[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 5 ] =
{4,4}_[16,10].
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {2, 3}, {318, 319}, {316, 317}, {314, 315}, {312, 313}, {310,
311}, {308, 309}, {306, 307}, {304, 305}, {302, 303}, {300, 301}, {298, 299},
{296, 297}, {294, 295}, {292, 293}, {290, 291}, {288, 289}, {286, 287}, {284,
285}, {282, 283}, {280, 281}, {278, 279}, {276, 277}, {274, 275}, {272, 273},
{270, 271}, {268, 269}, {266, 267}, {264, 265}, {262, 263}, {260, 261}, {258,
259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247},
{244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232,
233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221},
{218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206,
207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195},
{192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180,
181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169},
{166, 167}, {164, 165}, {162, 163}, {158, 159}, {156, 157}, {154, 155}, {152,
153}, {150, 151}, {148, 149}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77},
{74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61},
{58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {4, 5}, {6, 7}, {8, 9}, {10,
11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26,
27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42,
43}, {44, 45}, {46, 47}, {48, 49}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94,
95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108,
109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121},
{122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134,
135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147},
{1, 2}, {317, 318}, {313, 314}, {309, 310}, {305, 306}, {301, 302}, {297, 298},
{293, 294}, {289, 290}, {285, 286}, {281, 282}, {277, 278}, {273, 274}, {269,
270}, {265, 266}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246},
{241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217,
218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194},
{189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165,
166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {81, 82}, {77, 78}, {73,
74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {5, 6}, {9,
10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41,
42}, {45, 46}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106},
{109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133,
134}, {137, 138}, {141, 142}, {145, 146}, {3, 4}, {315, 316}, {307, 308}, {299,
300}, {291, 292}, {283, 284}, {275, 276}, {267, 268}, {259, 260}, {251, 252},
{243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195,
196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148},
{83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28},
{35, 36}, {43, 44}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124},
{131, 132}, {139, 140}, {7, 8}, {311, 312}, {295, 296}, {279, 280}, {263, 264},
{247, 248}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {151,
152}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120},
{135, 136}, {15, 16}, {303, 304}, {271, 272}, {239, 240}, {207, 208}, {175,
176}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {31, 32}, {287, 288}, {223,
