[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 320, 4 ]. See Glossary for some
detail.
{4, 4}_ 16, 8 = UG(ATD[320, 164]) = UG(Cmap(640, 1) { 4, 4| 40}_ 80)
= UG(Cmap(640, 2) { 4, 4| 40}_ 80) = MG(Cmap(320, 1) { 4, 4| 40}_ 40) =
MG(Cmap(320, 2) { 4, 4| 40}_ 40)
= PL({4, 4}_ 12, 4[ 40^ 8]) = AT[320, 37]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | 1 39 | 0 | - | - | - | - | - | 0 |
2 | 0 | 1 39 | 0 | - | - | - | - | - |
3 | - | 0 | 1 39 | 0 | - | - | - | - |
4 | - | - | 0 | 1 39 | 0 | - | - | - |
5 | - | - | - | 0 | 1 39 | 0 | - | - |
6 | - | - | - | - | 0 | 1 39 | 0 | - |
7 | - | - | - | - | - | 0 | 1 39 | 24 |
8 | 0 | - | - | - | - | - | 16 | 1 39 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | - | - | 0 | 0 |
2 | 0 | - | 5 | 0 | - | - | - | 5 |
3 | 0 | 35 | - | 0 | 35 | - | - | - |
4 | - | 0 | 0 | - | 0 | 35 | - | - |
5 | - | - | 5 | 0 | - | 0 | 1 | - |
6 | - | - | - | 5 | 0 | - | 6 | 6 |
7 | 0 | - | - | - | 39 | 34 | - | 5 |
8 | 0 | 35 | - | - | - | 34 | 35 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 18 | 0 | - | - | - | - | 0 |
2 | 0 22 | - | - | 0 | - | - | 0 | - |
3 | 0 | - | - | 0 18 | 0 | - | - | - |
4 | - | 0 | 0 22 | - | - | 0 | - | - |
5 | - | - | 0 | - | - | 0 18 | 1 | - |
6 | - | - | - | 0 | 0 22 | - | - | 23 |
7 | - | 0 | - | - | 39 | - | - | 0 22 |
8 | 0 | - | - | - | - | 17 | 0 18 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 1 | - | - | - | - | - | 0 39 |
2 | 0 39 | - | 0 1 | - | - | - | - | - |
3 | - | 0 39 | - | 0 1 | - | - | - | - |
4 | - | - | 0 39 | - | 0 1 | - | - | - |
5 | - | - | - | 0 39 | - | 0 1 | - | - |
6 | - | - | - | - | 0 39 | - | 0 1 | - |
7 | - | - | - | - | - | 0 39 | - | 8 9 |
8 | 0 1 | - | - | - | - | - | 31 32 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | 0 | - | 0 |
2 | 0 | - | 0 | - | 0 | - | 0 | - |
3 | - | 0 | - | 5 | - | 6 | - | 5 |
4 | 0 | - | 35 | - | 0 | - | 1 | - |
5 | - | 0 | - | 0 | - | 6 | - | 6 |
6 | 0 | - | 34 | - | 34 | - | 0 | - |
7 | - | 0 | - | 39 | - | 0 | - | 5 |
8 | 0 | - | 35 | - | 34 | - | 35 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | 0 | 0 | - | - |
2 | 0 | - | 0 | - | - | 1 | 0 | - |
3 | - | 0 | - | 12 | - | - | 1 | 0 |
4 | 0 | - | 28 | - | 39 | - | - | 29 |
5 | 0 | - | - | 1 | - | 1 | - | 29 |
6 | 0 | 39 | - | - | 39 | - | 0 | - |
7 | - | 0 | 39 | - | - | 0 | - | 0 |
8 | - | - | 0 | 11 | 11 | - | 0 | - |