C4graphGraph forms for C4 [ 320, 76 ] = PL(Curtain_40(1,20,17,18,38),[4^40,20^8])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 320, 76 ] = PL(Curtain_40(1,20,17,18,38),[4^40,20^8]).

(I) Following is a form readable by MAGMA:

g:=Graph<320|{ {134, 167}, {134, 163}, {150, 186}, {141, 163}, {147, 163}, {140, 190}, {143, 187}, {139, 190}, {140, 186}, {131, 187}, {132, 190}, {135, 189}, {128, 188}, {131, 190}, {135, 186}, {158, 221}, {130, 198}, {137, 204}, {146, 215}, {155, 221}, {159, 217}, {133, 205}, {148, 220}, {142, 198}, {150, 223}, {149, 223}, {129, 204}, {144, 221}, {134, 203}, {144, 223}, {152, 215}, {150, 217}, {143, 223}, {153, 201}, {151, 199}, {131, 215}, {140, 217}, {156, 201}, {138, 220}, {145, 199}, {132, 221}, {135, 220}, {139, 215}, {149, 244}, {128, 227}, {132, 231}, {147, 245}, {139, 227}, {157, 244}, {136, 227}, {147, 255}, {136, 229}, {154, 244}, {128, 245}, {137, 255}, {149, 227}, {144, 231}, {141, 245}, {160, 217}, {143, 244}, {136, 245}, {134, 248}, {75, 203}, {51, 178}, {76, 205}, {96, 226}, {33, 162}, {70, 197}, {43, 175}, {74, 206}, {55, 179}, {96, 230}, {33, 166}, {127, 248}, {40, 175}, {92, 219}, {108, 235}, {36, 172}, {117, 253}, {83, 219}, {91, 211}, {71, 206}, {107, 226}, {104, 226}, {111, 229}, {41, 162}, {45, 166}, {94, 213}, {79, 195}, {85, 216}, {100, 233}, {60, 178}, {61, 179}, {32, 175}, {119, 248}, {100, 235}, {72, 216}, {109, 253}, {119, 229}, {62, 173}, {32, 180}, {115, 231}, {50, 166}, {87, 195}, {77, 216}, {119, 226}, {88, 205}, {104, 253}, {36, 178}, {84, 194}, {50, 165}, {124, 235}, {121, 238}, {111, 248}, {77, 218}, {104, 255}, {55, 175}, {125, 229}, {115, 235}, {64, 216}, {86, 206}, {112, 233}, {126, 231}, {63, 165}, {90, 192}, {65, 218}, {47, 179}, {58, 166}, {48, 172}, {87, 203}, {95, 195}, {96, 253}, {44, 178}, {72, 214}, {51, 173}, {93, 194}, {113, 238}, {1, 161}, {10, 170}, {8, 169}, {21, 180}, {20, 181}, {76, 237}, {67, 225}, {126, 220}, {93, 255}, {89, 250}, {118, 213}, {117, 214}, {97, 194}, {100, 199}, {5, 161}, {64, 228}, {14, 171}, {67, 230}, {82, 247}, {102, 195}, {108, 201}, {12, 170}, {13, 171}, {76, 234}, {102, 192}, {99, 196}, {9, 161}, {2, 171}, {68, 237}, {3, 169}, {68, 238}, {71, 236}, {81, 250}, {105, 194}, {6, 170}, {4, 169}, {75, 230}, {71, 234}, {90, 247}, {27, 181}, {79, 225}, {107, 196}, {15, 191}, {17, 161}, {1, 176}, {125, 204}, {122, 203}, {120, 201}, {29, 172}, {19, 162}, {92, 237}, {2, 176}, {84, 230}, {88, 234}, {103, 213}, {3, 176}, {66, 241}, {24, 171}, {5, 177}, {67, 247}, {4, 177}, {115, 198}, {73, 252}, {110, 219}, {6, 176}, {123, 205}, {114, 196}, {101, 211}, {69, 242}, {112, 199}, {94, 233}, {7, 191}, {116, 204}, {20, 172}, {13, 181}, {12, 180}, {16, 169}, {98, 219}, {83, 233}, {124, 198}, {10, 177}, {8, 180}, {75, 247}, {9, 181}, {2, 191}, {65, 252}, {31, 162}, {23, 170}, {1, 191}, {122, 196}, {80, 