[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 74 ] =
PL(Curtain_40(1,20,7,18,38),[4^40,80^2]).
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {160, 183}, {149, 183}, {134, 162}, {130, 167}, {156, 185}, {154,
188}, {157, 186}, {159, 184}, {133, 173}, {147, 185}, {156, 183}, {139, 187},
{137, 184}, {136, 187}, {131, 183}, {137, 188}, {128, 182}, {136, 190}, {149,
173}, {155, 162}, {132, 185}, {153, 167}, {140, 205}, {129, 194}, {137, 202},
{151, 210}, {150, 209}, {160, 232}, {134, 202}, {130, 204}, {147, 221}, {136,
198}, {134, 200}, {154, 202}, {157, 205}, {131, 210}, {152, 202}, {155, 200},
{139, 223}, {132, 209}, {153, 204}, {156, 192}, {160, 192}, {128, 226}, {148,
246}, {144, 244}, {138, 239}, {146, 244}, {140, 235}, {133, 237}, {142, 230},
{129, 232}, {132, 237}, {131, 234}, {129, 235}, {133, 238}, {140, 231}, {142,
225}, {146, 226}, {159, 239}, {135, 246}, {158, 239}, {128, 244}, {155, 239},
{146, 230}, {157, 235}, {147, 235}, {154, 226}, {143, 245}, {159, 229}, {151,
237}, {139, 240}, {158, 229}, {150, 237}, {149, 238}, {142, 245}, {158, 226},
{151, 234}, {141, 243}, {150, 232}, {128, 255}, {145, 238}, {104, 232}, {50,
179}, {90, 219}, {42, 168}, {68, 198}, {88, 219}, {38, 163}, {41, 175}, {64,
199}, {119, 240}, {67, 196}, {88, 223}, {36, 172}, {125, 245}, {79, 199}, {124,
245}, {44, 166}, {126, 244}, {71, 205}, {96, 234}, {105, 227}, {107, 225}, {92,
215}, {40, 165}, {67, 206}, {63, 178}, {106, 231}, {95, 209}, {65, 206}, {107,
228}, {89, 201}, {105, 249}, {36, 181}, {118, 231}, {112, 225}, {76, 221}, {37,
180}, {39, 181}, {116, 230}, {59, 168}, {96, 243}, {119, 227}, {58, 175}, {83,
198}, {84, 193}, {85, 192}, {65, 215}, {70, 209}, {103, 255}, {93, 196}, {41,
179}, {124, 230}, {121, 227}, {107, 241}, {61, 166}, {86, 205}, {57, 165}, {62,
162}, {82, 206}, {111, 243}, {81, 204}, {115, 238}, {108, 241}, {109, 240}, {80,
206}, {120, 231}, {1, 161}, {99, 195}, {8, 169}, {21, 180}, {11, 170}, {98,
195}, {79, 236}, {5, 161}, {17, 181}, {14, 171}, {79, 234}, {12, 170}, {97,
199}, {91, 243}, {119, 223}, {117, 221}, {2, 171}, {126, 215}, {73, 224}, {3,
169}, {118, 220}, {98, 200}, {104, 194}, {114, 217}, {125, 214}, {64, 236}, {93,
241}, {4, 169}, {127, 210}, {116, 217}, {73, 228}, {7, 170}, {92, 241}, {66,
236}, {87, 249}, {94, 240}, {110, 192}, {9, 166}, {26, 181}, {102, 201}, {15,
191}, {17, 161}, {1, 176}, {122, 203}, {30, 175}, {27, 170}, {26, 171}, {2,
176}, {113, 195}, {75, 249}, {87, 229}, {3, 176}, {120, 203}, {112, 195}, {100,
215}, {5, 177}, {124, 200}, {66, 246}, {23, 163}, {80, 228}, {87, 227}, {4,
177}, {19, 166}, {99, 214}, {106, 223}, {77, 251}, {106, 220}, {7, 176}, {101,
210}, {12, 180}, {74, 242}, {20, 172}, {78, 246}, {81, 233}, {6, 191}, {11,
177}, {21, 175}, {18, 169}, {73, 242}, {8, 180}, {123, 199}, {89, 229}, {2,
