C4graphConstructions for C4[ 320, 39 ] = PL(MSY(4,40,19,0))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 320, 39 ]. See Glossary for some detail.

PL(MSY( 4, 40, 19, 0)) = PL(MSY( 4, 40, 21, 0)) = PL(MC3( 4, 40, 1, 39, 19, 0, 1), [4^40, 40^4])

      = PL(MC3( 4, 40, 1, 39, 21, 0, 1), [4^40, 40^4]) = PL(KE_ 40( 1, 21, 2, 21, 1), [4^40, 40^4]) = PL(Curtain_ 40( 1, 19, 21, 39, 40), [4^40, 40^4])

      = PL(Br( 4, 40; 19)) = PL(ATD[ 40, 11]#DCyc[ 4]) = PL(CS(W( 20, 2)[ 40^ 2], 0))

      = PL(CSI(W( 20, 2)[ 40^ 2], 4)) = BGCG(W( 20, 2), C_ 4, {2', 3'})

Cyclic coverings

mod 40:
12345678
1 - - - - 0 0 1 0 -
2 - - - - 0 19 0 - 0
3 - - - - 19 - 17 0 39
4 - - - - - 37 17 36 39
5 0 0 21 21 - - - - -
6 0 39 0 - 3 - - - -
7 0 - 23 4 23 - - - -
8 - 0 0 1 1 - - - -

mod 40:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 19 0 19 -
3 - - - - - - 0 1 0 1
4 - - - - 0 19 - - 0 19
5 0 39 - - 0 21 - - - -
6 0 39 0 21 - - - - - -
7 - 0 21 0 39 - - - - -
8 - - 0 39 0 21 - - - -

mod 40:
12345678
1 - - - - 0 1 0 39 - -
2 - - - - 22 0 0 0
3 - - - - 20 0 0 38
4 - - - - - - 0 39 18 19
5 0 39 18 20 - - - - -
6 0 1 0 0 - - - - -
7 - 0 0 0 1 - - - -
8 - 0 2 21 22 - - - -

mod 40:
12345678
1 - - - - 0 1 0 - 0
2 - - - - 0 19 0 - 18
3 - - - - - 0 0 39 38
4 - - - - - 0 0 21 20
5 0 39 0 21 - - - - - -
6 0 0 0 0 - - - -
7 - - 0 1 0 19 - - - -
8 0 22 2 20 - - - -

mod 40:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - 1 0 21 22
4 - - - - 39 0 21 20
5 0 0 39 1 - - - -
6 0 0 0 0 - - - -
7 0 38 19 19 - - - -
8 0 38 18 20 - - - -