238}, {83, 237}, {14, 177}, {78, 241}, {105, 214}, {106, 213}, {50, 243}, {120, 185}, {61, 252}, {8, 202}, {51, 241}, {28, 222}, {19, 209}, {102, 164}, {17, 210}, {126, 189}, {35, 224}, {44, 232}, {120, 189}, {124, 186}, {125, 187}, {19, 212}, {35, 228}, {52, 252}, {116, 188}, {6, 207}, {59, 242}, {58, 243}, {23, 222}, {109, 164}, {48, 250}, {3, 200}, {3, 207}, {4, 200}, {29, 208}, {112, 189}, {60, 241}, {16, 222}, {31, 209}, {26, 212}, {105, 167}, {21, 218}, {116, 187}, {47, 224}, {43, 228}, {39, 232}, {1, 209}, {56, 232}, {52, 228}, {35, 243}, {103, 183}, {117, 164}, {62, 236}, {117, 167}, {5, 209}, {56, 236}, {37, 240}, {52, 225}, {46, 251}, {108, 185}, {30, 200}, {60, 234}, {33, 246}, {111, 184}, {107, 188}, {12, 212}, {127, 167}, {43, 243}, {34, 251}, {122, 163}, {39, 254}, {16, 202}, {18, 200}, {9, 210}, {99, 184}, {8, 212}, {61, 225}, {48, 236}, {36, 250}, {103, 185}, {104, 182}, {38, 249}, {41, 246}, {99, 188}, {27, 251}, {14, 239}, {32, 193}, {87, 182}, {45, 207}, {21, 246}, {49, 210}, {29, 254}, {11, 239}, {65, 165}, {75, 174}, {77, 168}, {92, 185}, {93, 184}, {24, 254}, {72, 174}, {54, 208}, {31, 249}, {80, 183}, {16, 249}, {68, 173}, {65, 168}, {40, 193}, {25, 240}, {94, 183}, {5, 239}, {47, 197}, {28, 246}, {24, 242}, {43, 192}, {61, 214}, {57, 210}, {56, 211}, {93, 182}, {45, 193}, {73, 165}, {84, 184}, {23, 249}, {64, 174}, {33, 207}, {17, 254}, {20, 251}, {88, 183}, {62, 206}, {55, 197}, {90, 168}, {27, 232}, {53, 193}, {21, 224}, {63, 202}, {6, 240}, {40, 222}, {39, 208}, {55, 192}, {50, 202}, {22, 239}, {79, 182}, {87, 174}, {10, 240}, {63, 197}, {42, 208}, {32, 218}, {82, 168}, {72, 179}, {28, 224}, {80, 173}, {90, 164}, {13, 242}, {44, 211}, {27, 282}, {59, 314}, {7, 261}, {49, 307}, {14, 268}, {41, 301}, {28, 281}, {45, 299}, {10, 269}, {57, 318}, {47, 296}, {12, 260}, {4, 269}, {13, 263}, {57, 307}, {35, 296}, {22, 282}, {54, 314}, {38, 299}, {2, 268}, {30, 272}, {11, 261}, {9, 263}, {31, 272}, {58, 298}, {20, 261}, {46, 319}, {34, 307}, {63, 301}, {23, 260}, {52, 295}, {46, 314}, {15, 282}, {37, 304}, {18, 263}, {26, 268}, {59, 300}, {29, 261}, {53, 301}, {42, 307}, {89, 320}, {34, 319}, {49, 300}, {25, 263}, {53, 299}, {37, 315}, {60, 284}, {17, 304}, {11, 297}, {57, 283}, {25, 315}, {15, 300}, {56, 283}, {34, 262}, {41, 269}, {101, 320}, {44, 267}, {22, 318}, {24, 304}, {38, 268}, {54, 284}, {7, 300}, {48, 283}, {42, 262}, {22, 315}, {7, 297}, {30, 304}, {36, 267}, {59, 267}, {26, 299}, {40, 281}, {46, 284}, {15, 315}, {26, 302}, {11, 318}, {51, 262}, {37, 272}, {38, 272}, {25, 302}, {30, 297}, {53, 269}, {62, 262}, {49, 267}, {18, 297}, {18, 302}, {19, 302}, {39, 282}, {58, 260}, {78, 270}, {121, 313}, {82, 274}, {94, 286}, {70, 260}, {98, 288}, {118, 306}, {96, 293}, {73, 271}, {123, 317}, {91, 285}, {97, 295}, {113, 313}, {123, 306}, {106, 288}, {109, 295}, {81, 