191}, {22, 171}, {81, 236}, {92, 225}, {100, 217}, {1, 191}, {69, 251}, {31,
161}, {103, 217}, {14, 177}, {121, 198}, {72, 247}, {30, 222}, {122, 186}, {4,
197}, {18, 211}, {100, 165}, {23, 213}, {60, 255}, {20, 208}, {99, 167}, {27,
222}, {120, 189}, {60, 249}, {37, 224}, {97, 164}, {3, 197}, {49, 247}, {112,
182}, {121, 190}, {122, 189}, {58, 242}, {118, 190}, {117, 189}, {19, 218}, {59,
242}, {18, 222}, {117, 185}, {116, 184}, {98, 174}, {29, 208}, {48, 253}, {101,
168}, {39, 233}, {47, 224}, {17, 193}, {39, 247}, {21, 196}, {30, 207}, {103,
182}, {7, 213}, {124, 174}, {50, 224}, {47, 253}, {96, 178}, {9, 218}, {36,
247}, {43, 255}, {98, 182}, {16, 197}, {104, 189}, {105, 188}, {3, 213}, {63,
233}, {45, 250}, {127, 168}, {12, 212}, {37, 253}, {23, 207}, {13, 212}, {21,
207}, {125, 167}, {102, 188}, {1, 218}, {126, 165}, {38, 253}, {8, 211}, {8,
212}, {9, 212}, {102, 187}, {31, 193}, {58, 228}, {5, 218}, {123, 164}, {103,
184}, {24, 248}, {28, 252}, {90, 186}, {26, 251}, {37, 196}, {31, 254}, {43,
201}, {78, 172}, {88, 186}, {89, 187}, {25, 250}, {29, 254}, {33, 197}, {90,
190}, {70, 163}, {27, 252}, {67, 164}, {22, 254}, {59, 211}, {53, 221}, {57,
208}, {91, 178}, {20, 254}, {54, 220}, {50, 216}, {51, 216}, {58, 214}, {22,
251}, {64, 173}, {18, 252}, {66, 172}, {44, 194}, {19, 252}, {65, 174}, {32,
207}, {92, 179}, {11, 250}, {47, 222}, {41, 216}, {10, 248}, {65, 179}, {46,
220}, {42, 216}, {38, 213}, {63, 204}, {56, 203}, {29, 233}, {14, 248}, {84,
162}, {91, 173}, {35, 219}, {40, 208}, {34, 219}, {42, 211}, {93, 164}, {55,
203}, {78, 178}, {95, 163}, {5, 248}, {52, 201}, {7, 250}, {80, 174}, {41, 214},
{62, 193}, {61, 194}, {35, 291}, {60, 316}, {43, 299}, {52, 309}, {6, 260}, {59,
313}, {33, 290}, {40, 299}, {4, 256}, {61, 313}, {32, 292}, {57, 316}, {54,
304}, {2, 261}, {71, 320}, {49, 310}, {13, 261}, {24, 272}, {33, 296}, {11,
256}, {42, 289}, {14, 261}, {32, 300}, {12, 257}, {44, 289}, {29, 272}, {10,
260}, {35, 301}, {34, 301}, {45, 290}, {15, 287}, {45, 317}, {33, 305}, {20,
260}, {30, 271}, {34, 307}, {51, 289}, {55, 293}, {48, 292}, {56, 300}, {53,
289}, {54, 291}, {16, 262}, {17, 262}, {62, 294}, {6, 287}, {28, 261}, {27,
257}, {49, 299}, {26, 262}, {53, 297}, {51, 303}, {45, 305}, {46, 307}, {56,
293}, {46, 304}, {15, 272}, {52, 299}, {25, 262}, {19, 307}, {47, 271}, {36,
260}, {32, 256}, {44, 269}, {60, 287}, {13, 297}, {25, 317}, {10, 301}, {22,
305}, {24, 304}, {35, 266}, {9, 291}, {61, 279}, {6, 301}, {57, 274}, {50, 286},
{24, 309}, {13, 291}, {31, 305}, {28, 307}, {55, 280}, {52, 283}, {40, 263},
{48, 256}, {51, 257}, {43, 287}, {16, 293}, {28, 297}, {49, 263}, {56, 270},
{39, 272}, {46, 281}, {16, 296}, {53, 269}, {23, 300}, {34, 281}, {25, 293},
{62, 258}, {54, 266}, {63, 258}, {10, 309}, {15, 304}, {81, 273}, {89, 281},
