C4graphGraph forms for C4 [ 312, 50 ] = SDD(W(39,2))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 312, 50 ] = SDD(W(39,2)).

(I) Following is a form readable by MAGMA:

g:=Graph<312|{ {128, 212}, {129, 213}, {132, 222}, {133, 223}, {150, 246}, {151, 247}, {146, 254}, {145, 255}, {145, 254}, {128, 244}, {129, 245}, {132, 249}, {133, 250}, {64, 192}, {69, 197}, {70, 198}, {73, 201}, {74, 202}, {47, 174}, {126, 255}, {43, 169}, {117, 247}, {48, 178}, {65, 195}, {104, 235}, {42, 174}, {104, 236}, {60, 184}, {80, 212}, {65, 196}, {115, 246}, {106, 239}, {96, 229}, {41, 175}, {105, 239}, {81, 215}, {61, 186}, {111, 232}, {97, 230}, {82, 213}, {79, 199}, {42, 163}, {47, 166}, {65, 203}, {108, 230}, {104, 226}, {100, 238}, {68, 206}, {64, 203}, {68, 207}, {32, 172}, {116, 248}, {104, 228}, {60, 176}, {67, 207}, {94, 210}, {95, 211}, {65, 204}, {112, 253}, {67, 206}, {35, 173}, {113, 255}, {107, 229}, {103, 233}, {102, 232}, {41, 167}, {66, 205}, {34, 179}, {32, 178}, {97, 243}, {96, 242}, {37, 183}, {36, 182}, {33, 179}, {73, 219}, {55, 164}, {111, 252}, {71, 212}, {76, 223}, {60, 168}, {115, 231}, {101, 241}, {61, 169}, {33, 180}, {69, 208}, {75, 222}, {34, 180}, {35, 181}, {74, 220}, {38, 177}, {40, 191}, {70, 209}, {80, 200}, {105, 241}, {81, 201}, {82, 202}, {39, 190}, {112, 233}, {110, 247}, {107, 242}, {4, 158}, {103, 253}, {102, 252}, {48, 170}, {47, 181}, {43, 177}, {38, 188}, {5, 159}, {60, 167}, {109, 246}, {106, 241}, {1, 157}, {117, 233}, {116, 232}, {57, 165}, {43, 183}, {72, 213}, {1, 159}, {1, 158}, {108, 243}, {41, 182}, {2, 157}, {92, 195}, {3, 163}, {11, 171}, {6, 166}, {64, 224}, {7, 166}, {11, 170}, {9, 168}, {66, 227}, {88, 250}, {1, 162}, {31, 188}, {13, 174}, {10, 169}, {3, 160}, {2, 161}, {29, 185}, {90, 254}, {24, 189}, {79, 234}, {88, 253}, {90, 255}, {2, 164}, {98, 196}, {29, 187}, {25, 191}, {24, 190}, {6, 160}, {3, 165}, {8, 175}, {89, 254}, {19, 187}, {20, 188}, {83, 251}, {84, 252}, {85, 253}, {7, 174}, {116, 221}, {28, 181}, {27, 178}, {18, 187}, {16, 185}, {68, 237}, {11, 161}, {117, 223}, {116, 222}, {23, 189}, {22, 188}, {19, 185}, {18, 184}, {15, 165}, {14, 164}, {17, 186}, {83, 248}, {87, 252}, {22, 186}, {87, 251}, {21, 184}, {84, 249}, {86, 251}, {2, 172}, {115, 221}, {48, 158}, {31, 177}, {30, 176}, {21, 187}, {20, 186}, {13, 163}, {12, 162}, {9, 167}, {5, 171}, {4, 170}, {3, 173}, {67, 237}, {79, 225}, {86, 248}, {87, 249}, {8, 167}, {84, 251}, {85, 250}, {26, 170}, {87, 231}, {94, 238}, {95, 239}, {9, 184}, {28, 173}, {26, 171}, {93, 236}, {6, 180}, {29, 175}, {7, 181}, {75, 249}, {67, 240}, {71, 244}, {84, 231}, {68, 240}, {82, 230}, {80, 229}, {4, 178}, {5, 179}, {76, 250}, {93, 235}, {27, 172}, {16, 168}, {17, 169}, {9, 176}, {93, 228}, {10, 177}, {26, 161}, {19, 