C4graphGraph forms for C4 [ 320, 64 ] = PL(LoPr_40(5,8,10,8,15),[8^20,10^16])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 320, 64 ] = PL(LoPr_40(5,8,10,8,15),[8^20,10^16]).

(I) Following is a form readable by MAGMA:

g:=Graph<320|{ {160, 174}, {133, 164}, {156, 189}, {155, 186}, {137, 168}, {138, 174}, {139, 173}, {142, 168}, {144, 186}, {129, 173}, {145, 190}, {152, 183}, {146, 189}, {132, 181}, {137, 186}, {139, 191}, {144, 164}, {131, 181}, {146, 165}, {156, 165}, {132, 190}, {159, 165}, {140, 183}, {154, 165}, {155, 164}, {159, 221}, {160, 226}, {131, 199}, {141, 200}, {152, 221}, {138, 192}, {137, 196}, {160, 238}, {143, 223}, {153, 200}, {128, 210}, {141, 216}, {158, 200}, {128, 215}, {134, 222}, {145, 201}, {141, 213}, {132, 222}, {152, 194}, {153, 194}, {158, 194}, {141, 211}, {140, 211}, {157, 194}, {147, 243}, {142, 239}, {133, 225}, {132, 225}, {134, 239}, {129, 234}, {154, 247}, {142, 224}, {157, 242}, {129, 240}, {154, 235}, {159, 237}, {147, 224}, {133, 243}, {157, 235}, {148, 226}, {142, 248}, {147, 228}, {148, 238}, {152, 226}, {147, 239}, {143, 241}, {157, 226}, {34, 162}, {61, 189}, {52, 180}, {97, 225}, {40, 169}, {42, 171}, {105, 232}, {107, 234}, {114, 240}, {105, 237}, {80, 213}, {57, 191}, {32, 167}, {118, 241}, {105, 238}, {35, 171}, {69, 205}, {65, 201}, {43, 163}, {94, 215}, {85, 223}, {94, 212}, {68, 207}, {95, 212}, {111, 227}, {127, 243}, {126, 242}, {109, 224}, {75, 197}, {105, 231}, {76, 195}, {119, 248}, {41, 184}, {32, 178}, {119, 229}, {97, 243}, {118, 229}, {78, 218}, {88, 204}, {104, 252}, {42, 191}, {127, 234}, {42, 188}, {109, 251}, {86, 193}, {120, 239}, {65, 217}, {114, 234}, {76, 212}, {82, 202}, {58, 163}, {34, 185}, {127, 228}, {75, 208}, {68, 216}, {69, 217}, {75, 215}, {95, 195}, {32, 189}, {126, 227}, {53, 168}, {65, 223}, {78, 208}, {51, 172}, {75, 212}, {25, 185}, {8, 170}, {17, 179}, {9, 170}, {71, 228}, {66, 230}, {4, 161}, {23, 178}, {21, 179}, {120, 222}, {90, 252}, {106, 204}, {6, 161}, {111, 200}, {107, 204}, {20, 188}, {118, 222}, {72, 224}, {70, 238}, {31, 183}, {107, 195}, {3, 170}, {22, 188}, {67, 233}, {29, 183}, {2, 169}, {87, 252}, {92, 247}, {90, 247}, {91, 246}, {66, 236}, {111, 193}, {70, 232}, {101, 202}, {9, 185}, {23, 167}, {86, 230}, {1, 176}, {116, 197}, {71, 246}, {70, 247}, {19, 162}, {3, 178}, {107, 218}, {2, 176}, {66, 240}, {26, 168}, {77, 255}, {85, 231}, {18, 161}, {72, 251}, {4, 176}, {7, 179}, {26, 175}, {86, 227}, {6, 176}, {99, 213}, {5, 178}, {112, 199}, {111, 216}, {14, 185}, {92, 235}, {85, 237}, {113, 201}, {18, 171}, {9, 179}, {27, 161}, {104, 210}, {25, 162}, {123, 192}, {108, 215}, {4, 184}, {127, 