{111, 302}, {126, 319}, {99, 288}, {114, 310}, {123, 319}, {84, 273}, {125,
312}, {101, 288}, {64, 263}, {127, 312}, {83, 282}, {95, 278}, {70, 268}, {100,
302}, {110, 292}, {74, 257}, {113, 314}, {78, 258}, {68, 265}, {80, 285}, {87,
281}, {77, 258}, {88, 279}, {97, 302}, {75, 283}, {109, 317}, {113, 288}, {66,
273}, {115, 288}, {69, 273}, {110, 315}, {73, 286}, {90, 269}, {94, 265}, {108,
315}, {86, 270}, {85, 268}, {109, 308}, {72, 274}, {76, 279}, {91, 263}, {115,
303}, {114, 302}, {79, 274}, {82, 271}, {111, 306}, {108, 306}, {71, 280}, {82,
306}, {84, 308}, {104, 264}, {121, 280}, {68, 294}, {97, 259}, {105, 266}, {108,
271}, {95, 315}, {71, 290}, {76, 297}, {74, 303}, {38, 320}, {93, 315}, {67,
298}, {94, 308}, {127, 277}, {77, 294}, {68, 296}, {112, 284}, {70, 298}, {102,
266}, {111, 259}, {101, 264}, {83, 317}, {120, 278}, {113, 286}, {123, 276},
{119, 280}, {116, 283}, {114, 285}, {48, 320}, {69, 308}, {85, 292}, {96, 274},
{74, 313}, {77, 318}, {72, 316}, {86, 290}, {76, 313}, {83, 294}, {94, 296},
{122, 268}, {107, 285}, {55, 320}, {75, 316}, {109, 282}, {82, 298}, {110, 278},
{86, 300}, {69, 318}, {118, 269}, {115, 264}, {106, 279}, {117, 264}, {72, 310},
{75, 309}, {85, 298}, {137, 265}, {154, 282}, {150, 276}, {145, 277}, {158,
282}, {152, 284}, {151, 275}, {139, 270}, {136, 270}, {147, 277}, {132, 259},
{131, 267}, {130, 267}, {146, 283}, {153, 275}, {144, 285}, {143, 286}, {157,
268}, {142, 284}, {129, 277}, {135, 275}, {133, 275}, {159, 265}, {138, 284},
{141, 276}, {140, 278}, {149, 267}, {148, 267}, {156, 259}, {134, 295}, {130,
295}, {144, 310}, {152, 318}, {145, 312}, {155, 311}, {148, 314}, {153, 311},
{144, 319}, {135, 311}, {141, 319}, {148, 295}, {138, 318}, {160, 276}, {143,
314}, {143, 312}, {135, 314}, {138, 311}, {145, 303}, {141, 306}, {152, 295}
}>;
(II) A more general form is to represent the graph as the orbit of {160, 183}
under the group generated by the following permutations:
a: (2, 5)(3, 31)(4, 22)(6, 19)(7, 17)(8, 29)(9, 15)(10, 28)(11, 26)(12, 39)(13,
24)(16, 45)(18, 20)(21, 81)(23, 84)(27, 36)(30, 66)(32, 69)(35, 46)(37, 63)(38,
62)(40, 59)(41, 79)(42, 57)(43, 61)(44, 60)(47, 78)(48, 77)(49, 74)(50, 96)(51,
72)(52, 76)(53, 75)(55, 83)(56, 109)(58, 64)(65, 151)(67, 153)(68, 71)(70,
155)(73, 91)(80, 133)(82, 135)(85, 138)(86, 94)(87, 90)(88, 89)(92, 131)(93,
130)(95, 134)(97, 125)(98, 150)(99, 123)(100, 127)(101, 126)(102, 106)(103,
129)(104, 128)(105, 118)(107, 149)(108, 148)(110, 152)(111, 143)(112, 160)(113,
141)(114, 145)(115, 144)(116, 147)(117, 146)(119, 136)(120, 154)(122, 158)(124,
132)(137, 140)(142, 156)(157, 159)(161, 176)(162, 163)(164, 167)(165, 168)(166,
287)(169, 254)(170, 181)(171, 177)(172, 222)(173, 228)(174, 237)(175, 236)(178,
224)(179, 234)(180, 233)(182, 232)(183, 225)(184, 235)(185, 230)(186, 229)(187,