175}, {101, 217}, {100, 216}, {10, 183}, {72, 245}, {8, 182}, {93, 226}, {18, 210}, {51, 243}, {13, 204}, {99, 162}, {54, 247}, {33, 224}, {15, 206}, {6, 196}, {98, 160}, {52, 246}, {34, 224}, {18, 208}, {14, 205}, {49, 242}, {32, 227}, {23, 212}, {92, 159}, {98, 166}, {4, 193}, {49, 244}, {22, 211}, {21, 208}, {20, 209}, {7, 194}, {5, 195}, {51, 245}, {12, 203}, {22, 209}, {21, 210}, {20, 211}, {35, 235}, {39, 238}, {32, 234}, {38, 236}, {37, 239}, {36, 238}, {11, 192}, {10, 198}, {25, 213}, {12, 192}, {8, 197}, {53, 248}, {15, 194}, {35, 237}, {14, 193}, {24, 215}, {24, 201}, {25, 202}, {52, 231}, {78, 157}, {19, 199}, {38, 240}, {98, 180}, {55, 225}, {44, 244}, {30, 199}, {40, 241}, {61, 228}, {26, 192}, {101, 191}, {100, 190}, {29, 199}, {13, 214}, {46, 245}, {57, 226}, {16, 205}, {53, 232}, {46, 243}, {17, 207}, {44, 242}, {23, 200}, {54, 233}, {77, 173}, {64, 162}, {78, 172}, {63, 220}, {45, 200}, {62, 219}, {42, 204}, {49, 215}, {50, 218}, {53, 221}, {77, 165}, {94, 182}, {95, 183}, {50, 219}, {54, 223}, {52, 221}, {50, 216}, {51, 217}, {58, 208}, {59, 209}, {66, 168}, {78, 164}, {49, 218}, {53, 222}, {12, 224}, {41, 197}, {81, 189}, {15, 226}, {47, 194}, {43, 198}, {77, 160}, {80, 189}, {82, 191}, {77, 163}, {14, 225}, {51, 220}, {31, 240}, {78, 161}, {81, 190}, {92, 179}, {27, 234}, {48, 193}, {40, 217}, {28, 237}, {23, 229}, {46, 220}, {61, 207}, {16, 227}, {56, 203}, {31, 236}, {30, 234}, {56, 204}, {34, 214}, {17, 228}, {45, 216}, {63, 202}, {36, 210}, {55, 193}, {45, 219}, {44, 218}, {37, 211}, {28, 235}, {57, 206}, {46, 217}, {45, 218}, {33, 214}, {62, 201}, {92, 171}, {27, 227}, {50, 200}, {55, 205}, {44, 215}, {57, 194}, {56, 195}, {66, 185}, {42, 214}, {99, 159}, {56, 196}, {59, 198}, {99, 158}, {99, 157}, {25, 230}, {39, 216}, {30, 225}, {58, 197}, {79, 176}, {39, 259}, {36, 257}, {37, 258}, {40, 260}, {63, 272}, {54, 262}, {58, 266}, {59, 267}, {52, 261}, {63, 268}, {62, 266}, {59, 269}, {58, 259}, {62, 257}, {85, 277}, {102, 294}, {83, 274}, {96, 289}, {86, 276}, {90, 280}, {73, 266}, {114, 305}, {86, 274}, {113, 309}, {75, 270}, {110, 299}, {108, 297}, {69, 259}, {97, 295}, {96, 294}, {74, 268}, {85, 275}, {72, 271}, {109, 298}, {83, 276}, {73, 257}, {120, 304}, {97, 297}, {71, 270}, {111, 294}, {107, 289}, {124, 310}, {70, 269}, {126, 309}, {123, 304}, {108, 295}, {103, 300}, {88, 275}, {91, 279}, {125, 305}, {70, 267}, {107, 294}, {88, 277}, {69, 266}, {103, 296}, {89, 278}, {90, 264}, {91, 265}, {121, 301}, {126, 298}, {123, 302}, {120, 302}, {121, 303}, {124, 299}, {71, 287}, {112, 296}, {118, 303}, {124, 293}, {74, 272}, {110, 308}, {91, 256}, {118, 301}, {113, 298}, {112, 300}, {76, 273}, {95, 258}, {89, 263}, {109, 307}, {94, 257}, {101, 260}, {123, 282}, {122, 283}, {121, 280}, {120, 