195}, {1, 188}, {22, 171}, {17, 175}, {28, 162}, {87, 233}, {108, 210}, {21, 170}, {67, 252}, {91, 228}, {94, 225}, {5, 197}, {57, 249}, {29, 221}, {12, 204}, {109, 173}, {40, 233}, {98, 163}, {125, 191}, {28, 223}, {55, 244}, {2, 198}, {30, 218}, {104, 172}, {11, 206}, {112, 181}, {55, 242}, {16, 214}, {29, 219}, {1, 198}, {43, 236}, {12, 203}, {7, 207}, {118, 190}, {61, 245}, {58, 242}, {110, 166}, {15, 198}, {46, 231}, {5, 206}, {1, 205}, {56, 244}, {36, 232}, {31, 211}, {10, 198}, {7, 203}, {99, 175}, {106, 166}, {3, 206}, {30, 208}, {20, 219}, {113, 190}, {41, 230}, {125, 173}, {7, 214}, {40, 249}, {106, 187}, {43, 249}, {15, 220}, {119, 164}, {44, 255}, {98, 182}, {101, 177}, {5, 208}, {123, 174}, {57, 236}, {10, 220}, {41, 255}, {12, 218}, {110, 184}, {29, 202}, {35, 251}, {116, 172}, {20, 205}, {58, 227}, {12, 214}, {61, 231}, {46, 245}, {54, 237}, {33, 253}, {55, 235}, {40, 244}, {104, 180}, {11, 214}, {41, 244}, {16, 206}, {56, 230}, {55, 233}, {36, 250}, {20, 202}, {17, 207}, {33, 254}, {73, 169}, {48, 209}, {71, 166}, {70, 167}, {50, 211}, {91, 186}, {26, 248}, {37, 199}, {50, 209}, {82, 177}, {88, 187}, {18, 246}, {63, 219}, {36, 192}, {26, 254}, {85, 177}, {24, 253}, {24, 254}, {52, 210}, {45, 203}, {35, 196}, {50, 213}, {13, 229}, {52, 220}, {18, 251}, {38, 207}, {19, 250}, {39, 205}, {92, 182}, {14, 229}, {54, 221}, {48, 219}, {27, 240}, {94, 181}, {37, 201}, {45, 193}, {74, 166}, {79, 163}, {27, 246}, {28, 241}, {86, 187}, {89, 180}, {63, 209}, {17, 254}, {13, 253}, {65, 177}, {89, 169}, {53, 196}, {8, 250}, {35, 209}, {74, 184}, {51, 192}, {52, 199}, {8, 253}, {14, 248}, {51, 197}, {50, 196}, {90, 172}, {27, 236}, {60, 203}, {13, 245}, {3, 250}, {66, 187}, {37, 220}, {79, 182}, {87, 174}, {2, 249}, {19, 232}, {4, 255}, {13, 241}, {37, 217}, {8, 245}, {60, 193}, {73, 180}, {90, 167}, {38, 216}, {39, 217}, {73, 182}, {80, 175}, {9, 267}, {47, 301}, {23, 277}, {6, 261}, {59, 312}, {56, 315}, {44, 296}, {14, 267}, {25, 287}, {16, 279}, {31, 280}, {21, 274}, {34, 298}, {62, 308}, {24, 276}, {39, 299}, {30, 274}, {10, 263}, {22, 280}, {54, 312}, {43, 292}, {45, 316}, {60, 302}, {82, 320}, {23, 260}, {59, 296}, {47, 316}, {11, 287}, {56, 300}, {44, 312}, {21, 257}, {15, 283}, {84, 320}, {6, 275}, {48, 293}, {16, 262}, {59, 300}, {10, 272}, {59, 289}, {34, 313}, {60, 288}, {25, 260}, {62, 291}, {54, 299}, {45, 307}, {58, 292}, {30, 257}, {48, 303}, {39, 312}, {42, 266}, {24, 314}, {98, 320}, {49, 274}, {47, 267}, {53, 273}, {38, 259}, {49, 276}, {11, 301}, {33, 262}, {63, 275}, {36, 265}, {32, 270}, {46, 256}, {62, 273}, {49, 256}, {46, 285}, {61, 270}, {57, 266}, {19, 294}, {62, 