224}, {159, 160}, {95, 96}, {128, 226}, {157, 255}, {156, 254}, {153, 251},
{152, 250}, {149, 247}, {148, 246}, {129, 227}, {132, 230}, {133, 231}, {136,
234}, {137, 235}, {140, 238}, {141, 239}, {144, 242}, {145, 243}, {130, 228},
{155, 253}, {154, 252}, {147, 245}, {131, 229}, {138, 236}, {139, 237}, {146,
244}, {134, 232}, {151, 249}, {150, 248}, {135, 233}, {142, 240}, {143, 241},
{63, 64}, {319, 320}, {191, 192}, {63, 161}, {94, 192}, {95, 193}, {126, 224},
{127, 225}, {1, 161}, {83, 243}, {82, 242}, {81, 241}, {80, 240}, {79, 239},
{78, 238}, {77, 237}, {76, 236}, {75, 235}, {74, 234}, {73, 233}, {72, 232},
{71, 231}, {70, 230}, {69, 229}, {68, 228}, {67, 227}, {66, 226}, {65, 225},
{64, 224}, {2, 162}, {3, 163}, {4, 164}, {5, 165}, {6, 166}, {7, 167}, {8, 168},
{9, 169}, {10, 170}, {11, 171}, {12, 172}, {13, 173}, {14, 174}, {15, 175}, {16,
176}, {17, 177}, {18, 178}, {19, 179}, {20, 180}, {21, 181}, {22, 182}, {23,
183}, {24, 184}, {25, 185}, {26, 186}, {27, 187}, {28, 188}, {29, 189}, {30,
190}, {31, 191}, {84, 244}, {85, 245}, {86, 246}, {87, 247}, {88, 248}, {89,
249}, {90, 250}, {91, 251}, {92, 252}, {93, 253}, {94, 254}, {95, 255}, {1,
160}, {96, 194}, {97, 195}, {100, 198}, {101, 199}, {104, 202}, {105, 203},
{108, 206}, {109, 207}, {112, 210}, {113, 211}, {116, 214}, {117, 215}, {120,
218}, {121, 219}, {124, 222}, {125, 223}, {98, 196}, {99, 197}, {106, 204},
{107, 205}, {114, 212}, {115, 213}, {122, 220}, {123, 221}, {102, 200}, {103,
201}, {118, 216}, {119, 217}, {110, 208}, {111, 209}, {32, 192}, {63, 223}, {62,
222}, {61, 221}, {60, 220}, {59, 219}, {58, 218}, {57, 217}, {56, 216}, {55,
215}, {54, 214}, {53, 213}, {52, 212}, {51, 211}, {50, 210}, {49, 209}, {33,
193}, {34, 194}, {35, 195}, {36, 196}, {37, 197}, {38, 198}, {39, 199}, {40,
200}, {41, 201}, {42, 202}, {43, 203}, {44, 204}, {45, 205}, {46, 206}, {47,
207}, {48, 208}, {64, 162}, {81, 179}, {80, 178}, {77, 175}, {76, 174}, {73,
171}, {72, 170}, {69, 167}, {68, 166}, {65, 163}, {84, 182}, {85, 183}, {88,
186}, {89, 187}, {92, 190}, {93, 191}, {66, 164}, {83, 181}, {82, 180}, {75,
173}, {74, 172}, {67, 165}, {90, 188}, {91, 189}, {70, 168}, {71, 169}, {86,
184}, {87, 185}, {78, 176}, {79, 177}, {127, 128}, {1, 259}, {61, 319}, {60,
318}, {57, 315}, {56, 314}, {53, 311}, {52, 310}, {49, 307}, {48, 306}, {4,
262}, {5, 263}, {8, 266}, {9, 267}, {12, 270}, {13, 271}, {16, 274}, {17, 275},
{20, 278}, {21, 279}, {24, 282}, {25, 283}, {28, 286}, {29, 287}, {32, 290},
{33, 291}, {36, 294}, {37, 295}, {40, 298}, {41, 299}, {44, 302}, {45, 303}, {2,
260}, {59, 317}, {58, 316}, {51, 309}, {50, 308}, {3, 261}, {10, 268}, {11,
269}, {18, 276}, {19, 277}, {26, 284}, {27, 285}, {34, 292}, {35, 293}, {42,
300}, {43, 301}, {6, 264}, {55, 313}, {54, 312}, {7, 265}, {22, 280}, {23, 281},
{38, 296}, {39, 297}, {14, 272}, {15, 273}, {46, 304}, {47, 305}, {30, 288},
{31, 289}, {96, 256}, {97, 257}, {98, 258}, {99, 259}, {100, 260}, {101, 261},
{102, 262}, {103, 263}, {104, 264}, {105, 265}, {106, 266}, {107, 267}, {108,
268}, {109, 269}, {110, 270}, {111, 271}, {112, 272}, {113, 273}, {114, 274},
{115, 275}, {116, 276}, {117, 277}, {118, 278}, {119, 279}, {120, 280}, {121,
281}, {122, 282}, {123, 283}, {124, 284}, {125, 285}, {126, 286}, {127, 287},