282}, {124, 286}, {121, 283}, {122, 281}, {125, 286}, {105, 269}, {120, 285}, {122, 284}, {123, 285}, {100, 259}, {126, 281}, {125, 282}, {106, 269}, {72, 288}, {114, 282}, {113, 281}, {75, 289}, {119, 284}, {114, 286}, {119, 283}, {118, 283}, {76, 290}, {119, 281}, {118, 280}, {111, 287}, {119, 263}, {114, 256}, {117, 262}, {127, 268}, {127, 267}, {115, 261}, {102, 287}, {109, 276}, {105, 272}, {89, 291}, {106, 272}, {110, 277}, {127, 260}, {122, 263}, {127, 258}, {125, 256}, {91, 292}, {150, 276}, {151, 277}, {136, 267}, {136, 268}, {146, 278}, {131, 262}, {155, 286}, {138, 271}, {137, 271}, {143, 265}, {142, 264}, {130, 261}, {144, 279}, {145, 280}, {132, 270}, {156, 278}, {140, 262}, {136, 258}, {156, 279}, {136, 260}, {128, 270}, {139, 261}, {135, 265}, {134, 264}, {129, 271}, {130, 274}, {144, 256}, {131, 275}, {142, 284}, {143, 285}, {133, 273}, {146, 263}, {137, 273}, {139, 274}, {145, 264}, {144, 265}, {134, 284}, {141, 279}, {135, 285}, {138, 273}, {141, 278}, {128, 287}, {140, 275}, {137, 297}, {148, 308}, {129, 288}, {147, 306}, {135, 293}, {147, 305}, {141, 303}, {138, 297}, {151, 308}, {132, 289}, {150, 307}, {148, 305}, {137, 300}, {138, 300}, {148, 306}, {133, 290}, {147, 308}, {143, 293}, {147, 312}, {148, 312}, {156, 304}, {155, 310}, {155, 299}, {134, 311}, {146, 291}, {149, 295}, {154, 296}, {156, 303}, {140, 312}, {153, 301}, {144, 292}, {130, 311}, {152, 301}, {149, 288}, {135, 306}, {134, 307}, {131, 310}, {152, 302}, {130, 309}, {153, 302}, {149, 290}, {154, 290}, {142, 311}, {140, 310}, {154, 288}, {153, 291}, {131, 312}, {152, 291}, {139, 311}, {152, 292}, {151, 299}, {150, 298}, {141, 304}, {154, 295}, {153, 292}, {149, 296}, {143, 306}, {142, 307}, {139, 309}, {155, 293} }>;

(II) A more general form is to represent the graph as the orbit of {128, 212} under the group generated by the following permutations:

a: (56, 65)
b: (114, 135)(125, 143)(256, 265)(282, 285)(286, 293)(305, 306)
c: (72, 97)(108, 129)(213, 230)(243, 245)(271, 297)(288, 295)
d: (85, 88)
e: (13, 42)
f: (1, 2)(3, 8)(4, 11)(5, 14)(6, 9)(7, 18)(10, 23)(12, 27)(13, 19)(15, 36)(16, 33)(17, 24)(20, 44)(21, 47)(22, 49)(25, 52)(26, 48)(28, 58)(29, 42)(30, 56)(31, 45)(32, 64)(34, 66)(35, 69)(37, 71)(38, 50)(39, 67)(40, 53)(41, 77)(43, 80)(46, 83)(51, 86)(54, 89)(55, 92)(57, 94)(59, 96)(60, 98)(61, 81)(62, 93)(63, 84)(65, 79)(68, 100)(70, 107)(72, 109)(73, 104)(74, 87)(75, 105)(76, 90)(78, 99)(82, 115)(85, 118)(88, 121)(91, 124)(95, 128)(97, 130)(101, 116)(102, 127)(103, 119)(106, 132)(108, 139)(110, 141)(111, 136)(112, 122)(113, 137)(117, 146)(120, 147)(123, 148)(126, 138)(129, 150)(131, 152)(133, 145)(134, 149)(140, 153)(142, 154)(144, 155)(151, 156)(158, 161)(159, 164)(160, 167)(162, 172)(163, 175)(165, 182)(166, 184)(168, 