267}, {33, 279}, {53, 259}, {31, 296}, {38, 273}, {49, 265}, {28, 294}, {63, 261}, {51, 265}, {44, 272}, {15, 306}, {22, 296}, {47, 273}, {72, 264}, {126, 318}, {110, 302}, {114, 307}, {74, 264}, {120, 314}, {116, 310}, {84, 278}, {88, 282}, {96, 290}, {100, 294}, {99, 288}, {100, 295}, {67, 263}, {81, 277}, {73, 268}, {122, 319}, {93, 280}, {102, 291}, {103, 289}, {117, 307}, {112, 310}, {69, 258}, {72, 271}, {64, 265}, {126, 311}, {121, 304}, {83, 282}, {79, 261}, {103, 300}, {122, 310}, {98, 303}, {99, 302}, {109, 291}, {114, 316}, {89, 278}, {124, 307}, {92, 268}, {123, 299}, {110, 318}, {117, 292}, {64, 274}, {74, 280}, {83, 257}, {102, 308}, {67, 272}, {69, 278}, {76, 287}, {79, 283}, {97, 309}, {93, 264}, {100, 305}, {91, 269}, {96, 311}, {101, 306}, {80, 264}, {125, 293}, {124, 292}, {115, 299}, {124, 293}, {71, 284}, {89, 258}, {83, 271}, {77, 272}, {81, 268}, {68, 282}, {84, 266}, {97, 319}, {80, 271}, {81, 305}, {76, 301}, {82, 305}, {96, 261}, {93, 315}, {123, 285}, {121, 287}, {117, 275}, {95, 313}, {100, 258}, {102, 257}, {121, 286}, {108, 260}, {83, 314}, {119, 286}, {112, 281}, {64, 298}, {115, 281}, {95, 308}, {113, 285}, {120, 276}, {68, 297}, {122, 279}, {116, 281}, {103, 266}, {115, 285}, {77, 290}, {78, 319}, {113, 256}, {88, 297}, {103, 278}, {93, 297}, {122, 270}, {115, 263}, {87, 289}, {106, 284}, {81, 294}, {117, 269}, {64, 313}, {108, 277}, {77, 311}, {78, 309}, {84, 303}, {96, 283}, {102, 282}, {121, 260}, {101, 283}, {125, 259}, {124, 259}, {160, 289}, {150, 277}, {137, 269}, {136, 256}, {138, 258}, {135, 270}, {149, 284}, {146, 281}, {151, 284}, {130, 269}, {135, 279}, {130, 275}, {151, 262}, {146, 263}, {135, 286}, {149, 271}, {150, 268}, {133, 286}, {136, 276}, {155, 262}, {149, 309}, {156, 317}, {129, 291}, {151, 309}, {139, 297}, {150, 306}, {148, 305}, {158, 315}, {128, 295}, {128, 298}, {150, 317}, {130, 302}, {144, 316}, {138, 295}, {156, 306}, {149, 314}, {139, 315}, {134, 308}, {158, 300}, {143, 317}, {140, 318}, {131, 304}, {145, 295}, {153, 303}, {135, 304}, {151, 288}, {136, 319}, {154, 290}, {140, 311}, {155, 288}, {145, 298}, {130, 318}, {153, 293}, {144, 301}, {159, 290}, {131, 317}, {136, 310}, {134, 313}, {143, 304}, {148, 320} }>;

(II) A more general form is to represent the graph as the orbit of {160, 174} under the group generated by the following permutations:

