}, {205, 215}, {196, 222}, {192, 218}, {33, 58},
{234, 241}, {133, 158}, {8, 20}, {11, 23}, {10, 22}, {9, 21}, {128, 156}, {32,
61}, {297, 308}, {293, 312}, {76, 81}, {34, 63}, {102, 123}, {168, 181}, {141,
147}, {206, 208}, {33, 62}, {256, 287}, {130, 157}, {19, 51}, {208, 240}, {6,
39}, {27, 58}, {25, 56}, {23, 54}, {21, 52}, {16, 49}, {14, 47}, {12, 45}, {10,
43}, {8, 41}, {80, 114}, {5, 38}, {272, 307}, {268, 303}, {31, 60}, {26, 57},
{22, 53}, {17, 50}, {13, 46}, {9, 42}, {30, 59}, {265, 300}, {129, 164}, {131,
165}, {277, 307}, {11, 44}, {15, 39}, {27, 49}, {256, 298}, {196, 238}, {87,
125}, {219, 240}, {286, 309}, {263, 300}, {262, 301}, {133, 169}, {141, 160},
{207, 226}, {7, 40}, {258, 301}, {24, 55}, {72, 120}, {70, 119}, {143, 190},
{76, 126}, {258, 304}, {198, 244}, {71, 116}, {257, 311}, {11, 51}, {270, 311},
{271, 310}, {209, 235}, {86, 109}, {153, 165}, {277, 297}, {260, 312}, {158,
162}, {151, 170}, {269, 304}, {200, 245}, {12, 50}, {273, 303}, {271, 305}, {15,
48}, {75, 116}, {47, 110}, {60, 126}, {61, 127}, {168, 235}, {162, 230}, {169,
236}, {58, 124}, {59, 125}, {139, 205}, {158, 216}, {30, 89}, {170, 237}, {42,
96}, {177, 251}, {43, 97}, {150, 220}, {1, 74}, {180, 255}, {49, 122}, {32,
109}, {34, 111}, {16, 94}, {179, 253}, {178, 252}, {176, 254}, {44, 98}, {17,
95}, {33, 110}, {52, 123}, {184, 232}, {180, 229}, {14, 92}, {15, 93}, {164,
246}, {35, 112}, {189, 238}, {31, 75}, {38, 114}, {176, 228}, {36, 113}, {46,
120}, {47, 121}, {3, 84}, {134, 209}, {165, 242}, {175, 248}, {7, 95}, {171,
243}, {172, 244}, {35, 121}, {45, 119}, {136, 210}, {150, 204}, {40, 115}, {160,
251}, {41, 116}, {43, 118}, {138, 215}, {36, 122}, {44, 114}, {153, 199}, {42,
117}, {37, 68}, {35, 64}, {40, 76}, {164, 192}, {36, 65}, {135, 226}, {29, 123},
{178, 212}, {152, 254}, {26, 125}, {37, 66}, {151, 240}, {174, 201}, {53, 92},
{57, 80}, {142, 231}, {140, 230}, {152, 242}, {34, 73}, {136, 227}, {158, 245},
{9, 101}, {137, 228}, {184, 213}, {170, 199}, {139, 229}, {141, 227}, {170,
197}, {128, 240}, {154, 234}, {35, 82}, {18, 96}, {56, 74}, {26, 104}, {23,
101}, {22, 100}, {19, 97}, {139, 249}, {31, 108}, {55, 68}, {130, 241}, {132,
247}, {148, 231}, {159, 236}, {142, 250}, {174, 218}, {28, 105}, {51, 70}, {30,
107}, {137, 252}, {143, 250}, {166, 211}, {18, 100}, {21, 99}, {20, 98}, {152,
238}, {27, 108}, {29, 106}, {150, 225}, {161, 214}, {144, 232}, {145, 233}, {60,
70}, {146, 233}, {157, 230}, {167, 220}, {32, 92}, {37, 88}, {24, 102}, {57,
71}, {25, 103}, {54, 73}, {72, 203}, {113, 242}, {47, 171}, {75, 207}, {74,
206}, {73, 205}, {59, 191}, {81, 212}, {19, 149}, {94, 216}, {77, 202}, {82,
213}, {87, 223}, {37, 172}, {69, 204}, {67, 202}, {65, 200}, {41, 163}, {115,
249}, {48, 187}, {92, 215}, {66, 201}, {50, 185}, {48, 188}, {51, 191}, {50,
190}, {49, 189}, {28, 146}, {88, 214}, {11, 132}, {68, 203}, {39, 183}, {42,
