[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 315, 9 ] =
PS(3,105;16).
(I) Following is a form readable by MAGMA:
g:=Graph<315|{ {105, 106}, {195, 211}, {207, 223}, {206, 222}, {205, 221}, {204,
220}, {203, 219}, {202, 218}, {201, 217}, {200, 216}, {199, 215}, {198, 214},
{197, 213}, {196, 212}, {208, 224}, {210, 226}, {209, 225}, {128, 217}, {166,
255}, {164, 253}, {162, 251}, {160, 249}, {130, 219}, {132, 221}, {134, 223},
{129, 218}, {165, 254}, {161, 250}, {133, 222}, {131, 220}, {163, 252}, {135,
224}, {159, 248}, {151, 240}, {143, 232}, {2, 106}, {3, 107}, {4, 108}, {5,
109}, {6, 110}, {7, 111}, {16, 120}, {17, 121}, {18, 122}, {19, 123}, {20, 124},
{21, 125}, {22, 126}, {23, 127}, {136, 225}, {158, 247}, {156, 245}, {154, 243},
{152, 241}, {138, 227}, {140, 229}, {142, 231}, {1, 107}, {4, 110}, {5, 111},
{16, 122}, {17, 123}, {20, 126}, {21, 127}, {137, 226}, {157, 246}, {153, 242},
{141, 230}, {2, 108}, {3, 109}, {18, 124}, {19, 125}, {139, 228}, {155, 244},
{6, 112}, {7, 113}, {14, 120}, {15, 121}, {8, 112}, {9, 113}, {10, 114}, {11,
115}, {12, 116}, {13, 117}, {14, 118}, {15, 119}, {128, 249}, {150, 239}, {148,
237}, {146, 235}, {144, 233}, {130, 251}, {132, 253}, {134, 255}, {8, 114}, {9,
115}, {12, 118}, {13, 119}, {129, 250}, {149, 238}, {145, 234}, {133, 254}, {10,
116}, {11, 117}, {131, 252}, {147, 236}, {111, 232}, {119, 240}, {127, 248},
{106, 227}, {108, 229}, {110, 231}, {120, 241}, {122, 243}, {124, 245}, {126,
247}, {109, 230}, {121, 242}, {125, 246}, {107, 228}, {123, 244}, {22, 128},
{63, 169}, {62, 168}, {55, 161}, {54, 160}, {23, 129}, {30, 136}, {31, 137},
{86, 192}, {87, 193}, {94, 200}, {95, 201}, {64, 215}, {72, 223}, {96, 247},
{104, 255}, {24, 128}, {63, 167}, {62, 166}, {61, 165}, {60, 164}, {59, 163},
{58, 162}, {57, 161}, {56, 160}, {25, 129}, {26, 130}, {27, 131}, {28, 132},
{29, 133}, {30, 134}, {31, 135}, {88, 192}, {89, 193}, {90, 194}, {91, 195},
{92, 196}, {93, 197}, {94, 198}, {95, 199}, {65, 216}, {69, 220}, {67, 218},
{71, 222}, {97, 248}, {99, 250}, {101, 252}, {103, 254}, {112, 233}, {114, 235},
{116, 237}, {118, 239}, {24, 130}, {61, 167}, {60, 166}, {57, 163}, {56, 162},
{25, 131}, {28, 134}, {29, 135}, {88, 194}, {89, 195}, {92, 198}, {93, 199},
{66, 217}, {70, 221}, {98, 249}, {102, 253}, {113, 234}, {117, 238}, {26, 132},
{59, 165}, {58, 164}, {27, 133}, {90, 196}, {91, 197}, {68, 219}, {100, 251},
{115, 236}, {64, 228}, {67, 231}, {66, 230}, {65, 229}, {72, 236}, {73, 237},
{74, 238}, {75, 239}, {80, 244}, {81, 245}, {82, 246}, {83, 247}, {88, 252},
{89, 253}, {90, 254}, {91, 255}, {127, 216}, {32, 136}, {55, 159}, {54, 158},
{53, 157}, {52, 156}, {51, 155}, {50, 154}, {49, 153}, {48, 152}, {33, 137},
{34, 138}, {35, 139}, {36, 140}, {37, 141}, {38, 142}, {39, 143}, {96, 200},
