[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 320, 40 ]. See Glossary for some
detail.
PL(MSY( 4, 40, 19, 20)) = PL(MSY( 4, 40, 21, 20)) = PL(MSY( 20, 8, 3,
4))
= PL(MSY( 20, 8, 5, 4)) = PL(MC3( 4, 40, 1, 19, 21, 20, 1), [8^20, 40^4])
= PL(MC3( 4, 40, 1, 11, 21, 28, 1), [8^20, 40^4])
= PL(MC3( 4, 40, 1, 11, 31, 28, 1), [8^20, 40^4]) = PL(MC3( 20, 8, 1, 3,
5, 4, 1), [8^20, 40^4]) = PL(KE_ 40( 1, 21, 2, 1, 19), [8^20, 40^4])
= PL(Curtain_ 40( 1, 19, 20, 21, 39), [8^20, 40^4]) = PL(MBr( 20, 8; 3)) =
PL(MBr( 4, 40; 19))
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 15 | 0 5 | - | - |
2 | - | - | - | - | 0 15 | - | - | 0 5 |
3 | - | - | - | - | - | - | 0 15 | 0 5 |
4 | - | - | - | - | - | 1 36 | 0 15 | - |
5 | 0 25 | 0 25 | - | - | - | - | - | - |
6 | 0 35 | - | - | 4 39 | - | - | - | - |
7 | - | - | 0 25 | 0 25 | - | - | - | - |
8 | - | 0 35 | 0 35 | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | 0 1 | - | - |
2 | - | - | - | - | - | 0 19 | 0 19 | - |
3 | - | - | - | - | - | - | 0 1 | 0 39 |
4 | - | - | - | - | 0 19 | - | - | 19 38 |
5 | 0 39 | - | - | 0 21 | - | - | - | - |
6 | 0 39 | 0 21 | - | - | - | - | - | - |
7 | - | 0 21 | 0 39 | - | - | - | - | - |
8 | - | - | 0 1 | 2 21 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | 0 | - | 0 |
2 | - | - | - | - | 0 19 | 0 | - | 18 |
3 | - | - | - | - | - | 0 | 0 19 | 38 |
4 | - | - | - | - | - | 0 | 0 1 | 20 |
5 | 0 39 | 0 21 | - | - | - | - | - | - |
6 | 0 | 0 | 0 | 0 | - | - | - | - |
7 | - | - | 0 21 | 0 39 | - | - | - | - |
8 | 0 | 22 | 2 | 20 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | 0 | 0 | 22 | 22 |
3 | - | - | - | - | 1 | 0 | 21 | 2 |
4 | - | - | - | - | 19 | 0 | 21 | 20 |
5 | 0 | 0 | 39 | 21 | - | - | - | - |
6 | 0 | 0 | 0 | 0 | - | - | - | - |
7 | 0 | 18 | 19 | 19 | - | - | - | - |
8 | 0 | 18 | 38 | 20 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | 0 39 | - | - |
2 | - | - | - | - | 22 | 0 | 0 | 0 |
3 | - | - | - | - | 20 | 0 | 0 | 38 |
4 | - | - | - | - | - | - | 0 19 | 18 39 |
5 | 0 39 | 18 | 20 | - | - | - | - | - |
6 | 0 1 | 0 | 0 | - | - | - | - | - |
7 | - | 0 | 0 | 0 21 | - | - | - | - |
8 | - | 0 | 2 | 1 22 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | 0 | 0 | 1 | 11 |
3 | - | - | - | - | 21 | 31 | 1 | 11 |
4 | - | - | - | - | 21 | 31 | 12 | 12 |
5 | 0 | 0 | 19 | 19 | - | - | - | - |
6 | 0 | 0 | 9 | 9 | - | - | - | - |
7 | 0 | 39 | 39 | 28 | - | - | - | - |
8 | 0 | 29 | 29 | 28 | - | - | - | - |