184}, {43, 185}, {100, 247}, {116, 224}, {46, 187}, {44, 186}, {96, 246}, {120,
225}, {45, 183}, {72, 212}, {97, 253}, {79, 211}, {78, 210}, {77, 209}, {76,
208}, {54, 168}, {110, 241}, {112, 239}, {69, 229}, {38, 135}, {97, 195}, {106,
201}, {1, 165}, {10, 174}, {45, 139}, {115, 213}, {124, 218}, {3, 164}, {67,
228}, {103, 207}, {57, 144}, {22, 188}, {23, 189}, {107, 192}, {111, 196}, {114,
222}, {115, 223}, {108, 193}, {110, 195}, {112, 221}, {61, 146}, {109, 194},
{74, 250}, {107, 219}, {108, 220}, {104, 218}, {17, 162}, {103, 211}, {126,
200}, {111, 216}, {124, 203}, {88, 224}, {89, 225}, {67, 250}, {82, 235}, {99,
217}, {102, 221}, {55, 138}, {84, 233}, {106, 215}, {21, 171}, {63, 129}, {62,
128}, {33, 159}, {69, 133}, {4, 197}, {99, 162}, {90, 155}, {71, 134}, {66,
131}, {64, 129}, {65, 130}, {87, 148}, {85, 145}, {77, 136}, {86, 147}, {79,
138}, {91, 157}, {119, 177}, {67, 132}, {78, 137}, {113, 182}, {34, 234}, {105,
161}, {52, 253}, {85, 156}, {53, 255}, {79, 133}, {117, 191}, {125, 183}, {90,
150}, {91, 151}, {88, 149}, {84, 134}, {82, 135}, {104, 190}, {105, 191}, {29,
199}, {41, 243}, {84, 143}, {26, 198}, {81, 141}, {80, 140}, {127, 163}, {83,
142}, {12, 210}, {98, 188}, {38, 248}, {85, 180}, {83, 177}, {61, 222}, {101,
131}, {73, 160}, {90, 179}, {9, 227}, {102, 140}, {91, 181}, {30, 238}, {83,
163}, {118, 135}, {94, 172}, {117, 134}, {8, 252}, {55, 195}, {54, 194}, {53,
193}, {52, 192}, {13, 249}, {124, 136}, {81, 166}, {20, 236}, {63, 199}, {62,
198}, {36, 221}, {86, 172}, {93, 167}, {87, 173}, {32, 219}, {78, 181}, {56,
196}, {56, 198}, {59, 197}, {100, 154}, {10, 267}, {16, 273}, {24, 287}, {2,
268}, {6, 265}, {39, 296}, {5, 283}, {62, 278}, {63, 279}, {14, 292}, {40, 258},
{25, 306}, {27, 299}, {60, 270}, {46, 282}, {65, 259}, {75, 264}, {78, 264},
{89, 272}, {101, 302}, {69, 265}, {95, 273}, {95, 266}, {85, 269}, {71, 285},
{91, 263}, {70, 295}, {119, 278}, {121, 280}, {123, 282}, {112, 274}, {118,
277}, {122, 281}, {126, 283}, {99, 260}, {98, 266}, {122, 275}, {93, 305}, {103,
267}, {121, 276}, {79, 288}, {120, 279}, {64, 304}, {96, 274}, {66, 311}, {118,
270}, {111, 277}, {127, 261}, {104, 275}, {113, 266}, {109, 275}, {117, 267},
{127, 257}, {94, 289}, {107, 276}, {163, 291}, {166, 292}, {154, 287}, {153,
286}, {161, 294}, {175, 293}, {173, 294}, {169, 293}, {148, 281}, {186, 309},
{144, 256}, {137, 282}, {187, 301}, {144, 265}, {176, 297}, {145, 264}, {131,
280}, {185, 290}, {128, 284}, {146, 271}, {130, 285}, {181, 298}, {183, 279},
{149, 308}, {188, 285}, {142, 296}, {189, 282}, {175, 261}, {140, 295}, {147,
312}, {180, 280}, {151, 312}, {166, 274}, {179, 263}, {168, 286}, {182, 256},
{176, 262}, {186, 269}, {153, 289}, {167, 286}, {143, 309}, {155, 288}, {190,
261}, {154, 294}, {187, 263}, {156, 289}, {159, 290}, {169, 276}, {145, 303},