285}, {113, 317}, {85, 281}, {83, 286}, {95, 274}, {121, 311}, {107, 292}, {73, 281}, {95, 271}, {101, 309}, {76, 285}, {92, 270}, {80, 259}, {119, 292}, {115, 288}, {106, 313}, {74, 286}, {114, 294}, {110, 312}, {86, 270}, {68, 285}, {127, 294}, {85, 271}, {89, 259}, {98, 312}, {71, 284}, {88, 259}, {98, 313}, {66, 286}, {110, 306}, {69, 283}, {126, 288}, {125, 291}, {86, 311}, {99, 257}, {86, 309}, {91, 319}, {123, 287}, {114, 278}, {67, 294}, {89, 316}, {101, 259}, {64, 295}, {118, 273}, {114, 277}, {77, 298}, {79, 294}, {102, 271}, {103, 270}, {42, 320}, {127, 277}, {70, 301}, {70, 298}, {122, 278}, {110, 258}, {81, 316}, {81, 319}, {113, 287}, {111, 257}, {91, 309}, {121, 265}, {84, 293}, {120, 265}, {78, 317}, {97, 274}, {108, 287}, {116, 256}, {118, 258}, {54, 320}, {74, 316}, {95, 296}, {97, 278}, {112, 265}, {82, 296}, {69, 318}, {78, 309}, {100, 287}, {105, 274}, {106, 273}, {109, 278}, {74, 311}, {66, 316}, {124, 258}, {66, 317}, {69, 314}, {85, 298}, {128, 256}, {152, 280}, {138, 264}, {148, 279}, {160, 291}, {135, 258}, {140, 266}, {151, 273}, {143, 264}, {148, 275}, {157, 276}, {158, 279}, {130, 264}, {153, 275}, {146, 280}, {131, 264}, {159, 276}, {133, 265}, {152, 276}, {156, 273}, {132, 266}, {156, 275}, {146, 257}, {153, 266}, {129, 277}, {141, 280}, {129, 280}, {145, 266}, {155, 256}, {154, 257}, {137, 277}, {138, 279}, {142, 275}, {159, 256}, {153, 312}, {146, 305}, {151, 308}, {129, 293}, {145, 308}, {137, 303}, {141, 293}, {139, 290}, {159, 310}, {145, 312}, {155, 305}, {136, 291}, {154, 305}, {142, 290}, {155, 310}, {158, 305}, {144, 289}, {133, 311}, {157, 303}, {130, 310}, {160, 276}, {154, 303}, {130, 308}, {151, 289}, {148, 290}, {133, 306}, {160, 279}, {150, 289}, {149, 290}, {142, 310}, {157, 292}, {147, 303}, {152, 292}, {156, 289}, {158, 291}, {138, 308} }>;

(II) A more general form is to represent the graph as the orbit of {134, 167} under the group generated by the following permutations:

a: (1, 3)(2, 6)(4, 5)(7, 33)(8, 9)(10, 14)(11, 41)(12, 13)(15, 45)(16, 17)(18, 19)(20, 21)(22, 53)(23, 24)(25, 26)(27, 32)(28, 29)(30, 31)(34, 65)(35, 36)(37, 38)(39, 40)(42, 73)(43, 44)(46, 77)(47, 48)(49, 50)(51, 52)(54, 85)(55, 56)(57, 63)(58, 59)(60, 64)(61, 62)(66, 97)(67, 68)(69, 70)(71, 72)(74, 105)(75, 76)(78, 109)(79, 80)(81, 82)(83, 84)(86, 117)(87, 88)(89, 95)(90, 91)(92, 96)(93, 94)(98, 129)(99, 100)(101, 102)(103, 104)(106, 137)(107, 108)(110, 141)(111, 112)(113, 114)(115, 116)(118, 147)(119, 120)(121, 127)(122, 123)(124, 128)(125, 126)(130, 155)(131, 132)(133, 134)(135, 136)(138, 158)(139, 140)(142, 159)(143, 144)(145, 146)(148, 160)(149, 150)(151, 154)(152, 153)(156, 157)(161, 169)(162, 297)(163, 306)(164, 309)(165, 307)(166, 300)(167, 311)(168, 319)(170, 171)(172, 224)(173, 225)(174, 234)(175, 232)(178, 228)(179, 236)(180, 181)(182, 183)(184, 233)(185, 226)(186, 