223)(188, 231)(189, 226)(190, 227)(191, 218)(192, 284)(193, 213)(194, 255)(195,
276)(196, 204)(197, 305)(198, 280)(199, 214)(200, 209)(201, 279)(202, 278)(203,
282)(205, 265)(206, 275)(207, 273)(208, 211)(210, 215)(212, 272)(216, 274)(217,
277)(219, 281)(220, 266)(221, 283)(238, 285)(239, 268)(240, 270)(241, 267)(242,
263)(243, 286)(244, 264)(245, 259)(246, 271)(247, 257)(248, 261)(249, 269)(250,
262)(251, 256)(252, 260)(253, 258)(288, 319)(289, 316)(290, 296)(291, 304)(292,
318)(293, 317)(294, 320)(295, 315)(297, 309)(298, 311)(299, 313)(300, 308)(301,
307)(302, 312)(303, 310)(306, 314) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 6)(4, 10)(5, 14)(7, 15)(8, 20)(9, 22)(11, 24)(12, 29)(13, 31)(16,
34)(17, 28)(18, 36)(19, 26)(21, 40)(23, 43)(25, 46)(27, 39)(30, 49)(32, 52)(33,
35)(37, 57)(38, 60)(41, 64)(42, 66)(44, 69)(45, 54)(47, 72)(48, 75)(50, 79)(51,
81)(53, 84)(55, 87)(56, 89)(58, 91)(59, 78)(61, 77)(62, 76)(63, 74)(65, 97)(67,
100)(68, 88)(70, 103)(71, 105)(73, 96)(80, 111)(82, 114)(83, 106)(85, 116)(86,
102)(90, 94)(92, 123)(93, 126)(95, 128)(98, 132)(99, 133)(101, 135)(104,
138)(107, 141)(108, 144)(109, 118)(110, 146)(112, 150)(113, 151)(115, 153)(117,
155)(119, 121)(120, 158)(122, 159)(124, 156)(125, 149)(127, 148)(129, 152)(130,
145)(131, 143)(134, 147)(136, 139)(137, 157)(140, 154)(142, 160)(161, 261)(162,
221)(163, 255)(164, 215)(165, 196)(166, 251)(167, 238)(168, 246)(169, 260)(170,
272)(171, 218)(172, 211)(173, 214)(174, 259)(175, 263)(176, 191)(177, 248)(178,
242)(179, 199)(180, 208)(181, 252)(182, 209)(183, 245)(184, 268)(185, 200)(186,
265)(187, 270)(188, 205)(189, 239)(190, 240)(192, 230)(193, 297)(194, 318)(195,
237)(197, 301)(198, 223)(201, 300)(202, 235)(203, 229)(204, 303)(206, 302)(207,
299)(210, 314)(212, 254)(213, 287)(216, 236)(217, 298)(219, 296)(220, 317)(222,
247)(224, 274)(225, 276)(226, 278)(227, 280)(228, 243)(231, 282)(232, 284)(233,
257)(234, 286)(241, 319)(244, 315)(249, 320)(250, 304)(253, 316)(256, 309)(258,
313)(262, 307)(264, 311)(266, 290)(267, 312)(269, 308)(271, 310)(273, 289)(275,
288)(277, 295)(279, 294)(281, 293)(283, 292)(285, 306)(291, 305)
c: (2, 5)(3, 9)(4, 13)(6, 17)(7, 19)(10, 26)(11, 28)(12, 18)(15, 31)(16, 35)(20,
39)(21, 42)(22, 24)(23, 44)(25, 34)(30, 51)(32, 53)(33, 54)(37, 59)(38, 61)(40,
63)(43, 62)(45, 46)(47, 74)(48, 76)(49, 78)(50, 58)(52, 77)(55, 88)(56, 90)(57,
81)(60, 84)(64, 96)(65, 99)(66, 72)(67, 101)(68, 102)(69, 75)(70, 104)(71,
106)(80, 113)(82, 115)(83, 89)(85, 117)(86, 118)(87, 109)(92, 125)(93, 127)(94,
105)(95, 129)(97, 131)(100, 130)(103, 134)(107, 143)(108, 145)(110, 147)(111,
149)(112, 124)(114, 148)(116, 152)(120, 157)(121, 139)(123, 151)(126, 153)(128,
155)(132, 160)(133, 141)(135, 144)(138, 146)(154, 159)(161, 191)(162, 255)(163,
194)(164, 210)(165, 204)(166, 213)(167, 215)(168, 196)(169, 212)(170, 252)(171,