{178, 269}, {235, 299}, {230, 292}, {226, 289}, {247, 307}, {206, 264}, {214,
272}, {197, 258}, {213, 284}, {255, 310}, {239, 294}, {217, 275}, {194, 270},
{220, 268}, {244, 292}, {202, 280}, {241, 291}, {248, 300}, {204, 281}, {246,
291}, {212, 257}, {248, 302}, {225, 310}, {249, 302}, {200, 272}, {243, 299},
{244, 301}, {251, 290}, {202, 278}, {223, 259}, {193, 284}, {239, 306}, {245,
299}, {194, 285}, {243, 300}, {232, 311}, {253, 284}, {210, 305}, {231, 260},
{234, 271}, {221, 309}, {233, 259}, {195, 296}, {217, 306}, {204, 295}, {201,
293}, {231, 267}, {232, 262}, {247, 281}, {229, 266}, {216, 296}, {217, 297},
{209, 288}, {227, 273}, {237, 287}, {193, 306}, {208, 291}, {239, 283}, {223,
298}, {224, 278}, {228, 274}, {252, 260}, {211, 298}, {255, 262}, {214, 303},
{254, 261}, {219, 295}, {222, 288} }>;
(II) A more general form is to represent the graph as the orbit of {29, 31}
under the group generated by the following permutations:
a: (1, 2)(3, 9)(4, 113)(5, 268)(6, 165)(7, 227)(8, 36)(10, 30)(11, 58)(12,
88)(13, 109)(14, 74)(15, 101)(16, 266)(17, 303)(18, 242)(19, 136)(20, 122)(21,
84)(22, 238)(23, 48)(24, 224)(25, 32)(26, 106)(27, 44)(28, 275)(29, 57)(31,
80)(33, 132)(34, 262)(35, 83)(37, 45)(38, 220)(39, 131)(40, 141)(41, 221)(42,
164)(43, 89)(46, 194)(47, 250)(49, 98)(50, 214)(51, 124)(52, 134)(53, 196)(54,
187)(55, 278)(56, 92)(59, 174)(60, 72)(61, 306)(62, 138)(63, 232)(64, 177)(65,
252)(66, 183)(67, 110)(68, 119)(69, 289)(70, 203)(71, 123)(73, 301)(75, 140)(76,
81)(77, 97)(78, 157)(79, 128)(82, 90)(85, 158)(86, 249)(87, 293)(91, 181)(93,
302)(94, 229)(95, 273)(96, 246)(99, 233)(100, 152)(102, 116)(103, 219)(104,
105)(107, 267)(108, 114)(111, 255)(112, 163)(115, 147)(117, 192)(118, 225)(120,
270)(121, 142)(125, 201)(126, 212)(127, 239)(129, 184)(130, 137)(133, 156)(135,
150)(139, 172)(143, 171)(144, 199)(145, 162)(146, 217)(148, 169)(149, 210)(151,
298)(153, 265)(154, 254)(155, 213)(159, 247)(160, 258)(161, 190)(166, 208)(167,
248)(168, 263)(170, 256)(173, 175)(176, 234)(178, 200)(179, 235)(180, 216)(182,
197)(185, 272)(186, 299)(188, 189)(191, 218)(193, 222)(195, 202)(198, 215)(204,
226)(205, 244)(206, 292)(207, 295)(209, 253)(211, 240)(223, 312)(228, 241)(230,
264)(231, 276)(236, 281)(237, 287)(243, 309)(245, 269)(251, 304)(257, 283)(259,
260)(261, 294)(271, 297)(274, 291)(277, 310)(279, 311)(280, 296)(282, 285)(284,
288)(286, 300)(290, 307)(305, 308) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 165, 5, 74)(4, 36, 12, 83)(6, 242, 17, 250)(7, 84, 15, 164)(8, 122, 24,
177)(9, 44, 26, 110)(11, 57, 33, 21)(13, 32, 37, 82)(14, 131, 38, 56)(16, 221,
45, 163)(18, 113, 50, 142)(19, 134, 48, 192)(20, 275, 55, 184)(22, 174, 43,
267)(23, 80, 62, 171)(25, 92, 66, 135)(27, 123, 70, 116)(28, 109, 68, 213)(29,
60, 75, 108)(30, 157, 77, 263)(34, 81, 85, 173)(35, 249, 61, 172)(39, 246, 95,