{62, 320}, {158, 256}, {159, 257}, {128, 288}, {159, 319}, {158, 318}, {157,
317}, {156, 316}, {155, 315}, {154, 314}, {153, 313}, {152, 312}, {151, 311},
{150, 310}, {149, 309}, {148, 308}, {147, 307}, {129, 289}, {130, 290}, {131,
291}, {132, 292}, {133, 293}, {134, 294}, {135, 295}, {136, 296}, {137, 297},
{138, 298}, {139, 299}, {140, 300}, {141, 301}, {142, 302}, {143, 303}, {144,
304}, {145, 305}, {146, 306}, {160, 258}, {160, 320}, {161, 320}, {255, 256}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160)(161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292,
293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308,
309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 160)(3, 159)(4, 158)(5, 157)(6, 156)(7, 155)(8, 154)(9, 153)(10, 152)(11,
151)(12, 150)(13, 149)(14, 148)(15, 147)(16, 146)(17, 145)(18, 144)(19, 143)(20,
142)(21, 141)(22, 140)(23, 139)(24, 138)(25, 137)(26, 136)(27, 135)(28, 134)(29,
133)(30, 132)(31, 131)(32, 130)(33, 129)(34, 128)(35, 127)(36, 126)(37, 125)(38,
124)(39, 123)(40, 122)(41, 121)(42, 120)(43, 119)(44, 118)(45, 117)(46, 116)(47,
115)(48, 114)(49, 113)(50, 112)(51, 111)(52, 110)(53, 109)(54, 108)(55, 107)(56,
106)(57, 105)(58, 104)(59, 103)(60, 102)(61, 101)(62, 100)(63, 99)(64, 98)(65,
97)(66, 96)(67, 95)(68, 94)(69, 93)(70, 92)(71, 91)(72, 90)(73, 89)(74, 88)(75,
87)(76, 86)(77, 85)(78, 84)(79, 83)(80, 82)(161, 259)(162, 258)(163, 257)(164,
256)(165, 255)(166, 254)(167, 253)(168, 252)(169, 251)(170, 250)(171, 249)(172,
248)(173, 247)(174, 246)(175, 245)(176, 244)(177, 243)(178, 242)(179, 241)(180,
240)(181, 239)(182, 238)(183, 237)(184, 236)(185, 235)(186, 234)(187, 233)(188,
232)(189, 231)(190, 230)(191, 229)(192, 228)(193, 227)(194, 226)(195, 225)(196,
224)(197, 223)(198, 222)(199, 221)(200, 220)(201, 219)(202, 218)(203, 217)(204,
216)(205, 215)(206, 214)(207, 213)(208, 212)(209, 211)(260, 320)(261, 319)(262,
318)(263, 317)(264, 316)(265, 315)(266, 314)(267, 313)(268, 312)(269, 311)(270,
310)(271, 309)(272, 308)(273, 307)(274, 306)(275, 305)(276, 304)(277, 303)(278,
302)(279, 301)(280, 300)(281, 299)(282, 298)(283, 297)(284, 296)(285, 295)(286,
294)(287, 293)(288, 292)(289, 291)
c: (2, 259)(3, 99)(4, 197)(5, 37)(6, 295)(7, 135)(8, 233)(9, 73)(10, 171)(12,
269)(13, 109)(14, 207)(15, 47)(16, 305)(17, 145)(18, 243)(19, 83)(20, 181)(22,
279)(23, 119)(24, 217)(25, 57)(26, 315)(27, 155)(28, 253)(29, 93)(30, 191)(32,
289)(33, 129)(34, 227)(35, 67)(36, 165)(38, 263)(39, 103)(40, 201)(42, 299)(43,
139)(44, 237)(45, 77)(46, 175)(48, 273)(49, 113)(50, 211)(52, 309)(53, 149)(54,
247)(55, 87)(56, 185)(58, 283)(59, 123)(60, 221)(62, 319)(63, 159)(64, 257)(65,
97)(66, 195)(68, 293)(69, 133)(70, 231)(72, 169)(74, 267)(75, 107)(76, 205)(78,
303)(79, 143)(80, 241)(82, 179)(84, 277)(85, 117)(86, 215)(88, 313)(89, 153)(90,
251)(92, 189)(94, 287)(95, 127)(96, 225)(98, 163)(100, 261)(102, 199)(104,
297)(105, 137)(106, 235)(108, 173)(110, 271)(112, 209)(114, 307)(115, 147)(116,
245)(118, 183)(120, 281)(122, 219)(124, 317)(125, 157)(126, 255)(128, 193)(130,
291)(132, 229)(134, 167)(136, 265)(138, 203)(140, 301)(142, 239)(144, 177)(146,
275)(148, 213)(150, 311)(152, 249)(154, 187)(156, 285)(158, 223)(160, 161)(162,