{97, 201}, {98, 202}, {99, 203}, {100, 204}, {101, 205}, {102, 206}, {103, 207},
{73, 224}, {75, 226}, {77, 228}, {79, 230}, {89, 240}, {91, 242}, {93, 244},
{95, 246}, {122, 211}, {124, 213}, {126, 215}, {32, 138}, {53, 159}, {52, 158},
{49, 155}, {48, 154}, {33, 139}, {36, 142}, {37, 143}, {96, 202}, {97, 203},
{100, 206}, {101, 207}, {74, 225}, {78, 229}, {90, 241}, {94, 245}, {125, 214},
{68, 232}, {69, 233}, {70, 234}, {71, 235}, {84, 248}, {85, 249}, {86, 250},
{87, 251}, {34, 140}, {51, 157}, {50, 156}, {35, 141}, {98, 204}, {99, 205},
{76, 227}, {92, 243}, {123, 212}, {38, 144}, {47, 153}, {46, 152}, {39, 145},
{102, 208}, {103, 209}, {80, 231}, {88, 239}, {40, 144}, {47, 151}, {46, 150},
{45, 149}, {44, 148}, {43, 147}, {42, 146}, {41, 145}, {104, 208}, {105, 209},
{81, 232}, {83, 234}, {85, 236}, {87, 238}, {40, 146}, {45, 151}, {44, 150},
{41, 147}, {104, 210}, {82, 233}, {86, 237}, {76, 240}, {77, 241}, {78, 242},
{79, 243}, {42, 148}, {43, 149}, {84, 235}, {1, 210}, {60, 224}, {63, 227}, {62,
226}, {61, 225}, {48, 212}, {59, 223}, {58, 222}, {57, 221}, {56, 220}, {51,
215}, {50, 214}, {49, 213}, {64, 168}, {70, 174}, {69, 173}, {68, 172}, {67,
171}, {66, 170}, {65, 169}, {71, 175}, {80, 184}, {81, 185}, {82, 186}, {83,
187}, {84, 188}, {85, 189}, {86, 190}, {87, 191}, {61, 212}, {63, 214}, {64,
170}, {69, 175}, {68, 174}, {65, 171}, {80, 186}, {81, 187}, {84, 190}, {85,
191}, {62, 213}, {52, 216}, {55, 219}, {54, 218}, {53, 217}, {66, 172}, {67,
173}, {82, 188}, {83, 189}, {60, 211}, {70, 176}, {71, 177}, {78, 184}, {79,
185}, {72, 176}, {73, 177}, {74, 178}, {75, 179}, {76, 180}, {77, 181}, {78,
182}, {79, 183}, {72, 178}, {73, 179}, {76, 182}, {77, 183}, {47, 211}, {74,
180}, {75, 181}, {1, 257}, {59, 315}, {58, 314}, {57, 313}, {56, 312}, {55,
311}, {54, 310}, {53, 309}, {52, 308}, {51, 307}, {50, 306}, {49, 305}, {48,
304}, {47, 303}, {46, 302}, {45, 301}, {44, 300}, {43, 299}, {42, 298}, {41,
297}, {2, 258}, {3, 259}, {4, 260}, {5, 261}, {6, 262}, {7, 263}, {8, 264}, {9,
265}, {10, 266}, {11, 267}, {12, 268}, {13, 269}, {14, 270}, {15, 271}, {16,
272}, {17, 273}, {18, 274}, {19, 275}, {20, 276}, {21, 277}, {22, 278}, {23,
279}, {24, 280}, {25, 281}, {26, 282}, {27, 283}, {28, 284}, {29, 285}, {30,
286}, {31, 287}, {32, 288}, {33, 289}, {34, 290}, {35, 291}, {36, 292}, {37,
293}, {38, 294}, {39, 295}, {40, 296}, {2, 271}, {16, 285}, {18, 287}, {32,
301}, {34, 303}, {1, 270}, {17, 286}, {33, 302}, {3, 272}, {43, 312}, {7, 276},
{11, 280}, {15, 284}, {35, 304}, {39, 308}, {4, 273}, {46, 315}, {44, 313}, {6,
275}, {12, 281}, {14, 283}, {36, 305}, {38, 307}, {5, 274}, {45, 314}, {13,
282}, {37, 306}, {8, 277}, {42, 311}, {10, 279}, {40, 309}, {9, 278}, {41, 310},
{19, 288}, {23, 292}, {27, 296}, {31, 300}, {20, 289}, {22, 291}, {28, 297},