143)(40, 233, 93, 129)(41, 49, 102, 119)(42, 98, 104, 195)(46, 219, 88, 235)(47,
101, 114, 198)(51, 71, 58, 52)(53, 201, 118, 103)(54, 72, 128, 161)(59, 130,
136, 179)(63, 76, 145, 167)(64, 115, 146, 86)(65, 210, 90, 197)(67, 265, 152,
162)(69, 254, 158, 228)(73, 212, 156, 294)(78, 150, 170, 200)(79, 262, 169,
297)(87, 234, 141, 269)(89, 91)(94, 112, 139, 127)(96, 266, 190, 296)(97, 117,
188, 218)(99, 132, 144, 159)(100, 182, 185, 231)(105, 194, 203, 284)(106, 270,
207, 193)(107, 149, 209, 187)(111, 166, 180, 175)(120, 240, 214, 168)(121, 302,
222, 244)(124, 253, 191, 285)(125, 241, 227, 186)(126, 264, 220, 199)(133,
176)(137, 204, 237, 245)(138, 232, 236, 217)(140, 278, 243, 189)(147, 304, 223,
271)(148, 154, 160, 178)(151, 272, 181, 225)(153, 283, 206, 268)(155, 258, 259,
305)(183, 291, 273, 309)(196, 292, 280, 248)(202, 300, 238, 230)(205, 257, 289,
239)(208, 303, 286, 279)(211, 255, 293, 277)(215, 311, 226, 306)(216, 274, 229,
261)(224, 299, 282, 295)(247, 256, 290, 260)(251, 252, 281, 287)(276, 308, 288,
301)(298, 310, 312, 307)
c: (2, 5)(4, 12)(6, 17)(7, 15)(8, 24)(9, 26)(11, 33)(13, 37)(14, 38)(16, 45)(18,
50)(19, 48)(20, 55)(21, 57)(22, 43)(23, 62)(25, 66)(27, 70)(28, 68)(29, 75)(30,
77)(32, 82)(34, 85)(35, 61)(36, 83)(39, 95)(40, 93)(41, 102)(42, 104)(44,
110)(46, 88)(47, 114)(49, 119)(51, 58)(52, 71)(53, 118)(54, 128)(56, 131)(59,
136)(60, 108)(63, 145)(64, 146)(65, 90)(67, 152)(69, 158)(72, 161)(73, 156)(74,
165)(76, 167)(78, 170)(79, 169)(80, 171)(81, 173)(84, 164)(86, 115)(87, 141)(92,
135)(94, 139)(96, 190)(97, 188)(98, 195)(99, 144)(100, 185)(101, 198)(103,
201)(105, 203)(106, 207)(107, 209)(109, 213)(111, 180)(112, 127)(113, 142)(116,
123)(117, 218)(120, 214)(121, 222)(122, 177)(124, 191)(125, 227)(126, 220)(129,
233)(130, 179)(132, 159)(134, 192)(137, 237)(138, 236)(140, 243)(143, 246)(147,
223)(148, 160)(149, 187)(150, 200)(151, 181)(153, 206)(154, 178)(155, 259)(157,
263)(162, 265)(163, 221)(166, 175)(168, 240)(172, 249)(174, 267)(182, 231)(183,
273)(184, 275)(186, 241)(189, 278)(193, 270)(194, 284)(196, 280)(197, 210)(199,
264)(202, 238)(204, 245)(205, 289)(208, 286)(211, 293)(212, 294)(215, 226)(216,
229)(217, 232)(219, 235)(224, 282)(225, 272)(228, 254)(230, 300)(234, 269)(239,
257)(242, 250)(244, 302)(247, 290)(248, 292)(251, 281)(252, 287)(253, 285)(255,
277)(256, 260)(258, 305)(261, 274)(262, 297)(266, 296)(268, 283)(271, 304)(276,
288)(279, 303)(291, 309)(295, 299)(298, 312)(301, 308)(306, 311)(307, 310)
C4[ 312, 48 ]
312
-1 165 2 5 74
-2 1 14 268 6
-3 15 7 84 164
-4 16 18 8 197
-5 1 38 17 283
-6 265 2 39 18
-7 3 40 95 19
-8 4 41 20 252
-9 101 227 42 21
-10 22 267 174 43
-11 44 132 23 51
-12 45 210 24 50
-13 46 25 28 249
-14 2 47 92 292
-15 3 48 93 39
-16 4 49 94 273
-17 5 50 95 162
-18 100 4 6 96
-19 149 7 51 97
-20 236 28 8 98
-21 99 171 52 9