a: (1, 2)(3, 17)(4, 15)(5, 26)(6, 10)(7, 8)(9, 21)(11, 24)(12, 13)(14, 30)(16, 33)(18, 52)(19, 68)(20, 40)(22, 73)(23, 80)(25, 83)(27, 37)(28, 88)(29, 55)(31, 92)(32, 99)(34, 102)(35, 104)(36, 38)(39, 43)(41, 101)(42, 89)(44, 79)(45, 46)(47, 49)(48, 87)(50, 90)(51, 53)(54, 58)(56, 82)(57, 69)(59, 98)(60, 61)(62, 64)(63, 67)(65, 66)(70, 141)(71, 131)(72, 108)(74, 150)(75, 142)(76, 120)(77, 96)(78, 119)(81, 93)(84, 103)(85, 86)(91, 112)(94, 147)(95, 134)(97, 133)(100, 139)(105, 111)(106, 143)(107, 118)(109, 128)(110, 156)(113, 114)(115, 117)(116, 137)(121, 149)(122, 155)(123, 124)(125, 138)(126, 159)(127, 132)(129, 145)(130, 146)(135, 151)(136, 144)(140, 154)(148, 158)(152, 157)(153, 160)(161, 220)(162, 282)(163, 312)(164, 319)(165, 318)(166, 317)(167, 213)(168, 197)(169, 188)(170, 179)(171, 180)(172, 196)(173, 295)(174, 293)(175, 178)(176, 198)(177, 230)(181, 228)(182, 296)(183, 235)(184, 306)(185, 257)(186, 310)(187, 223)(189, 302)(190, 234)(191, 258)(192, 259)(193, 231)(194, 226)(195, 222)(199, 246)(200, 238)(201, 240)(202, 244)(203, 245)(204, 241)(205, 249)(206, 254)(207, 250)(208, 248)(209, 252)(210, 251)(211, 247)(212, 239)(214, 253)(215, 224)(216, 232)(217, 236)(218, 229)(219, 233)(221, 242)(225, 243)(227, 237)(255, 283)(256, 316)(260, 271)(261, 272)(262, 279)(263, 275)(264, 277)(265, 273)(266, 278)(267, 274)(268, 280)(269, 281)(270, 288)(276, 301)(284, 304)(285, 307)(286, 309)(287, 314)(289, 303)(290, 311)(291, 298)(292, 299)(294, 297)(300, 320)(305, 315)(308, 313)
b: (1, 3)(2, 5)(4, 11)(6, 16)(7, 18)(8, 20)(9, 22)(10, 23)(12, 27)(13, 29)(14, 31)(15, 32)(17, 35)(19, 39)(21, 42)(24, 48)(25, 44)(26, 50)(28, 54)(30, 57)(33, 63)(34, 59)(36, 69)(37, 70)(38, 72)(40, 75)(41, 76)(43, 78)(45, 71)(46, 82)(47, 74)(49, 84)(51, 89)(52, 90)(53, 80)(55, 94)(56, 95)(58, 97)(60, 91)(61, 101)(62, 93)(64, 103)(65, 105)(66, 107)(67, 108)(68, 109)(73, 116)(77, 121)(79, 122)(81, 115)(83, 125)(86, 127)(87, 128)(88, 129)(92, 112)(96, 135)(98, 136)(99, 137)(100, 123)(102, 139)(106, 114)(110, 144)(111, 147)(113, 148)(117, 151)(118, 152)(119, 140)(120, 153)(124, 149)(126, 133)(130, 155)(131, 154)(132, 157)(134, 158)(141, 142)(143, 159)(145, 160)(146, 150)(161, 214)(162, 312)(163, 319)(164, 318)(165, 317)(166, 316)(167, 220)(168, 213)(169, 197)(170, 188)(171, 179)(172, 180)(173, 282)(174, 295)(175, 196)(176, 206)(177, 231)(178, 198)(181, 235)(182, 310)(183, 229)(184, 301)(185, 296)(186, 302)(187, 234)(189, 306)(190, 226)(191, 257)(192, 258)(193, 228)(194, 222)(195, 230)(199, 247)(200, 239)(201, 238)(202, 245)(203, 246)(204, 240)(205, 250)(207, 251)(208, 249)(209, 254)(210, 252)(211, 248)(212, 244)(215, 233)(216, 224)(217, 232)(218, 236)(219, 253)(221, 241)(223, 237)(225, 242)(227, 243)(255, 287)(256, 320)(259, 271)(260, 272)(261, 279)(262, 275)(263, 277)(264, 273)(265, 278)(266, 274)(267, 280)(268, 281)(269, 288)(270, 283)(276, 303)(284, 307)(285, 305)(286, 311)(289, 298)(290, 304)(291, 297)(292, 309)(293, 314)(294, 299)(300, 313)(308, 315)