180)(169, 189)(171, 193)(173, 197)(174, 187)(176, 196)(177, 200)(178, 192)(179, 205)(181, 208)(183, 212)(185, 214)(186, 215)(188, 218)(190, 207)(191, 221)(194, 210)(195, 225)(198, 229)(199, 204)(201, 228)(202, 231)(203, 234)(206, 238)(209, 242)(211, 244)(213, 246)(216, 240)(217, 248)(219, 236)(220, 251)(222, 241)(223, 254)(224, 227)(226, 257)(230, 261)(232, 260)(233, 263)(235, 266)(237, 259)(239, 270)(243, 274)(245, 276)(247, 278)(249, 272)(250, 280)(252, 268)(253, 283)(255, 273)(256, 286)(258, 287)(262, 291)(264, 290)(265, 293)(267, 294)(269, 289)(271, 298)(275, 301)(277, 303)(279, 299)(281, 300)(282, 305)(284, 296)(285, 306)(288, 307)(292, 310)(295, 311)(297, 309)(302, 312)(304, 308)
g: (84, 87)
h: (52, 83)(86, 115)(221, 248)(231, 251)(246, 276)(261, 274)
m: (40, 63)(74, 101)(191, 202)(217, 220)(241, 272)(260, 268)
n1: (109, 130)(139, 150)(246, 261)(274, 276)(298, 309)(307, 311)
a1: (147, 148)
b1: (20, 22)
c1: (8, 18)(21, 41)(167, 184)(175, 187)(182, 210)(197, 208)
d1: (9, 19)(29, 60)(167, 175)(168, 185)(176, 199)(184, 187)
e1: (3, 7)(47, 77)(160, 166)(163, 174)(165, 194)(173, 181)
f1: (96, 107)
g1: (114, 125)
h1: (18, 21)
m1: (137, 149)(138, 154)(271, 288)(273, 290)(295, 297)(296, 300)
n2: (54, 85)(88, 117)(223, 250)(233, 253)(247, 277)(262, 275)
a2: (67, 93)(68, 104)(206, 226)(207, 228)(235, 237)(236, 240)
b2: (46, 51)
c2: (24, 45)(50, 81)(189, 200)(190, 216)(201, 219)(215, 218)
d2: (113, 126)
e2: (33, 56)(34, 65)(179, 195)(180, 196)(203, 224)(204, 214)
f2: (45, 50)
g2: (16, 30)(66, 79)(168, 176)(185, 199)(205, 225)(227, 234)
h2: (103, 112)
m2: (2, 5)(3, 9)(4, 12)(6, 16)(7, 19)(8, 15)(10, 24)(13, 30)(14, 33)(17, 39)(18, 28)(20, 45)(21, 35)(22, 50)(23, 37)(25, 53)(27, 56)(29, 47)(31, 62)(32, 65)(34, 55)(36, 67)(38, 73)(40, 75)(41, 57)(42, 79)(43, 81)(44, 59)(46, 84)(48, 64)(49, 70)(51, 87)(52, 72)(54, 90)(58, 93)(60, 77)(61, 100)(63, 102)(66, 98)(68, 94)(69, 104)(71, 105)(74, 111)(76, 113)(78, 92)(80, 95)(82, 116)(83, 97)(85, 119)(86, 108)(88, 122)(89, 110)(91, 114)(96, 127)(101, 132)(103, 134)(106, 128)(107, 136)(109, 137)(112, 142)(115, 129)(117, 145)(118, 131)(120, 135)(121, 140)(123, 143)(124, 141)(125, 144)(126, 133)(130, 149)(138, 150)(139, 154)(146, 151)(147, 152)(148, 153)(155, 156)(157, 159)(158, 162)(160, 168)(161, 171)(163, 176)(164, 179)(165, 167)(166, 185)(169, 190)(170, 192)(172, 195)(173, 184)(174, 199)(175, 194)(177, 201)(178, 203)(180, 205)(181, 187)(182, 206)(183, 189)(186, 216)(188, 219)(191, 222)(193, 224)(196, 227)(197, 226)(198, 215)(200, 211)(202, 232)(204, 234)(207, 238)(208, 235)(209, 218)(210, 237)(212, 239)(213, 221)(214, 225)(217, 249)(220, 252)(223, 255)(228, 259)(229, 258)(230, 248)(231, 245)(233, 264)(236, 266)(240, 257)(241, 270)(242, 267)(243, 251)(244, 269)(246, 271)(247, 254)(250, 281)(253, 284)(260, 289)(261, 288)(262, 280)(263, 277)(265, 282)(268, 294)(272, 287)(273, 298)(274, 295)(275, 283)(276, 297)(278, 299)(279, 286)(290, 309)(291, 308)(292, 305)(293, 304)(296, 311)(300, 307)(301, 312)(302, 306)(303, 310)