-22 100 188 53 10
-23 11 101 189 54
-24 55 12 287 102
-25 56 13 103 306
-26 198 57 125 104
-27 299 58 49 108
-28 13 146 105 20
-29 199 123 106 31
-30 89 59 238 107
-31 60 29 75 108
-32 92 61 109 219
-33 110 58 159 62
-34 111 234 73 63
-35 121 112 82 64
-36 122 221 113 65
-37 66 88 68 172
-38 135 114 5 248
-39 15 6 183 296
-40 115 258 7 76
-41 243 116 8 163
-42 117 96 184 9
-43 118 97 185 10
-44 11 114 98 186
-45 12 139 183 119
-46 187 13 282 120
-47 110 121 14 171
-48 187 188 58 15
-49 122 189 16 27
-50 12 190 17 185
-51 11 70 191 19
-52 253 123 192 21
-53 22 255 92 193
-54 23 168 73 194
-55 24 68 138 195
-56 198 25 74 196
-57 144 80 26 71
-58 33 124 48 27
-59 125 191 30 197
-60 70 126 270 31
-61 222 146 127 32
-62 33 198 278 128
-63 34 199 279 129
-64 35 68 304 129
-65 200 36 259 130
-66 201 311 37 131
-67 132 202 228 250
-68 55 37 203 64
-69 133 265 204 229
-70 60 51 119 295
-71 57 134 116 285
-72 80 212 203 120
-73 34 160 205 54
-74 1 56 206 250
-75 264 116 31 207
-76 81 126 40 208
-77 209 89 136 202
-78 264 210 137 181
-79 133 211 288 138
-80 57 114 72 140
-81 166 212 141 76
-82 35 135 213 235
-83 177 90 163 142
-84 143 134 233 3
-85 145 156 180 269
-86 147 93 172 109
-87 223 125 148 173
-88 37 224 214 149
-89 77 225 30 272
-90 155 179 83 150
-91 157 181 151 263
-92 14 215 53 32
-93 167 15 305 86
-94 289 16 172 216
-95 266 17 7 273
-96 246 18 42 274
-97 253 19 195 43
-98 44 188 266 20
-99 260 162 217 21
-100 22 154 247 18
-101 23 302 9 131
-102 221 24 123 140
-103 211 25 267 207
-104 275 190 26 218
-105 191 28 106 161
-106 201 105 215 29
-107 276 192 30 219
-108 220 27 193 31
-109 275 194 86 32
-110 33 47 195 241
-111 34 277 216 196
-112 221 35 239 274
-113 242 266 36 182
-114 44 222 80 38
-115 223 213 40 249
-116 224 71 41 75
-117 134 267 191 42
-118 277 135 270 43
-119 45 177 278 70
-120 46 279 225 72
-121 276 35 47 280
-122 275 36 49 281
-123 102 29 282 52
-124 58 136 203 218
-125 26 59 183 87
-126 200 60 283 76
-127 257 61 261 163
-128 156 62 240 284
-129 155 63 64 164
-130 157 65 241 285
-131 66 165 101 280
-132 11 67 247 138
-133 79 69 158 169
-134 209 71 84 117
-135 38 82 226 118
-136 77 210 124 227
-137 78 282 228 252
-138 55 132 79 215
-139 45 205 249 229
-140 80 102 295 230
-141 81 147 160 227
-142 231 83 250 296
-143 309 190 84 250
-144 232 265 57 256
-145 264 233 303 85
-146 233 28 61 271
-147 155 312 86 141
-148 231 156 281 87
-149 88 308 157 19
-150 220 90 225 204
-151 91 312 170 240
-152 242 254 159 238
-153 165 286 199 289
-154 100 287 234 294
-155 90 288 147 129
-156 289 148 128 85
-157 91 149 130 230
-158 133 245 216 162
-159 33 290 236 152
-160 182 73 141 251
-161 214 105 171 294
-162 99 158 17 230
-163 291 83 127 41
-164 3 246 192 129
-165 242 1 131 153
-166 211 81 292 274
-167 220 286 93 173
-168 286 235 181 54
-169 133 276 236 293
-170 199 237 151 197
-171 243 47 161 21