c: (3, 7)(4, 10)(5, 12)(6, 15)(8, 17)(13, 26)(18, 37)(19, 38)(22, 39)(23, 45)(25, 47)(27, 52)(28, 53)(31, 54)(32, 60)(34, 62)(35, 65)(36, 68)(41, 67)(42, 69)(43, 73)(46, 80)(48, 82)(49, 83)(50, 85)(51, 88)(56, 87)(57, 89)(58, 92)(61, 99)(63, 101)(64, 102)(66, 104)(70, 111)(71, 112)(72, 113)(74, 115)(75, 107)(81, 124)(86, 90)(91, 131)(93, 123)(94, 127)(100, 125)(105, 141)(106, 116)(108, 114)(109, 145)(110, 146)(117, 150)(118, 142)(121, 144)(122, 151)(126, 154)(128, 129)(130, 156)(132, 147)(135, 155)(136, 149)(137, 143)(138, 139)(140, 159)(148, 153)(158, 160)(161, 220)(162, 273)(163, 182)(164, 286)(165, 318)(166, 281)(167, 193)(168, 241)(169, 249)(170, 179)(171, 217)(172, 187)(173, 295)(174, 315)(175, 245)(176, 198)(177, 209)(178, 203)(180, 236)(181, 228)(183, 221)(184, 263)(185, 267)(186, 304)(188, 205)(189, 302)(190, 224)(191, 258)(192, 297)(194, 226)(195, 212)(196, 223)(197, 204)(199, 246)(200, 238)(201, 251)(202, 219)(206, 214)(207, 250)(208, 218)(210, 240)(211, 237)(213, 231)(215, 234)(216, 232)(222, 239)(225, 243)(227, 247)(229, 248)(230, 252)(233, 244)(235, 242)(253, 254)(255, 272)(256, 271)(257, 274)(259, 294)(260, 316)(261, 283)(262, 279)(264, 285)(265, 282)(266, 278)(268, 292)(269, 317)(270, 288)(275, 306)(276, 314)(277, 307)(280, 299)(284, 310)(287, 301)(289, 300)(290, 311)(291, 298)(293, 305)(296, 312)(303, 320)(308, 313)(309, 319)
d: (1, 4)(2, 6)(3, 9)(5, 14)(7, 19)(8, 21)(10, 18)(11, 25)(12, 28)(13, 30)(15, 27)(16, 34)(17, 36)(20, 41)(22, 44)(23, 47)(24, 49)(26, 51)(29, 56)(31, 59)(32, 62)(33, 64)(35, 67)(37, 71)(38, 70)(39, 74)(40, 63)(42, 77)(43, 79)(45, 81)(46, 83)(48, 55)(50, 87)(52, 91)(53, 90)(54, 93)(57, 96)(58, 98)(60, 100)(61, 102)(65, 106)(66, 101)(68, 105)(69, 110)(72, 115)(73, 117)(75, 119)(76, 121)(78, 118)(80, 123)(82, 86)(84, 126)(85, 88)(89, 130)(92, 124)(94, 133)(95, 135)(97, 132)(99, 138)(103, 140)(104, 137)(107, 143)(108, 144)(109, 146)(111, 148)(112, 147)(113, 149)(114, 150)(116, 142)(120, 136)(122, 134)(125, 154)(127, 131)(128, 155)(129, 156)(139, 159)(141, 160)(145, 151)(152, 158)(153, 157)(161, 198)(162, 214)(164, 215)(165, 173)(166, 217)(167, 273)(168, 172)(169, 275)(171, 272)(174, 213)(175, 192)(177, 187)(178, 267)(179, 250)(180, 269)(181, 243)(182, 292)(183, 300)(184, 205)(185, 206)(186, 210)(188, 255)(189, 291)(190, 309)(191, 290)(193, 305)(195, 304)(196, 252)(197, 248)(199, 228)(200, 226)(201, 284)(202, 230)(203, 294)(204, 223)(207, 232)(208, 229)(209, 233)(211, 289)(212, 286)(216, 238)(218, 241)(219, 244)(220, 246)(221, 315)(222, 319)(224, 281)(227, 320)(231, 282)(234, 317)(235, 293)(236, 283)(237, 297)(239, 310)(240, 306)(242, 303)(245, 257)(247, 259)(249, 261)(251, 263)(253, 274)(254, 265)(256, 314)(258, 302)(260, 301)(262, 298)(264, 299)(266, 311)(268, 307)(270, 308)(271, 285)(277, 316)(278, 318)(279, 313)(280, 312)(288, 295)