{30, 299}, {21, 290}, {29, 298}, {24, 293}, {26, 295}, {25, 294}, {108, 302},
{109, 303}, {112, 306}, {113, 307}, {116, 310}, {117, 311}, {120, 314}, {121,
315}, {106, 300}, {107, 301}, {114, 308}, {115, 309}, {118, 312}, {119, 313},
{92, 256}, {93, 257}, {94, 258}, {95, 259}, {110, 304}, {111, 305}, {96, 260},
{97, 261}, {98, 262}, {99, 263}, {104, 268}, {105, 269}, {105, 256}, {100, 264},
{101, 265}, {102, 266}, {103, 267}, {135, 256}, {191, 312}, {183, 304}, {175,
296}, {167, 288}, {159, 280}, {151, 272}, {143, 264}, {136, 257}, {190, 311},
{188, 309}, {186, 307}, {184, 305}, {174, 295}, {172, 293}, {170, 291}, {168,
289}, {158, 279}, {156, 277}, {154, 275}, {152, 273}, {138, 259}, {140, 261},
{142, 263}, {137, 258}, {189, 310}, {185, 306}, {173, 294}, {169, 290}, {157,
278}, {153, 274}, {141, 262}, {139, 260}, {187, 308}, {171, 292}, {155, 276},
{144, 265}, {182, 303}, {180, 301}, {178, 299}, {176, 297}, {150, 271}, {148,
269}, {146, 267}, {145, 266}, {181, 302}, {177, 298}, {149, 270}, {147, 268},
{179, 300}, {167, 256}, {191, 280}, {183, 272}, {175, 264}, {168, 257}, {190,
279}, {188, 277}, {186, 275}, {184, 273}, {174, 263}, {172, 261}, {170, 259},
{169, 258}, {189, 278}, {185, 274}, {173, 262}, {171, 260}, {187, 276}, {160,
281}, {182, 271}, {180, 269}, {178, 267}, {176, 265}, {166, 287}, {164, 285},
{162, 283}, {161, 282}, {181, 270}, {177, 266}, {165, 286}, {163, 284}, {179,
268}, {192, 281}, {198, 287}, {196, 285}, {194, 283}, {193, 282}, {197, 286},
{195, 284}, {199, 288}, {207, 296}, {200, 289}, {206, 295}, {204, 293}, {202,
291}, {201, 290}, {205, 294}, {203, 292}, {192, 313}, {210, 299}, {208, 297},
{194, 315}, {193, 314}, {209, 298} }>;
(II) A more general form is to represent the graph as the orbit of {105, 106}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105)(106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210)(211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292,
293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308,
309, 310, 311, 312, 313, 314, 315) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 105)(3, 104)(4, 103)(5, 102)(6, 101)(7, 100)(8, 99)(9, 98)(10, 97)(11,
96)(12, 95)(13, 94)(14, 93)(15, 92)(16, 91)(17, 90)(18, 89)(19, 88)(20, 87)(21,
86)(22, 85)(23, 84)(24, 83)(25, 82)(26, 81)(27, 80)(28, 79)(29, 78)(30, 77)(31,
76)(32, 75)(33, 74)(34, 73)(35, 72)(36, 71)(37, 70)(38, 69)(39, 68)(40, 67)(41,
66)(42, 65)(43, 64)(44, 63)(45, 62)(46, 61)(47, 60)(48, 59)(49, 58)(50, 57)(51,
56)(52, 55)(53, 54)(107, 210)(108, 209)(109, 208)(110, 207)(111, 206)(112,
205)(113, 204)(114, 203)(115, 202)(116, 201)(117, 200)(118, 199)(119, 198)(120,
197)(121, 196)(122, 195)(123, 194)(124, 193)(125, 192)(126, 191)(127, 190)(128,
189)(129, 188)(130, 187)(131, 186)(132, 185)(133, 184)(134, 183)(135, 182)(136,