-172 244 37 94 86
-173 167 294 87 175
-174 201 182 218 10
-175 248 293 173 261
-176 297 254 228 262
-177 83 184 119 251
-178 212 269 185 252
-179 253 90 186 263
-180 255 280 85 229
-181 78 298 91 168
-182 113 256 160 174
-183 45 125 279 39
-184 177 232 213 42
-185 178 290 50 43
-186 44 309 179 269
-187 46 48 301 263
-188 22 48 98 285
-189 23 49 238 282
-190 143 104 50 261
-191 59 105 51 117
-192 52 107 218 164
-193 306 53 108 284
-194 270 54 109 285
-195 55 110 97 296
-196 56 111 222 238
-197 4 59 170 258
-198 56 244 26 62
-199 170 29 63 153
-200 245 126 272 65
-201 66 106 293 174
-202 77 67 278 280
-203 68 124 72 207
-204 69 281 150 295
-205 215 73 139 206
-206 264 205 74 208
-207 103 203 226 75
-208 291 206 240 76
-209 77 134 288 235
-210 12 78 136 305
-211 166 298 79 103
-212 178 81 257 72
-213 82 115 184 284
-214 88 303 161 272
-215 92 138 106 205
-216 111 158 94 296
-217 99 275 297 306
-218 124 104 192 174
-219 107 240 295 32
-220 167 268 150 108
-221 309 112 36 102
-222 288 114 61 196
-223 298 115 259 87
-224 88 278 116 237
-225 89 310 150 120
-226 135 289 236 207
-227 136 9 141 273
-228 176 67 137 274
-229 266 69 180 139
-230 157 292 140 162
-231 267 148 260 142
-232 144 311 184 262
-233 145 146 259 84
-234 154 34 271 241
-235 209 299 168 82
-236 169 159 226 20
-237 254 287 224 170
-238 189 30 152 196
-239 112 283 294 306
-240 128 151 208 219
-241 110 234 291 130
-242 165 113 246 152
-243 299 300 171 41
-244 198 301 292 172
-245 200 299 158 251
-246 242 291 96 164
-247 132 100 281 307
-248 300 38 302 175
-249 13 115 302 139
-250 143 67 74 142
-251 177 245 290 160
-252 178 137 260 8
-253 179 52 97 284
-254 176 237 261 152
-255 310 180 53 262
-256 144 287 298 182
-257 212 311 268 127
-258 301 40 304 197
-259 276 233 223 65
-260 99 231 312 252
-261 254 190 127 175
-262 176 232 255 301
-263 187 91 179 300
-264 78 145 206 75
-265 144 69 300 6
-266 113 95 229 98
-267 231 103 117 10
-268 220 2 257 303
-269 178 304 85 186
-270 311 60 194 118
-271 310 146 234 305
-272 89 200 214 307
-273 16 303 95 227
-274 166 112 96 228
-275 122 104 217 109
-276 121 169 259 107
-277 297 111 118 307
-278 202 224 62 119
-279 183 63 283 120
-280 121 180 202 131
-281 122 148 247 204
-282 46 123 189 137
-283 279 5 126 239
-284 253 213 193 128
-285 188 71 194 130
-286 309 167 168 153
-287 154 24 256 237
-288 209 155 79 222
-289 156 94 226 153
-290 310 159 185 251
-291 246 163 208 241
-292 166 244 14 230
-293 201 169 312 175
-294 154 161 173 239
-295 70 204 140 219
-296 39 216 195 142
-297 176 308 277 217
-298 211 223 256 181
-299 243 245 235 27
-300 243 265 248 263
-301 187 244 258 262
-302 308 101 248 249
-303 145 268 214 273
-304 258 269 64 307
-305 308 210 93 271
-306 25 193 217 239
-307 277 247 304 272
-308 297 302 149 305
-309 143 286 221 186
-310 255 290 225 271
-311 66 232 257 270
-312 147 260 293 151
0