e: (2, 20)(4, 22)(5, 8)(6, 42)(9, 11)(10, 39)(12, 17)(13, 75)(14, 76)(15, 69)(16, 21)(19, 23)(24, 78)(26, 107)(27, 35)(28, 108)(29, 40)(30, 33)(31, 41)(32, 36)(34, 121)(38, 45)(43, 48)(46, 116)(49, 122)(50, 66)(51, 61)(52, 65)(53, 114)(54, 67)(55, 152)(56, 140)(57, 63)(58, 153)(59, 77)(60, 68)(62, 144)(64, 135)(71, 72)(73, 82)(79, 84)(80, 106)(83, 151)(85, 104)(86, 141)(87, 159)(88, 99)(89, 101)(90, 105)(91, 109)(92, 148)(93, 110)(94, 118)(95, 119)(96, 103)(97, 120)(100, 150)(102, 155)(112, 113)(117, 125)(123, 146)(126, 158)(127, 142)(128, 143)(129, 137)(130, 139)(131, 145)(133, 134)(138, 156)(154, 160)(161, 171)(162, 260)(163, 303)(164, 308)(165, 174)(166, 264)(167, 232)(168, 234)(169, 202)(170, 206)(172, 231)(173, 269)(175, 204)(176, 188)(177, 180)(178, 250)(179, 214)(181, 190)(182, 320)(183, 244)(184, 280)(185, 287)(186, 291)(187, 213)(189, 192)(191, 275)(193, 216)(194, 242)(195, 248)(196, 240)(197, 245)(198, 205)(199, 201)(200, 227)(203, 207)(208, 253)(209, 236)(210, 223)(211, 230)(212, 229)(215, 241)(217, 220)(218, 254)(219, 249)(221, 233)(222, 225)(224, 228)(226, 235)(237, 252)(238, 247)(239, 243)(246, 251)(255, 296)(256, 310)(257, 262)(258, 306)(259, 307)(261, 266)(263, 299)(265, 270)(267, 301)(268, 305)(271, 284)(272, 312)(273, 316)(274, 279)(276, 319)(277, 294)(278, 283)(281, 285)(282, 288)(286, 313)(289, 290)(292, 293)(295, 317)(297, 302)(298, 304)(300, 311)(309, 314)(315, 318)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 320, 64 ]
320
-1 176 198 188 205
-2 176 198 169 249
-3 178 170 206 250
-4 176 255 161 184
-5 178 206 197 208
-6 176 275 161 261
-7 179 203 214 207
-8 253 245 170 250
-9 179 267 170 185
-10 198 220 272 263
-11 287 301 214 206
-12 203 214 204 218
-13 253 245 229 241
-14 267 248 185 229
-15 198 220 283 306
-16 279 214 206 262
-17 254 179 207 175
-18 246 171 161 251
-19 232 162 250 294
-20 188 202 205 219
-21 179 257 170 274
-22 188 280 171 296
-23 167 178 277 260
-24 253 254 276 314
-25 287 260 162 185
-26 254 168 248 175
-27 246 236 161 240
-28 223 162 294 241
-29 221 202 183 219
-30 257 218 208 274
-31 211 280 183 296
-32 167 178 189 270
-33 253 254 279 262
-34 298 313 162 185
-35 209 171 196 251
-36 232 265 192 250
-37 220 199 201 217
-38 259 216 207 273
-39 299 312 205 217
-40 233 244 169 249
-41 244 255 184 230
-42 188 266 191 171
-43 236 292 249 163
-44 255 312 272 296
-45 203 193 316 307
-46 231 245 256 285
-47 267 301 316 273