n3: (90, 119)(122, 145)(254, 263)(255, 281)(264, 284)(280, 283)
a3: (91, 120)(123, 144)(256, 282)(265, 285)(279, 304)(292, 302)
b3: (102, 111)
c3: (149, 154)
d3: (118, 121)
e3: (31, 38)
f3: (127, 136)
g3: (39, 62)(73, 100)(190, 201)(216, 219)(238, 257)(259, 266)
h3: (36, 58)(69, 94)(182, 197)(208, 210)(238, 259)(257, 266)
m3: (23, 44)(49, 80)(189, 215)(200, 218)(212, 244)(229, 242)
n4: (10, 20)(22, 43)(169, 186)(177, 188)(183, 211)(198, 209)
a4: (120, 123)
b4: (67, 68)
c4: (124, 147)(148, 155)(286, 305)(293, 306)(299, 308)(310, 312)
d4: (93, 104)
e4: (19, 29)
f4: (15, 28)(35, 57)(165, 173)(181, 194)(206, 237)(226, 235)
g4: (53, 84)(87, 116)(221, 231)(222, 249)(232, 252)(248, 251)
h4: (134, 142)
m4: (58, 69)
n5: (11, 26)
a5: (5, 12)(64, 92)(159, 162)(171, 192)(179, 224)(195, 203)
b5: (135, 143)
c5: (105, 106)
d5: (137, 138)
e5: (28, 35)
f5: (44, 49)
g5: (37, 59)(70, 95)(183, 198)(209, 211)(239, 269)(258, 267)
h5: (63, 74)
m5: (4, 48)
n6: (76, 103)(112, 133)(223, 233)(250, 253)(273, 300)(290, 296)
a6: (105, 127)(106, 136)(239, 258)(241, 260)(267, 269)(268, 272)
b6: (83, 86)
c6: (59, 70)
d6: (62, 73)
e6: (141, 152)(153, 156)(278, 291)(279, 292)(301, 303)(302, 304)
f6: (71, 96)(107, 128)(212, 229)(242, 244)(270, 289)(287, 294)
g6: (110, 131)(140, 151)(247, 262)(275, 277)(299, 310)(308, 312)
h6: (113, 134)(126, 142)(255, 264)(281, 284)(298, 307)(309, 311)
m6: (75, 102)(111, 132)(222, 232)(249, 252)(270, 287)(289, 294)
n7: (89, 118)(121, 146)(254, 280)(263, 283)(278, 303)(291, 301)
a7: (2, 4)(48, 78)(157, 158)(161, 170)(164, 193)(172, 178)
b7: (14, 27)(32, 55)(164, 172)(178, 193)(205, 227)(225, 234)
c7: (25, 46)(51, 82)(191, 217)(202, 220)(213, 245)(230, 243)
d7: (7, 47)
e7: (6, 13)(42, 98)(160, 163)(166, 174)(180, 214)(196, 204)
f7: (30, 79)
g7: (12, 64)
h7: (27, 32)
m7: (17, 31)(38, 61)(169, 177)(186, 188)(207, 240)(228, 236)
n8: (33, 34)
a8: (97, 108)
b8: (130, 139)
c8: (131, 140)
d8: (119, 122)
e8: (152, 153)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 312, 50 ]
312
-1 157 158 159 162
-2 157 161 172 164
-3 165 160 173 163
-4 178 158 170 193
-5 179 159 171 195
-6 166 180 160 196
-7 166 181 194 174
-8 167 182 175 197
-9 176 167 168 184
-10 198 177 169 183
-11 170 192 171 161
-12 224 192 203 162
-13 214 204 163 174
-14 225 193 205 164
-15 165 226 194 206
-16 168 205 227 185
-17 169 228 207 186
-18 187 210 184 208
-19 187 199 185 175
-20 209 188 211 186
-21 187 210 184 208
-22 209 188 211 186
-23 189 200 212 229
-24 189 190 201 215
-25 191 202 213 230
-26 170 192 171 161