248)(172, 247)(173, 243)(174, 195)(175, 216)(176, 218)(177, 261)(178, 263)(179,
214)(180, 211)(181, 260)(182, 200)(183, 259)(184, 202)(185, 192)(186, 203)(187,
198)(188, 265)(189, 268)(190, 270)(193, 287)(197, 291)(199, 234)(201, 294)(205,
231)(206, 288)(207, 289)(208, 233)(209, 232)(217, 295)(219, 293)(220, 290)(221,
292)(222, 257)(223, 280)(224, 242)(225, 245)(226, 239)(227, 240)(228, 286)(229,
282)(230, 284)(235, 278)(236, 274)(237, 276)(238, 306)(241, 312)(244, 311)(246,
310)(249, 308)(250, 307)(251, 309)(253, 313)(254, 272)(256, 297)(258, 299)(262,
301)(264, 298)(266, 296)(267, 302)(269, 300)(271, 303)(273, 316)(275, 319)(277,
315)(279, 320)(281, 317)(283, 318)(285, 314)(304, 305)
d: (1, 3, 8, 21, 41, 65, 98, 103, 137, 102, 136, 90, 122, 117, 156, 149, 91, 78,
36, 26, 14, 11, 27, 47, 73, 107, 142, 146, 158, 87, 119, 106, 140, 129, 150,
151, 79, 81, 29, 31)(2, 4, 12, 30, 50, 80, 112, 116, 154, 89, 121, 88, 120, 147,
160, 133, 96, 66, 39, 22, 5, 7, 18, 37, 58, 92, 124, 128, 159, 105, 139, 118,
157, 104, 132, 131, 64, 63, 20, 17)(6, 16, 13, 32, 51, 82, 113, 114, 152, 52,
83, 34, 55, 76, 110, 145, 141, 135, 72, 69, 24, 45, 19, 38, 59, 93, 125, 126,
155, 60, 94, 54, 86, 44, 70, 101, 97, 130, 40, 62)(9, 23, 42, 67, 99, 100, 134,
43, 68, 35, 56, 53, 85, 115, 111, 148, 49, 77, 10, 25, 28, 48, 74, 108, 143,
144, 138, 75, 109, 46, 71, 61, 95, 127, 123, 153, 57, 84, 15, 33)(161, 176, 169,
180, 175, 179, 174, 182, 184, 188, 187, 190, 186, 189, 185, 183, 173, 178, 172,
181, 171, 177, 170, 222, 224, 228, 225, 230, 226, 229, 227, 223, 231, 235, 232,
237, 234, 236, 233, 254)(162, 287, 296, 291, 300, 289, 298, 288, 302, 295, 299,
294, 301, 293, 297, 292, 303, 306, 314, 310, 318, 309, 317, 307, 320, 313, 315,
312, 319, 311, 316, 308, 304, 290, 166, 163, 168, 164, 167, 165)(191, 197, 212,
207, 216, 206, 195, 217, 202, 201, 198, 219, 203, 221, 192, 238, 243, 246, 247,
251, 248, 250, 252, 253, 242, 241, 245, 244, 239, 249, 240, 220, 205, 194, 209,
210, 199, 204, 208, 193)(196, 214, 215, 200, 255, 265, 266, 270, 269, 268, 264,
259, 267, 263, 258, 260, 262, 261, 256, 257, 271, 286, 285, 284, 283, 282, 281,
280, 279, 278, 277, 276, 275, 274, 273, 272, 305, 218, 213, 211)
C4[ 320, 74 ]
320
-1 176 191 161 218
-2 176 191 171 261
-3 176 169 213 197
-4 177 256 169 197
-5 177 248 161 218
-6 287 191 301 260
-7 176 213 170 250
-8 211 212 169 180
-9 166 212 291 218
-10 309 301 248 260
-11 177 256 170 250
-12 212 180 257 170
-13 297 212 291 261
-14 177 171 248 261
-15 287 191 304 272
-16 293 262 197 296
-17 181 193 161 262
-18 211 222 169 252
-19 166 218 252 307
-20 254 172 260 208
-21 180 196 207 175
-22 254 171 305 251
-23 300 213 163 207
-24 309 248 304 272
-25 293 250 262 317
-26 181 171 251 262
-27 222 257 170 252
-28 297 261 252 307
-29 254 233 272 208