-48 209 303 293 219
-49 265 276 256 274
-50 209 211 213 196
-51 265 192 172 197
-52 220 199 210 180
-53 168 259 196 273
-54 221 299 312 237
-55 242 233 244 235
-56 244 300 315 230
-57 266 191 236 249
-58 242 292 227 163
-59 289 300 312 296
-60 288 203 302 193
-61 231 189 245 270
-62 308 267 291 273
-63 209 275 261 219
-64 265 298 313 274
-65 177 201 223 217
-66 187 236 240 230
-67 233 272 252 263
-68 297 216 282 207
-69 278 258 205 217
-70 232 167 247 238
-71 166 246 228 284
-72 264 224 271 251
-73 169 180 268 182
-74 264 166 280 184
-75 212 215 197 208
-76 287 212 301 195
-77 255 311 290 272
-78 319 309 218 208
-79 182 261 283 163
-80 264 213 271 175
-81 277 268 294 305
-82 177 320 202 305
-83 257 314 271 282
-84 320 266 278 303
-85 231 177 223 237
-86 187 193 227 230
-87 233 289 174 252
-88 187 297 204 282
-89 278 169 180 258
-90 167 247 172 252
-91 246 269 228 186
-92 235 268 247 182
-93 264 297 280 315
-94 212 181 225 215
-95 308 212 313 195
-96 311 290 261 283
-97 319 243 309 225
-98 320 182 303 163
-99 288 213 302 175
-100 258 294 305 295
-101 177 202 283 306
-102 308 257 291 282
-103 266 278 289 300
-104 210 180 172 252
-105 231 232 237 238
-106 187 166 204 284
-107 234 204 195 218
-108 210 277 215 260
-109 224 291 173 251
-110 166 302 184 318
-111 200 193 216 227
-112 199 310 181 281
-113 190 201 256 285
-114 234 316 240 307
-115 299 281 263 285
-116 310 281 172 197
-117 275 269 292 307
-118 222 190 229 241
-119 286 248 229 164
-120 276 222 314 239
-121 286 287 260 304
-122 319 310 279 270
-123 299 192 174 285
-124 259 292 293 307
-125 191 259 293 173
-126 242 311 227 318
-127 243 234 195 228
-128 210 298 215 295
-129 234 291 173 240
-130 275 269 302 318
-131 199 181 304 317
-132 222 190 181 225
-133 286 243 225 164
-134 308 222 313 239
-135 286 279 270 304
-136 319 276 310 256
-137 168 269 196 186
-138 192 258 174 295
-139 297 191 315 173
-140 211 311 183 318
-141 200 211 213 216
-142 168 224 248 239
-143 223 304 317 241
-144 301 316 164 186
-145 298 190 201 295
-146 165 189 281 263
-147 243 224 228 239
-148 320 226 238 305
-149 309 314 271 284
-150 277 268 306 317
-151 309 288 262 284
-152 221 226 183 194
-153 200 303 194 293
-154 165 235 290 247
-155 288 262 164 186
-156 165 189 306 317
-157 242 235 226 194
-158 200 300 194 315
-159 165 221 290 237
-160 289 226 238 174
-161 4 27 6 18
-162 34 25 28 19
-163 79 58 43 98
-164 133 144 155 119
-165 154 156 146 159
-166 110 71 106 74
-167 23 90 70 32
-168 26 137 53 142
-169 89 2 40 73
-170 3 8 9 21
-171 22 35 18 42
-172 90 104 116 51
-173 125 139 129 109
-174 123 138 160 87
-175 99 80 26 17
-176 1 2 4 6
-177 101 82 85 65