227)(187, 231)(188, 235)(189, 229)(191, 207)(192, 211)(193, 282)(194, 286)(195, 259)(196, 287)(197, 283)(198, 256)(199, 257)(200, 209)(201, 292)(202, 210)(203, 205)(204, 288)(206, 214)(208, 281)(212, 263)(213, 255)(215, 266)(216, 284)(217, 290)(218, 251)(219, 293)(220, 291)(221, 264)(222, 254)(230, 237)(238, 294)(239, 269)(240, 268)(241, 295)(242, 260)(243, 267)(244, 289)(245, 258)(246, 261)(247, 285)(248, 265)(249, 304)(250, 296)(252, 262)(253, 270)(271, 320)(273, 303)(274, 316)(275, 276)(277, 313)(278, 317)(280, 312)(298, 314)(299, 315)(301, 318)(305, 308)
b: (3, 6)(4, 10)(7, 15)(8, 12)(11, 22)(16, 23)(18, 25)(20, 27)(29, 39)(30, 37)(36, 44)(48, 56)(50, 58)(52, 64)(61, 72)(63, 70)(65, 77)(66, 78)(67, 75)(73, 85)(74, 86)(79, 87)(81, 91)(83, 92)(89, 101)(94, 103)(100, 108)(112, 120)(114, 122)(116, 128)(125, 136)(127, 134)(129, 141)(130, 142)(131, 139)(137, 147)(138, 148)(143, 149)(145, 153)(151, 156)(163, 277)(165, 298)(169, 170)(172, 232)(174, 225)(185, 233)(187, 227)(199, 201)(200, 240)(202, 260)(203, 294)(204, 245)(211, 250)(216, 252)(261, 282)(264, 290)(270, 286)(275, 308)(297, 315)(309, 316)
c: (3, 7)(4, 11)(6, 15)(8, 20)(9, 19)(10, 22)(12, 27)(13, 26)(16, 29)(17, 31)(21, 34)(23, 39)(24, 38)(28, 42)(32, 46)(33, 49)(35, 51)(36, 50)(40, 54)(41, 57)(43, 60)(44, 58)(45, 59)(47, 62)(48, 63)(52, 66)(53, 69)(55, 71)(56, 70)(61, 74)(64, 78)(65, 81)(67, 83)(68, 82)(72, 86)(73, 89)(75, 92)(76, 90)(77, 91)(79, 94)(80, 95)(84, 98)(85, 101)(87, 103)(88, 102)(93, 106)(96, 110)(97, 113)(99, 115)(100, 114)(104, 118)(105, 121)(107, 124)(108, 122)(109, 123)(111, 126)(112, 127)(116, 130)(117, 133)(119, 135)(120, 134)(125, 138)(128, 142)(129, 145)(132, 146)(136, 148)(137, 151)(140, 152)(141, 153)(144, 154)(147, 156)(150, 157)(161, 209)(162, 210)(163, 201)(164, 205)(165, 250)(166, 267)(167, 265)(168, 285)(169, 261)(170, 282)(171, 268)(172, 202)(173, 296)(174, 270)(175, 284)(176, 191)(177, 239)(178, 243)(179, 206)(180, 251)(181, 212)(182, 213)(183, 195)(184, 288)(185, 203)(186, 292)(187, 264)(188, 198)(189, 248)(190, 215)(192, 234)(193, 314)(194, 313)(196, 235)(197, 236)(199, 277)(200, 297)(204, 308)(207, 300)(208, 222)(211, 298)(214, 311)(216, 309)(217, 276)(218, 319)(219, 230)(220, 229)(221, 305)(223, 244)(224, 262)(225, 286)(226, 258)(227, 290)(228, 241)(231, 257)(232, 260)(233, 294)(237, 247)(238, 274)(240, 315)(242, 299)(245, 275)(246, 307)(249, 254)(252, 316)(253, 306)(255, 273)(256, 310)(259, 271)(263, 302)(266, 280)(269, 318)(272, 304)(278, 287)(279, 291)(281, 320)(283, 301)(289, 303)(293, 312)(295, 317)