-30 222 271 207 175
-31 254 193 161 305
-32 256 300 292 207
-33 290 305 197 296
-34 301 281 219 307
-35 266 301 291 219
-36 181 247 172 260
-37 253 180 224 196
-38 253 320 213 163
-39 233 181 247 272
-40 165 299 208 263
-41 179 214 216 175
-42 211 168 289 216
-43 287 255 299 201
-44 166 289 269 194
-45 290 250 305 317
-46 220 281 304 307
-47 253 222 224 271
-48 253 320 256 292
-49 299 310 247 263
-50 286 179 224 216
-51 289 257 303 216
-52 309 299 201 283
-53 297 221 289 269
-54 220 266 291 304
-55 320 203 280 293
-56 300 203 270 293
-57 165 316 208 274
-58 242 214 228 175
-59 242 211 168 313
-60 287 255 249 316
-61 166 279 313 194
-62 258 193 162 294
-63 178 233 258 204
-64 199 236 173 263
-65 179 215 206 174
-66 246 236 172 273
-67 298 206 196 164
-68 198 265 294 296
-69 308 251 273 318
-70 209 298 268 163
-71 320 290 280 205
-72 310 247 316 274
-73 242 286 224 228
-74 242 257 313 303
-75 309 249 283 316
-76 297 221 279 313
-77 258 294 251 318
-78 178 246 258 172
-79 199 234 236 274
-80 206 228 174 285
-81 233 236 204 273
-82 298 271 206 306
-83 198 282 294 317
-84 308 193 162 273
-85 298 268 192 292
-86 300 290 270 205
-87 281 227 249 229
-88 223 279 186 219
-89 187 201 281 229
-90 190 269 186 219
-91 243 178 173 263
-92 179 225 215 241
-93 315 196 164 241
-94 308 265 240 296
-95 209 278 315 163
-96 243 178 234 274
-97 199 302 259 164
-98 200 182 195 174
-99 167 288 214 195
-100 165 302 215 217
-101 264 210 288 168
-102 187 188 266 201
-103 255 182 184 217
-104 264 232 189 194
-105 188 266 227 249
-106 220 231 223 279
-107 225 228 241 285
-108 271 315 306 241
-109 308 282 240 317
-110 278 192 292 315
-111 243 302 259 306
-112 225 182 195 284
-113 286 288 314 195
-114 310 302 217 285
-115 264 288 303 238
-116 184 217 283 230
-117 264 221 189 185
-118 220 231 190 269
-119 223 280 227 240
-120 231 189 278 203
-121 198 190 280 227
-122 189 268 203 186
-123 319 199 276 164
-124 200 245 174 230
-125 167 245 312 214
-126 165 319 244 215
-127 210 277 168 312
-128 244 255 182 226
-129 232 277 235 194
-130 167 267 204 295
-131 210 234 267 183
-132 209 237 259 185
-133 275 237 238 173
-134 200 202 162 295
-135 275 311 246 314
-136 187 198 190 270
-137 188 265 202 184
-138 311 239 284 318
-139 187 223 270 240
-140 231 278 235 205
-141 319 243 276 306
-142 245 225 284 230
-143 286 245 312 314
-144 319 244 310 285
-145 277 312 303 238
-146 244 226 283 230
-147 221 277 235 185
-148 267 246 314 295
-149 267 183 238 173
-150 209 232 276 237
-151 275 210 234 237
-152 202 284 295 318
-153 275 167 311 204
-154 188 202 226 282
-155 200 311 162 239
-156 192 259 183 185
-157 235 268 205 186
-158 226 282 239 229
-159 265 184 239 229
-160 232 276 192 183
-161 1 5 17 31
-162 155 134 62 84
-163 23 70 38 95
-164 67 123 93 97
-165 100 57 126 40
-166 44 61 19 9
-167 99 125 130 153