-178 23 3 5 32
-179 17 7 9 21
-180 89 104 73 52
-181 132 112 94 131
-182 79 92 73 98
-183 29 140 31 152
-184 110 4 41 74
-185 34 14 25 9
-186 144 155 91 137
-187 66 88 106 86
-188 22 1 20 42
-189 156 146 61 32
-190 132 145 113 118
-191 57 125 139 42
-192 123 36 138 51
-193 45 111 60 86
-194 157 158 152 153
-195 127 95 107 76
-196 35 137 50 53
-197 5 116 51 75
-198 1 2 15 10
-199 112 37 52 131
-200 111 158 141 153
-201 145 113 37 65
-202 101 82 29 20
-203 12 45 60 7
-204 88 12 106 107
-205 1 69 39 20
-206 11 3 5 16
-207 68 38 17 7
-208 78 5 30 75
-209 35 48 50 63
-210 104 128 52 108
-211 50 140 31 141
-212 94 95 75 76
-213 99 80 50 141
-214 11 12 16 7
-215 94 128 75 108
-216 111 68 38 141
-217 69 37 39 65
-218 12 78 30 107
-219 48 29 63 20
-220 15 37 52 10
-221 159 29 152 54
-222 132 134 118 120
-223 143 28 85 65
-224 147 72 109 142
-225 132 133 94 97
-226 157 148 160 152
-227 111 58 126 86
-228 91 147 71 127
-229 13 14 118 119
-230 66 56 41 86
-231 46 61 105 85
-232 36 70 105 19
-233 55 67 40 87
-234 114 127 107 129
-235 55 154 157 92
-236 66 57 27 43
-237 159 105 85 54
-238 70 148 105 160
-239 134 147 120 142
-240 66 114 27 129
-241 143 13 28 118
-242 55 58 157 126
-243 133 147 127 97
-244 55 56 40 41
-245 13 46 61 8
-246 91 27 71 18
-247 154 90 70 92
-248 14 26 119 142
-249 2 57 40 43
-250 3 36 8 19
-251 35 72 18 109
-252 67 90 104 87
-253 33 13 24 8
-254 33 24 26 17
-255 44 77 4 41
-256 46 113 136 49
-257 102 83 30 21
-258 89 100 69 138
-259 124 125 38 53
-260 121 23 25 108
-261 79 6 63 96
-262 33 155 16 151
-263 67 146 115 10
-264 80 93 72 74
-265 36 49 51 64
-266 57 103 84 42
-267 14 47 62 9
-268 81 92 73 150
-269 91 137 117 130
-270 122 135 61 32
-271 80 72 83 149
-272 44 77 67 10
-273 47 38 62 53
-274 49 30 64 21
-275 6 117 63 130
-276 24 136 49 120
-277 23 81 150 108
-278 89 69 103 84
-279 33 122 135 16
-280 22 93 74 31
-281 112 146 115 116
-282 88 68 102 83
-283 79 101 15 96
-284 71 149 106 151
-285 46 123 113 115
-286 121 133 135 119
-287 11 121 25 76
-288 99 155 60 151
-289 59 103 160 87
-290 77 154 159 96
-291 102 62 129 109
-292 58 124 117 43
-293 124 48 125 153
-294 100 81 28 19
-295 100 145 138 128
-296 22 44 59 31
-297 88 68 93 139
-298 34 145 128 64
-299 123 115 39 54
-300 56 59 103 158
-301 11 144 47 76
-302 99 110 60 130
-303 48 84 98 153
-304 121 143 135 131
-305 100 81 82 148
-306 101 156 15 150
-307 45 124 114 117
-308 134 102 62 95
-309 78 149 151 97
-310 122 112 136 116
-311 77 126 96 140
-312 44 59 39 54
-313 34 134 95 64
-314 24 83 149 120
-315 56 158 93 139
-316 45 144 47 114
-317 143 156 150 131
-318 110 126 140 130
-319 78 122 136 97
-320 82 148 84 98
0

**************