-27 178 234 172 227
-28 235 181 237 173
-29 187 199 185 175
-30 176 199 234 225
-31 177 188 236 240
-32 178 234 172 227
-33 179 180 224 214
-34 179 180 224 214
-35 235 181 237 173
-36 210 257 182 238
-37 211 258 183 239
-38 177 188 236 240
-39 190 259 216 238
-40 191 260 217 241
-41 167 182 175 197
-42 214 204 163 174
-43 198 177 169 183
-44 242 244 215 218
-45 200 216 218 219
-46 220 243 245 217
-47 166 181 194 174
-48 178 158 170 193
-49 242 244 215 218
-50 200 216 218 219
-51 220 243 245 217
-52 231 221 246 261
-53 221 232 222 248
-54 233 223 247 262
-55 225 193 205 164
-56 203 204 195 196
-57 165 226 194 206
-58 266 259 197 208
-59 198 209 267 269
-60 176 167 168 184
-61 169 228 207 186
-62 266 201 257 219
-63 220 202 268 272
-64 224 192 203 162
-65 203 204 195 196
-66 168 205 227 185
-67 237 206 207 240
-68 237 206 207 240
-69 266 259 197 208
-70 198 209 267 269
-71 287 244 212 270
-72 288 245 213 271
-73 266 201 257 219
-74 220 202 268 272
-75 222 289 270 249
-76 223 290 250 273
-77 165 160 173 163
-78 157 161 172 164
-79 176 199 234 225
-80 189 200 212 229
-81 189 190 201 215
-82 191 202 213 230
-83 276 248 251 274
-84 231 249 251 252
-85 253 275 277 250
-86 276 248 251 274
-87 231 249 251 252
-88 253 275 277 250
-89 254 278 291 263
-90 264 254 255 280
-91 265 256 279 292
-92 179 159 171 195
-93 235 236 226 228
-94 210 257 182 238
-95 211 258 183 239
-96 242 289 294 229
-97 297 243 295 230
-98 166 180 160 196
-99 157 158 159 162
-100 190 259 216 238
-101 191 260 217 241
-102 232 287 294 252
-103 253 233 300 296
-104 235 236 226 228
-105 269 239 272 241
-106 269 239 272 241
-107 242 289 294 229
-108 297 243 295 230
-109 276 298 246 307
-110 308 277 299 247
-111 232 287 294 252
-112 253 233 300 296
-113 298 309 255 281
-114 286 256 282 305
-115 231 221 246 261
-116 221 232 222 248
-117 233 223 247 262
-118 301 280 303 283
-119 281 283 284 263
-120 302 282 304 285
-121 301 280 303 283
-122 281 283 284 263
-123 302 282 304 285
-124 286 299 310 293
-125 286 256 282 305
-126 298 309 255 281
-127 267 268 258 260
-128 287 244 212 270
-129 288 245 213 271
-130 309 311 261 274
-131 275 310 312 262
-132 222 289 270 249
-133 223 290 250 273
-134 264 311 284 307
-135 265 293 306 285
-136 267 268 258 260
-137 297 300 271 273
-138 297 300 271 273
-139 309 311 261 274
-140 275 310 312 262
-141 278 279 303 304
-142 264 311 284 307
-143 265 293 306 285
-144 265 256 279 292
-145 264 254 255 280
-146 254 278 291 263
-147 308 312 305 306
-148 308 312 305 306
-149 288 290 295 296
-150 276 298 246 307
-151 308 277 299 247
-152 301 291 302 292
-153 301 291 302 292
-154 288 290 295 296
-155 286 299 310 293
-156 278 279 303 304
-157 99 1 78 2
-158 99 1 4 48
-159 99 1 92 5
-160 77 3 6 98
-161 11 78 2 26
-162 99 1 12 64
-163 77 13 3 42