-168 101 59 127 42
-169 3 4 18 8
-170 11 12 27 7
-171 22 2 14 26
-172 66 78 36 20
-173 133 91 149 64
-174 80 124 65 98
-175 58 30 41 21
-176 1 2 3 7
-177 11 14 4 5
-178 78 91 63 96
-179 92 50 41 65
-180 12 37 8 21
-181 36 26 17 39
-182 112 103 128 98
-183 156 149 160 131
-184 103 137 159 116
-185 132 156 147 117
-186 88 122 90 157
-187 89 102 136 139
-188 154 102 137 105
-189 122 104 117 120
-190 121 90 136 118
-191 1 2 15 6
-192 110 156 160 85
-193 17 62 84 31
-194 44 104 61 129
-195 99 112 113 98
-196 67 37 93 21
-197 33 3 4 16
-198 121 68 136 83
-199 79 123 64 97
-200 155 134 124 98
-201 89 102 52 43
-202 154 134 137 152
-203 55 56 122 120
-204 81 63 130 153
-205 157 71 140 86
-206 67 80 82 65
-207 23 30 21 32
-208 57 29 40 20
-209 132 70 95 150
-210 101 127 151 131
-211 59 18 8 42
-212 12 13 8 9
-213 23 3 38 7
-214 99 58 125 41
-215 100 92 126 65
-216 50 51 41 42
-217 100 103 114 116
-218 1 5 19 9
-219 88 34 35 90
-220 46 106 118 54
-221 147 117 53 76
-222 47 27 18 30
-223 88 106 139 119
-224 47 37 50 73
-225 112 92 107 142
-226 154 146 158 128
-227 121 105 119 87
-228 58 80 73 107
-229 89 158 159 87
-230 124 146 116 142
-231 106 118 140 120
-232 104 160 150 129
-233 81 39 29 63
-234 79 96 151 131
-235 157 147 129 140
-236 66 79 81 64
-237 132 133 150 151
-238 133 145 115 149
-239 155 158 159 138
-240 94 139 119 109
-241 92 93 107 108
-242 58 59 73 74
-243 111 91 96 141
-244 144 146 126 128
-245 143 124 125 142
-246 66 78 135 148
-247 36 49 39 72
-248 24 14 5 10
-249 60 105 75 87
-250 11 45 25 7
-251 22 77 69 26
-252 27 28 18 19
-253 47 37 48 38
-254 22 29 20 31
-255 103 60 128 43
-256 11 4 48 32
-257 12 27 51 74
-258 77 78 62 63
-259 132 111 156 97
-260 36 6 20 10
-261 2 13 14 28
-262 25 26 16 17
-263 91 49 40 64
-264 101 104 115 117
-265 68 137 159 94
-266 35 102 105 54
-267 148 149 130 131
-268 122 157 70 85
-269 44 90 118 53
-270 56 136 139 86
-271 47 82 30 108
-272 24 15 39 29
-273 66 69 81 84
-274 57 79 72 96
-275 133 135 151 153
-276 123 160 150 141
-277 145 147 127 129
-278 110 95 140 120
-279 88 61 106 76
-280 55 121 71 119
-281 34 89 46 87
-282 154 158 83 109
-283 146 116 52 75
-284 112 138 152 142
-285 144 80 114 107
-286 143 113 50 73
-287 15 60 6 43
-288 99 101 113 115
-289 44 51 42 53
-290 33 45 71 86
-291 13 35 9 54
-292 110 48 85 32
-293 55 56 25 16
-294 77 68 83 62
-295 134 148 130 152
-296 33 68 16 94
-297 13 28 53 76
-298 67 70 82 85
-299 49 40 52 43
-300 23 56 86 32
-301 34 35 6 10
-302 100 111 114 97
-303 145 115 51 74
-304 24 46 15 54
-305 22 33 45 31
-306 111 82 108 141
-307 34 46 28 19
-308 69 94 84 109
-309 24 52 75 10
-310 144 114 49 72
-311 155 135 138 153
-312 143 145 125 127
-313 59 61 74 76
-314 143 113 135 148
-315 110 93 95 108
-316 57 60 72 75
-317 45 25 83 109
-318 77 69 138 152
-319 144 123 126 141
-320 55 48 38 71
0