181)(137, 180)(138, 179)(139, 178)(140, 177)(141, 176)(142, 175)(143, 174)(144,
173)(145, 172)(146, 171)(147, 170)(148, 169)(149, 168)(150, 167)(151, 166)(152,
165)(153, 164)(154, 163)(155, 162)(156, 161)(157, 160)(158, 159)(212, 315)(213,
314)(214, 313)(215, 312)(216, 311)(217, 310)(218, 309)(219, 308)(220, 307)(221,
306)(222, 305)(223, 304)(224, 303)(225, 302)(226, 301)(227, 300)(228, 299)(229,
298)(230, 297)(231, 296)(232, 295)(233, 294)(234, 293)(235, 292)(236, 291)(237,
290)(238, 289)(239, 288)(240, 287)(241, 286)(242, 285)(243, 284)(244, 283)(245,
282)(246, 281)(247, 280)(248, 279)(249, 278)(250, 277)(251, 276)(252, 275)(253,
274)(254, 273)(255, 272)(256, 271)(257, 270)(258, 269)(259, 268)(260, 267)(261,
266)(262, 265)(263, 264)
c: (1, 106, 211)(2, 122, 257)(3, 138, 303)(4, 154, 244)(5, 170, 290)(6, 186,
231)(7, 202, 277)(8, 113, 218)(9, 129, 264)(10, 145, 310)(11, 161, 251)(12, 177,
297)(13, 193, 238)(14, 209, 284)(15, 120, 225)(16, 136, 271)(17, 152, 212)(18,
168, 258)(19, 184, 304)(20, 200, 245)(21, 111, 291)(22, 127, 232)(23, 143,
278)(24, 159, 219)(25, 175, 265)(26, 191, 311)(27, 207, 252)(28, 118, 298)(29,
134, 239)(30, 150, 285)(31, 166, 226)(32, 182, 272)(33, 198, 213)(34, 109,
259)(35, 125, 305)(36, 141, 246)(37, 157, 292)(38, 173, 233)(39, 189, 279)(40,
205, 220)(41, 116, 266)(42, 132, 312)(43, 148, 253)(44, 164, 299)(45, 180,
240)(46, 196, 286)(47, 107, 227)(48, 123, 273)(49, 139, 214)(50, 155, 260)(51,
171, 306)(52, 187, 247)(53, 203, 293)(54, 114, 234)(55, 130, 280)(56, 146,
221)(57, 162, 267)(58, 178, 313)(59, 194, 254)(60, 210, 300)(61, 121, 241)(62,
137, 287)(63, 153, 228)(64, 169, 274)(65, 185, 215)(66, 201, 261)(67, 112,
307)(68, 128, 248)(69, 144, 294)(70, 160, 235)(71, 176, 281)(72, 192, 222)(73,
208, 268)(74, 119, 314)(75, 135, 255)(76, 151, 301)(77, 167, 242)(78, 183,
288)(79, 199, 229)(80, 110, 275)(81, 126, 216)(82, 142, 262)(83, 158, 308)(84,
174, 249)(85, 190, 295)(86, 206, 236)(87, 117, 282)(88, 133, 223)(89, 149,
269)(90, 165, 315)(91, 181, 256)(92, 197, 302)(93, 108, 243)(94, 124, 289)(95,
140, 230)(96, 156, 276)(97, 172, 217)(98, 188, 263)(99, 204, 309)(100, 115,
250)(101, 131, 296)(102, 147, 237)(103, 163, 283)(104, 179, 224)(105, 195,
270)
C4[ 315, 9 ]
315
-1 210 257 270 107
-2 258 106 271 108
-3 259 107 272 109
-4 110 260 108 273
-5 111 261 109 274
-6 110 275 112 262
-7 111 276 113 263
-8 264 112 277 114
-9 265 113 278 115
-10 266 114 279 116
-11 267 115 280 117
-12 268 116 281 118
-13 269 117 282 119
-14 270 118 283 120
-15 121 271 119 284
-16 122 272 120 285
-17 121 286 123 273
-18 122 287 124 274
-19 275 123 288 125
-20 276 124 289 126
-21 277 125 290 127
-22 278 126 291 128
-23 279 127 292 129
-24 280 128 293 130
-25 281 129 294 131
-26 132 282 130 295