258)(164, 196)(166, 294)(168, 232)(172, 268)(174, 206)(176, 304)(178, 242)(182,
278)(184, 216)(186, 314)(188, 252)(192, 288)(194, 226)(198, 262)(202, 298)(204,
236)(208, 272)(212, 308)(214, 246)(218, 282)(222, 318)(224, 256)(228, 292)(234,
266)(238, 302)(244, 276)(248, 312)(254, 286)(264, 296)(274, 306)(284, 316)
C4[ 320, 5 ]
320
-1 2 160 259 161
-2 1 3 260 162
-3 2 4 261 163
-4 3 5 262 164
-5 165 4 6 263
-6 264 166 5 7
-7 265 167 6 8
-8 266 168 7 9
-9 267 169 8 10
-10 11 268 170 9
-11 12 269 171 10
-12 11 13 270 172
-13 12 14 271 173
-14 13 15 272 174
-15 14 16 273 175
-16 176 15 17 274
-17 275 177 16 18
-18 276 178 17 19
-19 277 179 18 20
-20 278 180 19 21
-21 22 279 181 20
-22 23 280 182 21
-23 22 24 281 183
-24 23 25 282 184
-25 24 26 283 185
-26 25 27 284 186
-27 187 26 28 285
-28 286 188 27 29
-29 287 189 28 30
-30 288 190 29 31
-31 289 191 30 32
-32 33 290 192 31
-33 34 291 193 32
-34 33 35 292 194
-35 34 36 293 195
-36 35 37 294 196
-37 36 38 295 197
-38 198 37 39 296
-39 297 199 38 40
-40 298 200 39 41
-41 299 201 40 42
-42 300 202 41 43
-43 44 301 203 42
-44 45 302 204 43
-45 44 46 303 205
-46 45 47 304 206
-47 46 48 305 207
-48 47 49 306 208
-49 209 48 50 307
-50 308 210 49 51
-51 309 211 50 52
-52 310 212 51 53
-53 311 213 52 54
-54 55 312 214 53
-55 56 313 215 54
-56 55 57 314 216
-57 56 58 315 217
-58 57 59 316 218
-59 58 60 317 219
-60 220 59 61 318
-61 319 221 60 62
-62 320 222 61 63
-63 223 62 161 64
-64 224 63 162 65
-65 66 225 64 163
-66 67 226 65 164
-67 66 165 68 227
-68 67 166 69 228
-69 68 167 70 229
-70 69 168 71 230
-71 231 70 169 72
-72 232 71 170 73
-73 233 72 171 74
-74 234 73 172 75
-75 235 74 173 76
-76 77 236 75 174
-77 78 237 76 175
-78 77 176 79 238
-79 78 177 80 239
-80 79 178 81 240
-81 80 179 82 241
-82 242 81 180 83
-83 243 82 181 84
-84 244 83 182 85
-85 245 84 183 86
-86 246 85 184 87
-87 88 247 86 185
-88 89 248 87 186
-89 88 187 90 249
-90 89 188 91 250
-91 90 189 92 251
-92 91 190 93 252
-93 253 92 191 94
-94 254 93 192 95
-95 255 94 193 96
-96 256 95 194 97
-97 257 96 195 98
-98 99 258 97 196
-99 100 259 98 197
-100 99 198 101 260
-101 100 199 102 261
-102 101 200 103 262
-103 102 201 104 263
-104 264 103 202 105
-105 265 104 203 106
-106 266 105 204 107
-107 267 106 205 108
-108 268 107 206 109
-109 110 269 108 207
-110 111 270 109 208
-111 110 209 112 271
-112 111 210 113 272
-113 112 211 114 273
-114 113 212 115 274
-115 275 114 213 116
-116 276 115 214 117
-117 277 116 215 118
-118 278 117 216 119
-119 279 118 217 120
-120 121 280 119 218
-121 122 281 120 219
-122 121 220 123 282
-123 122 221 124 283
-124 123 222 125 284
-125 124 223 126 285
-126 286 125 224 127
-127 287 126 225 128
-128 288 127 226 129
-129 289 128 227 130
-130 290 129 228 131
-131 132 291 130 229
-132 133 292 131 230
-133 132 231 134 293
-134 133 232 135 294
-135 134 233 136 295
-136 135 234 137 296
-137 297 136 235 138
-138 298 137 236 139
-139 299 138 237 140
-140 300 139 238 141
-141 301 140 239 142
-142 143 302 141 240
-143 144 303 142 241
-144 143 242 145 304
-145 144 243 146 305
-146 145 244 147 306
-147 146 245 148 307
-148 308 147 246 149
-149 309 148 247 150
-150 310 149 248 151
-151 311 150 249 152
-152 312 151 250 153
-153 154 313 152 251
-154 155 314 153 252
-155 154 253 156 315