d: (2, 5)(3, 9)(4, 13)(6, 17)(7, 19)(8, 20)(10, 24)(11, 26)(12, 29)(15, 31)(16, 27)(21, 36)(22, 38)(23, 39)(25, 30)(28, 44)(32, 48)(33, 49)(34, 50)(35, 51)(40, 56)(41, 59)(42, 58)(43, 62)(45, 57)(46, 63)(47, 60)(52, 68)(53, 69)(54, 70)(55, 71)(61, 76)(64, 80)(65, 81)(66, 82)(67, 83)(72, 88)(73, 91)(74, 90)(75, 94)(77, 89)(78, 95)(79, 92)(84, 100)(85, 101)(86, 102)(87, 103)(93, 108)(96, 112)(97, 113)(98, 114)(99, 115)(104, 120)(105, 123)(106, 122)(107, 126)(109, 121)(110, 127)(111, 124)(116, 132)(117, 133)(118, 134)(119, 135)(125, 140)(128, 144)(129, 145)(130, 146)(136, 150)(137, 153)(138, 152)(139, 143)(141, 151)(142, 154)(147, 156)(148, 157)(158, 159)(161, 176)(162, 300)(163, 273)(164, 311)(165, 319)(166, 307)(167, 306)(168, 316)(169, 181)(170, 254)(171, 177)(172, 180)(173, 228)(174, 183)(175, 236)(178, 224)(179, 234)(182, 185)(184, 235)(186, 229)(187, 190)(188, 231)(189, 226)(191, 209)(192, 206)(193, 283)(194, 287)(195, 270)(196, 288)(197, 284)(198, 257)(199, 293)(200, 263)(201, 255)(202, 251)(203, 213)(204, 266)(205, 214)(207, 210)(208, 260)(211, 281)(212, 261)(215, 264)(216, 259)(217, 291)(218, 250)(219, 294)(220, 292)(221, 256)(222, 232)(223, 227)(225, 237)(230, 233)(238, 295)(239, 268)(240, 304)(241, 296)(242, 269)(243, 262)(244, 290)(245, 289)(246, 267)(247, 286)(248, 258)(249, 282)(252, 285)(253, 265)(271, 309)(272, 315)(274, 317)(275, 303)(276, 279)(277, 312)(278, 313)(280, 308)(297, 302)(298, 320)(299, 318)(301, 314)(305, 310)
e: (1, 2)(5, 14)(9, 13)(17, 24)(19, 26)(21, 32)(28, 40)(31, 38)(33, 45)(34, 46)(35, 43)(41, 53)(42, 54)(47, 55)(49, 59)(51, 60)(57, 69)(62, 71)(68, 76)(80, 88)(82, 90)(84, 96)(93, 104)(95, 102)(97, 109)(98, 110)(99, 107)(105, 117)(106, 118)(111, 119)(113, 123)(115, 124)(121, 133)(126, 135)(132, 140)(144, 150)(146, 152)(154, 157)(155, 159)(158, 160)(161, 171)(162, 299)(164, 274)(173, 234)(175, 224)(184, 226)(186, 231)(192, 296)(193, 246)(194, 253)(205, 238)(209, 268)(210, 242)(217, 221)(257, 292)(258, 288)(262, 284)(276, 305)(306, 313)(307, 314)
f: (8, 16)(9, 17)(12, 23)(13, 24)(18, 30)(19, 31)(20, 29)(21, 28)(25, 37)(26, 38)(27, 39)(32, 40)(34, 42)(46, 54)(65, 73)(67, 79)(68, 80)(75, 87)(76, 88)(77, 85)(81, 89)(82, 95)(83, 94)(84, 93)(90, 102)(91, 101)(92, 103)(96, 104)(98, 106)(110, 118)(129, 137)(131, 143)(132, 144)(139, 149)(140, 150)(141, 147)(145, 151)(146, 154)(152, 157)(153, 156)(168, 271)(180, 222)(181, 254)(182, 230)(183, 237)(190, 223)(195, 247)(208, 251)(212, 249)(213, 219)(215, 244)(218, 281)(255, 293)(259, 285)(263, 304)(266, 289)(272, 302)(273, 312)(280, 303)(319, 320)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 320, 76 ]
320
-1 176 209 191 161
-2 176 191 268 171
-3 176 200 169 207
-4 177 200 169 269
-5 209 177 161 239
-6 176 170 207 240
-7 297 300 191 261
-8 212 169 180 202
-9 210 181 161 263
-10 177 170 269 240
-11 297 239 261 318
-12 212 180 170 260
-13 242 181 171 263
-14 177 268 171 239
-15 300 191 282 315
-16 222 169 202 249
-17 210 254 161 304
-18 297 200 302 263
-19 209 212 302 162
-20 181 172 261 251
-21 180 224 246 218
-22 282 315 239 318
-23 222 170 249 260
-24 242 254 171 304
-25 302 315 240 263
-26 299 212 268 302