-27 133 283 131 296
-28 132 297 134 284
-29 133 298 135 285
-30 286 134 299 136
-31 287 135 300 137
-32 288 136 301 138
-33 289 137 302 139
-34 290 138 303 140
-35 291 139 304 141
-36 292 140 305 142
-37 143 293 141 306
-38 144 294 142 307
-39 143 308 145 295
-40 144 309 146 296
-41 297 145 310 147
-42 298 146 311 148
-43 299 147 312 149
-44 300 148 313 150
-45 301 149 314 151
-46 302 150 315 152
-47 211 303 151 153
-48 154 212 304 152
-49 155 213 305 153
-50 154 156 214 306
-51 155 157 215 307
-52 308 156 158 216
-53 309 157 159 217
-54 310 158 160 218
-55 311 159 161 219
-56 220 312 160 162
-57 221 313 161 163
-58 222 314 162 164
-59 165 223 315 163
-60 166 211 224 164
-61 165 167 212 225
-62 166 168 213 226
-63 167 169 214 227
-64 168 170 215 228
-65 169 171 216 229
-66 170 172 217 230
-67 231 171 173 218
-68 232 172 174 219
-69 220 233 173 175
-70 176 221 234 174
-71 177 222 235 175
-72 176 178 223 236
-73 177 179 224 237
-74 178 180 225 238
-75 179 181 226 239
-76 180 182 227 240
-77 181 183 228 241
-78 242 182 184 229
-79 243 183 185 230
-80 231 244 184 186
-81 187 232 245 185
-82 188 233 246 186
-83 187 189 234 247
-84 188 190 235 248
-85 189 191 236 249
-86 190 192 237 250
-87 191 193 238 251
-88 192 194 239 252
-89 253 193 195 240
-90 254 194 196 241
-91 242 255 195 197
-92 198 243 256 196
-93 199 244 257 197
-94 198 200 245 258
-95 199 201 246 259
-96 200 202 247 260
-97 201 203 248 261
-98 202 204 249 262
-99 203 205 250 263
-100 264 204 206 251
-101 265 205 207 252
-102 253 266 206 208
-103 209 254 267 207
-104 210 255 268 208
-105 209 256 269 106
-106 2 300 105 227
-107 1 3 301 228
-108 2 4 302 229
-109 3 5 303 230
-110 231 4 6 304
-111 232 5 7 305
-112 233 6 8 306
-113 234 7 9 307
-114 308 235 8 10
-115 11 309 236 9
-116 12 310 237 10
-117 11 13 311 238
-118 12 14 312 239
-119 13 15 313 240
-120 14 16 314 241
-121 242 15 17 315
-122 243 211 16 18
-123 244 212 17 19
-124 245 213 18 20
-125 246 214 19 21
-126 22 247 215 20
-127 23 248 216 21
-128 22 24 249 217
-129 23 25 250 218
-130 24 26 251 219
-131 220 25 27 252
-132 253 221 26 28
-133 254 222 27 29
-134 255 223 28 30
-135 256 224 29 31
-136 257 225 30 32
-137 33 258 226 31
-138 34 259 227 32
-139 33 35 260 228
-140 34 36 261 229
-141 35 37 262 230
-142 231 36 38 263
-143 264 232 37 39
-144 265 233 38 40
-145 266 234 39 41
-146 267 235 40 42
-147 268 236 41 43
-148 44 269 237 42
-149 45 270 238 43
-150 44 46 271 239
-151 45 47 272 240
-152 46 48 273 241
-153 242 47 49 274
-154 275 243 48 50
-155 276 244 49 51
-156 277 245 50 52
-157 278 246 51 53
-158 279 247 52 54
-159 55 280 248 53
-160 56 281 249 54
-161 55 57 282 250
-162 56 58 283 251
-163 57 59 284 252
-164 253 58 60 285
-165 286 254 59 61
-166 287 255 60 62
-167 288 256 61 63
-168 289 257 62 64
-169 290 258 63 65