-164 55 78 2 14
-165 77 57 3 15
-166 47 6 7 98
-167 60 8 41 9
-168 66 16 60 9
-169 17 61 10 43
-170 11 4 26 48
-171 11 26 92 5
-172 78 2 27 32
-173 77 35 3 28
-174 13 47 7 42
-175 29 8 19 41
-176 79 60 30 9
-177 38 31 10 43
-178 4 48 27 32
-179 33 34 92 5
-180 33 34 6 98
-181 35 47 28 7
-182 36 94 8 41
-183 37 95 10 43
-184 60 18 9 21
-185 66 16 29 19
-186 22 17 61 20
-187 18 29 19 21
-188 22 38 20 31
-189 23 24 80 81
-190 100 24 81 39
-191 101 25 82 40
-192 11 12 26 64
-193 55 14 4 48
-194 57 47 15 7
-195 56 92 5 65
-196 56 6 65 98
-197 58 69 8 41
-198 59 70 10 43
-199 79 29 19 30
-200 23 45 80 50
-201 24 81 62 73
-202 25 82 63 74
-203 12 56 64 65
-204 56 13 42 65
-205 55 66 14 16
-206 67 57 68 15
-207 67 68 17 61
-208 58 69 18 21
-209 22 59 70 20
-210 36 94 18 21
-211 22 37 95 20
-212 23 80 71 128
-213 25 82 72 129
-214 33 34 13 42
-215 44 24 81 49
-216 45 100 39 50
-217 46 101 40 51
-218 44 45 49 50
-219 45 50 62 73
-220 46 51 63 74
-221 115 116 52 53
-222 132 116 53 75
-223 133 117 54 76
-224 33 12 34 64
-225 55 79 14 30
-226 57 15 93 104
-227 66 16 27 32
-228 93 104 17 61
-229 23 80 96 107
-230 25 82 97 108
-231 115 84 52 87
-232 111 102 116 53
-233 112 103 117 54
-234 79 27 30 32
-235 35 93 104 28
-236 38 93 104 31
-237 67 35 68 28
-238 100 36 39 94
-239 37 105 95 106
-240 67 68 38 31
-241 101 105 40 106
-242 44 49 96 107
-243 46 51 97 108
-244 44 49 71 128
-245 46 72 51 129
-246 115 150 52 109
-247 110 117 151 54
-248 83 116 53 86
-249 132 84 75 87
-250 88 133 85 76
-251 83 84 86 87
-252 111 102 84 87
-253 88 112 103 85
-254 89 90 145 146
-255 90 145 113 126
-256 144 91 114 125
-257 36 94 62 73
-258 37 136 127 95
-259 100 58 69 39
-260 101 136 127 40
-261 115 139 52 130
-262 117 140 54 131
-263 89 122 146 119
-264 90 134 145 142
-265 143 144 91 135
-266 58 69 62 73
-267 59 70 136 127
-268 136 127 63 74
-269 59 70 105 106
-270 132 71 128 75
-271 137 72 138 129
-272 105 106 63 74
-273 133 137 138 76
-274 83 139 86 130
-275 88 85 140 131
-276 83 150 86 109
-277 88 110 85 151
-278 89 156 146 141
-279 144 156 91 141
-280 121 90 145 118
-281 122 113 126 119
-282 123 114 125 120
-283 121 122 118 119
-284 122 134 119 142
-285 143 123 135 120
-286 155 124 114 125
-287 111 102 71 128
-288 154 72 149 129
-289 132 96 107 75
-290 154 133 149 76
-291 89 146 152 153
-292 144 91 152 153
-293 143 155 124 135
-294 111 102 96 107
-295 154 149 97 108
-296 154 112 103 149
-297 137 138 97 108
-298 113 126 150 109
-299 110 155 124 151
-300 112 103 137 138
-301 121 118 152 153
-302 123 152 120 153
-303 121 156 118 141
-304 123 156 141 120
-305 114 125 147 148
-306 143 135 147 148
-307 134 150 109 142
-308 110 147 148 151
-309 113 126 139 130
-310 155 124 140 131
-311 134 139 130 142
-312 147 148 140 131
0

**************