-156 155 254 157 316
-157 156 255 158 317
-158 157 256 159 318
-159 319 158 257 160
-160 1 320 159 258
-161 1 320 63 162
-162 2 161 64 163
-163 3 162 65 164
-164 66 165 4 163
-165 67 166 5 164
-166 165 68 167 6
-167 166 69 168 7
-168 167 70 169 8
-169 168 71 170 9
-170 169 72 171 10
-171 11 170 73 172
-172 12 171 74 173
-173 13 172 75 174
-174 14 173 76 175
-175 77 176 15 174
-176 78 177 16 175
-177 176 79 178 17
-178 177 80 179 18
-179 178 81 180 19
-180 179 82 181 20
-181 180 83 182 21
-182 22 181 84 183
-183 23 182 85 184
-184 24 183 86 185
-185 25 184 87 186
-186 88 187 26 185
-187 89 188 27 186
-188 187 90 189 28
-189 188 91 190 29
-190 189 92 191 30
-191 190 93 192 31
-192 191 94 193 32
-193 33 192 95 194
-194 34 193 96 195
-195 35 194 97 196
-196 36 195 98 197
-197 99 198 37 196
-198 100 199 38 197
-199 198 101 200 39
-200 199 102 201 40
-201 200 103 202 41
-202 201 104 203 42
-203 202 105 204 43
-204 44 203 106 205
-205 45 204 107 206
-206 46 205 108 207
-207 47 206 109 208
-208 110 209 48 207
-209 111 210 49 208
-210 209 112 211 50
-211 210 113 212 51
-212 211 114 213 52
-213 212 115 214 53
-214 213 116 215 54
-215 55 214 117 216
-216 56 215 118 217
-217 57 216 119 218
-218 58 217 120 219
-219 121 220 59 218
-220 122 221 60 219
-221 220 123 222 61
-222 221 124 223 62
-223 222 125 224 63
-224 223 126 225 64
-225 224 127 226 65
-226 66 225 128 227
-227 67 226 129 228
-228 68 227 130 229
-229 69 228 131 230
-230 132 231 70 229
-231 133 232 71 230
-232 231 134 233 72
-233 232 135 234 73
-234 233 136 235 74
-235 234 137 236 75
-236 235 138 237 76
-237 77 236 139 238
-238 78 237 140 239
-239 79 238 141 240
-240 80 239 142 241
-241 143 242 81 240
-242 144 243 82 241
-243 242 145 244 83
-244 243 146 245 84
-245 244 147 246 85
-246 245 148 247 86
-247 246 149 248 87
-248 88 247 150 249
-249 89 248 151 250
-250 90 249 152 251
-251 91 250 153 252
-252 154 253 92 251
-253 155 254 93 252
-254 253 156 255 94
-255 254 157 256 95
-256 255 158 257 96
-257 256 159 258 97
-258 257 160 259 98
-259 99 1 258 260
-260 100 2 259 261
-261 101 3 260 262
-262 102 4 261 263
-263 264 103 5 262
-264 265 104 6 263
-265 264 266 105 7
-266 265 267 106 8
-267 266 268 107 9
-268 267 269 108 10
-269 11 268 270 109
-270 110 12 269 271
-271 111 13 270 272
-272 112 14 271 273
-273 113 15 272 274
-274 275 114 16 273
-275 276 115 17 274
-276 275 277 116 18
-277 276 278 117 19
-278 277 279 118 20
-279 278 280 119 21
-280 22 279 281 120
-281 121 23 280 282
-282 122 24 281 283
-283 123 25 282 284
-284 124 26 283 285
-285 286 125 27 284
-286 287 126 28 285
-287 286 288 127 29
-288 287 289 128 30
-289 288 290 129 31
-290 289 291 130 32
-291 33 290 292 131
-292 132 34 291 293
-293 133 35 292 294
-294 134 36 293 295
-295 135 37 294 296
-296 297 136 38 295
-297 298 137 39 296
-298 297 299 138 40
-299 298 300 139 41
-300 299 301 140 42
-301 300 302 141 43
-302 44 301 303 142
-303 143 45 302 304
-304 144 46 303 305
-305 145 47 304 306
-306 146 48 305 307
-307 308 147 49 306
-308 309 148 50 307
-309 308 310 149 51
-310 309 311 150 52
-311 310 312 151 53
-312 311 313 152 54
-313 55 312 314 153
-314 154 56 313 315
-315 155 57 314 316
-316 156 58 315 317
-317 157 59 316 318
-318 319 158 60 317
-319 320 159 61 318
-320 319 160 62 161
0