C4graphConstructions for C4[ 320, 10 ] = {4,4}_<42,38>

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 320, 10 ]. See Glossary for some detail.

{4, 4}_< 42, 38> = MPS( 80, 8; 1) = MPS( 80, 8; 3)

      = PS( 4,160; 39) = PS( 4,160; 41) = MPS( 4,160; 1)

      = MPS( 4,160; 79) = R_160( 2, 81) = R_160(158, 81)

      = R_160( 78, 1) = R_160( 82, 1) = PL(MC3( 4, 40, 1, 21, 21, 18, 1), [4^40, 80^2])

      = PL(MC3( 4, 40, 1, 21, 21, 38, 1), [4^40, 80^2]) = PL(MC3( 8, 20, 1, 11, 11, 18, 1), [4^40, 80^2]) = PL(MC3( 10, 16, 1, 9, 9, 6, 1), [4^40, 80^2])

      = PL(MC3( 10, 16, 1, 9, 9, 14, 1), [4^40, 80^2]) = PL(MC3( 20, 8, 1, 5, 5, 2, 1), [4^40, 80^2]) = PL(MC3( 20, 8, 1, 5, 5, 6, 1), [4^40, 80^2])

      = PL(MBr( 2, 80; 39)) = PL(BC_80({ 0, 40 }, { 1, 39 }) = UG(ATD[320, 79])

      = UG(ATD[320, 80]) = UG(ATD[320, 81]) = MG(Rmap(320,124) { 8,160| 2}_160)

      = DG(Rmap(320,124) { 8,160| 2}_160) = MG(Rmap(320,125) { 8,160| 4}_160) = DG(Rmap(320,125) { 8,160| 4}_160)

      = DG(Rmap(320,126) {160, 8| 2}_160) = DG(Rmap(320,127) {160, 8| 4}_160) = BGCG(W( 40, 2); K2;{5, 6})

      = AT[320, 73]

Cyclic coverings

mod 160:
12
1 1 159 0 78
2 0 82 1 159

mod 160:
12
1 1 159 0 2
2 0 158 79 81