-27 232 181 282 251
-28 222 224 246 281
-29 254 172 261 208
-30 297 200 304 272
-31 209 249 162 272
-32 180 193 218 175
-33 166 246 162 207
-34 319 251 262 307
-35 243 224 228 296
-36 178 267 172 250
-37 304 315 272 240
-38 299 268 249 272
-39 232 254 282 208
-40 222 193 281 175
-41 246 301 269 162
-42 320 262 208 307
-43 243 192 228 175
-44 232 178 211 267
-45 166 299 193 207
-46 319 314 251 284
-47 179 224 197 296
-48 236 172 250 283
-49 210 267 300 307
-50 165 166 243 202
-51 178 173 262 241
-52 225 228 295 252
-53 299 301 269 193
-54 320 314 284 208
-55 179 192 175 197
-56 232 211 236 283
-57 210 283 307 318
-58 166 243 298 260
-59 242 267 300 314
-60 178 234 284 241
-61 179 214 225 252
-62 236 173 206 262
-63 165 202 301 197
-64 216 228 174 295
-65 165 168 218 252
-66 286 316 317 241
-67 225 247 294 230
-68 237 238 173 285
-69 242 314 283 318
-70 298 301 260 197
-71 234 236 206 284
-72 179 214 216 174
-73 165 281 271 252
-74 286 311 206 316
-75 203 247 174 230
-76 234 237 205 285
-77 298 168 216 218
-78 309 270 317 241
-79 225 182 195 294
-80 259 183 238 173
-81 319 250 316 285
-82 168 247 274 296
-83 286 233 237 219
-84 194 293 184 230
-85 298 281 216 271
-86 309 311 270 206
-87 203 182 195 174
-88 234 259 183 205
-89 320 259 250 316
-90 168 192 247 164
-91 319 309 211 285
-92 237 270 185 219
-93 255 182 194 184
-94 286 233 213 183
-95 271 195 274 296
-96 253 226 293 230
-97 278 194 295 274
-98 288 312 313 219
-99 188 257 184 196
-100 199 287 233 235
-101 309 320 211 259
-102 192 271 195 164
-103 213 270 183 185
-104 253 255 182 226
-105 167 214 194 274
-106 288 213 313 273
-107 188 226 292 196
-108 287 201 235 185
-109 253 278 295 164
-110 312 258 306 219
-111 257 248 184 229
-112 199 265 189 233
-113 287 313 238 317
-114 277 278 294 196
-115 198 231 288 235
-116 187 188 256 204
-117 253 167 214 164
-118 213 258 273 306
-119 226 248 292 229
-120 265 189 201 185
-121 265 311 313 238
-122 278 203 163 196
-123 287 205 306 317
-124 198 235 258 186
-125 187 291 204 229
-126 220 231 189 288
-127 167 277 248 294
-128 188 245 256 227
-129 277 280 204 293
-130 198 264 308 310
-131 187 264 190 215
-132 231 221 266 190
-133 265 311 205 306
-134 167 203 248 163
-135 220 189 258 186
-136 245 291 227 229
-137 255 277 204 303
-138 220 264 308 279
-139 190 290 215 227
-140 266 190 217 186
-141 245 280 293 163
-142 198 275 310 290
-143 187 264 244 223
-144 231 221 223 289
-145 308 199 266 312
-146 257 280 215 305
-147 255 245 303 163
-148 220 275 279 290
-149 244 223 290 227
-150 223 289 217 186
-151 308 199 289 273
-152 276 280 215 292
-153 275 266 201 312
-154 244 257 303 305
-155 221 310 256 305
-156 275 201 289 273
-157 276 244 292 303
-158 221 279 291 305
-159 276 310 256 217
-160 276 279 291 217
-161 1 5 17 9
-162 33 19 41 31
-163 122 134 147 141
-164 90 102 117 109
-165 50 73 63 65
-166 33 45 58 50