-170 66 291 259 64
-171 67 292 260 65
-172 66 68 293 261
-173 67 69 294 262
-174 68 70 295 263
-175 264 69 71 296
-176 297 265 70 72
-177 298 266 71 73
-178 299 267 72 74
-179 300 268 73 75
-180 301 269 74 76
-181 77 302 270 75
-182 78 303 271 76
-183 77 79 304 272
-184 78 80 305 273
-185 79 81 306 274
-186 275 80 82 307
-187 308 276 81 83
-188 309 277 82 84
-189 310 278 83 85
-190 311 279 84 86
-191 312 280 85 87
-192 88 313 281 86
-193 89 314 282 87
-194 88 90 315 283
-195 89 211 91 284
-196 90 212 92 285
-197 286 91 213 93
-198 287 92 214 94
-199 288 93 215 95
-200 289 94 216 96
-201 290 95 217 97
-202 291 96 218 98
-203 99 292 97 219
-204 220 100 293 98
-205 99 221 101 294
-206 100 222 102 295
-207 101 223 103 296
-208 297 102 224 104
-209 298 103 225 105
-210 1 299 104 226
-211 122 47 60 195
-212 123 48 61 196
-213 124 49 62 197
-214 198 125 50 63
-215 199 126 51 64
-216 200 127 52 65
-217 66 201 128 53
-218 67 202 129 54
-219 55 68 203 130
-220 56 69 204 131
-221 132 57 70 205
-222 133 58 71 206
-223 134 59 72 207
-224 135 60 73 208
-225 209 136 61 74
-226 210 137 62 75
-227 138 106 63 76
-228 77 139 107 64
-229 78 140 108 65
-230 66 79 141 109
-231 110 67 80 142
-232 143 111 68 81
-233 144 112 69 82
-234 145 113 70 83
-235 146 114 71 84
-236 147 115 72 85
-237 148 116 73 86
-238 149 117 74 87
-239 88 150 118 75
-240 89 151 119 76
-241 77 90 152 120
-242 121 78 91 153
-243 154 122 79 92
-244 155 123 80 93
-245 156 124 81 94
-246 157 125 82 95
-247 158 126 83 96
-248 159 127 84 97
-249 160 128 85 98
-250 99 161 129 86
-251 100 162 130 87
-252 88 101 163 131
-253 132 89 102 164
-254 165 133 90 103
-255 166 134 91 104
-256 167 135 92 105
-257 1 168 136 93
-258 2 169 137 94
-259 3 170 138 95
-260 4 171 139 96
-261 5 172 140 97
-262 6 173 141 98
-263 99 7 174 142
-264 143 100 8 175
-265 176 144 101 9
-266 177 145 102 10
-267 11 178 146 103
-268 12 179 147 104
-269 13 180 148 105
-270 1 14 181 149
-271 2 15 182 150
-272 3 16 183 151
-273 4 17 184 152
-274 5 18 185 153
-275 154 6 19 186
-276 187 155 7 20
-277 188 156 8 21
-278 22 189 157 9
-279 23 190 158 10
-280 11 24 191 159
-281 12 25 192 160
-282 13 26 193 161
-283 14 27 194 162
-284 15 28 195 163
-285 16 29 196 164
-286 165 17 30 197
-287 198 166 18 31
-288 199 167 19 32
-289 33 200 168 20
-290 34 201 169 21
-291 22 35 202 170
-292 23 36 203 171
-293 24 37 204 172
-294 25 38 205 173
-295 26 39 206 174
-296 27 40 207 175
-297 176 28 41 208
-298 209 177 29 42
-299 210 178 30 43
-300 44 179 106 31
-301 45 180 107 32
-302 33 46 181 108
-303 34 47 182 109
-304 110 35 48 183
-305 111 36 49 184
-306 112 37 50 185
-307 113 38 51 186
-308 187 114 39 52
-309 188 115 40 53
-310 189 116 41 54
-311 55 190 117 42
-312 56 191 118 43
-313 44 57 192 119
-314 45 58 193 120
-315 121 46 59 194
0