-167 134 105 127 117
-168 77 90 82 65
-169 3 4 16 8
-170 12 23 6 10
-171 2 13 24 14
-172 36 48 29 20
-173 68 80 51 62
-174 72 64 75 87
-175 55 40 32 43
-176 1 2 3 6
-177 14 4 5 10
-178 44 36 60 51
-179 55 47 61 72
-180 12 8 21 32
-181 13 27 9 20
-182 79 93 104 87
-183 88 80 103 94
-184 99 111 93 84
-185 92 103 108 120
-186 124 135 150 140
-187 143 125 116 131
-188 99 116 128 107
-189 112 135 126 120
-190 132 139 140 131
-191 1 2 15 7
-192 55 90 102 43
-193 45 40 53 32
-194 93 105 84 97
-195 79 102 95 87
-196 99 122 114 107
-197 55 47 70 63
-198 124 115 130 142
-199 100 112 145 151
-200 3 4 18 30
-201 156 108 120 153
-202 16 50 8 63
-203 122 134 75 87
-204 125 137 116 129
-205 88 133 123 76
-206 71 62 74 86
-207 33 45 3 6
-208 39 29 42 54
-209 1 5 19 31
-210 57 49 17 9
-211 44 56 101 91
-212 12 26 8 19
-213 103 94 106 118
-214 61 72 105 117
-215 146 139 152 131
-216 77 72 85 64
-217 159 160 150 140
-218 77 21 32 65
-219 110 92 83 98
-220 135 126 148 138
-221 132 144 155 158
-222 23 16 28 40
-223 143 144 149 150
-224 35 47 28 21
-225 67 79 61 52
-226 104 96 107 119
-227 136 149 128 139
-228 35 52 64 43
-229 111 125 136 119
-230 67 84 96 75
-231 132 144 115 126
-232 44 56 27 39
-233 100 112 83 94
-234 88 60 71 76
-235 100 124 115 108
-236 56 48 71 62
-237 68 92 83 76
-238 121 68 80 113
-239 11 22 14 5
-240 25 37 6 10
-241 66 78 60 51
-242 13 24 69 59
-243 35 58 50 43
-244 143 154 157 149
-245 136 147 128 141
-246 33 28 41 21
-247 67 90 82 75
-248 111 134 127 119
-249 23 16 38 31
-250 89 36 48 81
-251 34 46 27 20
-252 61 73 52 65
-253 104 117 96 109
-254 24 17 39 29
-255 147 93 104 137
-256 155 159 116 128
-257 99 154 111 146
-258 110 124 135 118
-259 88 89 101 80
-260 12 23 58 70
-261 11 7 29 20
-262 34 51 62 42
-263 13 25 18 9
-264 143 138 130 131
-265 121 133 112 120
-266 132 145 140 153
-267 44 36 59 49
-268 2 14 26 38
-269 4 41 53 10
-270 78 92 103 86
-271 102 73 95 85
-272 37 38 30 31
-273 156 106 118 151
-274 82 105 95 97
-275 156 148 142 153
-276 157 159 160 152
-277 114 137 127 129
-278 122 114 97 109
-279 158 148 138 160
-280 146 129 141 152
-281 28 40 73 85
-282 22 15 27 39
-283 56 57 69 48
-284 46 60 71 54
-285 68 91 81 76
-286 66 83 94 74
-287 100 123 113 108
-288 115 126 106 98
-289 144 156 150 151
-290 148 149 139 142
-291 125 136 158 160
-292 157 107 119 152
-293 84 96 129 141
-294 67 79 114 127
-295 52 64 97 109
-296 35 47 82 95
-297 11 7 18 30
-298 77 58 70 85
-299 45 26 38 53
-300 15 59 49 7
-301 70 41 63 53
-302 25 26 18 19
-303 154 157 147 137
-304 24 37 17 30
-305 154 155 146 158
-306 110 133 123 118
-307 34 57 49 42
-308 145 138 151 130
-309 78 101 91 86
-310 155 159 130 142
-311 121 133 74 86
-312 110 145 98 153
-313 121 113 106 98
-314 46 69 59 54
-315 22 25 15 37
-316 66 89 81 74
-317 66 78 123 113
-318 11 22 57 69
-319 34 46 91 81
-320 89 101 42 54
0

**************