[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 78 ] =
PL(MBr(2,80;9)).
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {128, 185}, {128, 188}, {129, 189}, {128, 189}, {128, 192}, {129,
193}, {129, 192}, {130, 193}, {129, 196}, {130, 196}, {131, 197}, {130, 197},
{132, 204}, {133, 205}, {132, 205}, {130, 200}, {131, 201}, {131, 200}, {132,
201}, {131, 204}, {133, 212}, {136, 217}, {134, 212}, {135, 213}, {134, 213},
{132, 208}, {137, 221}, {136, 220}, {133, 209}, {133, 208}, {136, 221}, {134,
209}, {135, 220}, {134, 216}, {135, 217}, {135, 216}, {140, 236}, {141, 237},
{140, 237}, {138, 232}, {139, 233}, {139, 232}, {140, 233}, {139, 236}, {136,
224}, {137, 225}, {137, 224}, {144, 249}, {138, 225}, {144, 252}, {145, 253},
{137, 228}, {144, 253}, {138, 228}, {139, 229}, {138, 229}, {143, 252}, {142,
248}, {143, 249}, {143, 248}, {141, 244}, {142, 244}, {143, 245}, {142, 245},
{140, 240}, {141, 241}, {141, 240}, {142, 241}, {98, 226}, {56, 185}, {98, 227},
{56, 186}, {97, 227}, {97, 226}, {95, 219}, {98, 230}, {99, 231}, {95, 218},
{98, 231}, {99, 230}, {73, 193}, {74, 194}, {94, 214}, {95, 215}, {99, 235},
{42, 163}, {94, 215}, {95, 214}, {99, 234}, {41, 163}, {100, 238}, {101, 239},
{73, 194}, {74, 193}, {100, 239}, {101, 238}, {94, 210}, {41, 164}, {55, 186},
{94, 211}, {42, 164}, {55, 185}, {93, 211}, {100, 234}, {93, 210}, {100, 235},
{59, 171}, {103, 247}, {60, 172}, {91, 203}, {102, 246}, {69, 212}, {103, 246},
{91, 202}, {102, 247}, {70, 212}, {104, 250}, {92, 206}, {93, 207}, {92, 207},
{104, 251}, {93, 206}, {37, 177}, {51, 167}, {38, 178}, {102, 242}, {50, 167},
{70, 211}, {102, 243}, {69, 211}, {105, 255}, {104, 254}, {78, 216}, {92, 202},
{101, 243}, {37, 178}, {105, 254}, {104, 255}, {60, 171}, {59, 172}, {38, 177},
{79, 216}, {92, 203}, {101, 242}, {46, 182}, {79, 215}, {90, 194}, {47, 182},
{78, 215}, {90, 195}, {47, 181}, {50, 168}, {89, 195}, {46, 181}, {51, 168},
{89, 194}, {90, 198}, {103, 251}, {91, 199}, {90, 199}, {103, 250}, {91, 198},
{1, 161}, {66, 226}, {65, 225}, {2, 162}, {1, 162}, {66, 225}, {65, 226}, {2,
161}, {25, 191}, {24, 191}, {16, 187}, {80, 251}, {10, 166}, {16, 188}, {74,
230}, {80, 252}, {11, 166}, {75, 230}, {11, 165}, {75, 229}, {10, 165}, {74,
229}, {7, 183}, {29, 173}, {71, 247}, {6, 183}, {70, 247}, {28, 173}, {28, 174},
{15, 188}, {29, 174}, {79, 252}, {15, 187}, {79, 251}, {19, 170}, {19, 169},
{96, 218}, {96, 219}, {20, 169}, {6, 184}, {70, 248}, {20, 170}, {96, 222}, {97,
223}, {7, 184}, {71, 248}, {96, 223}, {97, 222}, {43, 235}, {44, 236}, {11,
202}, {11, 201}, {127, 188}, {2, 198}, {52, 240}, {35, 231}, {3, 198}, {53,
240}, {34, 231}, {12, 201}, {3, 197}, {127, 185}, {126, 184}, {12, 202}, {2,
197}, {127, 184}, {44, 235}, {43, 236}, {61, 244}, {125, 180}, {34, 232}, {127,
181}, {126, 180}, {62, 244}, {35, 232}, {126, 181}, {29, 209}, {125, 177}, {124,
176}, {49, 253}, {30, 210}, {48, 253}, {125, 176}, {62, 243}, {17, 223}, {61,
243}, {48, 254}, {16, 223}, {126, 177}, {49, 254}, {30, 209}, {29, 210}, {124,
172}, {125, 173}, {40, 249}, {124, 173}, {40, 250}, {123, 169}, {122, 168}, {8,
219}, {123, 168}, {8, 220}, {124, 169}, {123, 172}, {21, 205}, {121, 161}, {24,
192}, {20, 205}, {25, 192}, {20, 206}, {53, 239}, {7, 220}, {122, 161}, {52,
239}, {21, 206}, {7, 219}, {39, 250}, {121, 164}, {39, 249}, {123, 165}, {122,
164}, {122, 165}, {13, 237}, {86, 182}, {87, 183}, {12, 237}, {34, 195}, {86,
183}, {87, 182}, {12, 238}, {42, 200}, {33, 195}, {88, 186}, {13, 238}, {43,
200}, {88, 187}, {21, 241}, {57, 221}, {22, 242}, {86, 178}, {33, 196}, {56,
221}, {86, 179}, {34, 196}, {56, 222}, {85, 179}, {88, 190}, {89, 191}, {21,
242}, {57, 222}, {22, 241}, {85, 178}, {88, 191}, {89, 190}, {30, 246}, {3,
234}, {48, 217}, {31, 246}, {3, 233}, {69, 175}, {48, 218}, {31, 245}, {30,
245}, {68, 175}, {43, 199}, {60, 208}, {87, 187}, {4, 233}, {61, 208}, {42,
199}, {87, 186}, {4, 234}, {16, 224}, {38, 214}, {82, 162}, {17, 224}, {39,
214}, {82, 163}, {39, 213}, {61, 207}, {81, 163}, {38, 213}, {60, 207}, {81,
162}, {68, 176}, {82, 166}, {83, 167}, {47, 218}, {69, 176}, {82, 167}, {83,
166}, {9, 255}, {47, 217}, {8, 255}, {51, 203}, {52, 204}, {83, 171}, {26, 227},
{77, 180}, {83, 170}, {25, 227}, {78, 180}, {84, 174}, {85, 175}, {84, 175},
{85, 174}, {65, 189}, {25, 228}, {64, 189}, {78, 179}, {26, 228}, {64, 190},
{77, 179}, {84, 170}, {51, 204}, {65, 190}, {52, 203}, {84, 171}, {22, 278},
{55, 311}, {23, 278}, {54, 311}, {23, 277}, {22, 277}, {63, 316}, {63, 315},
{31, 282}, {31, 281}, {5, 269}, {8, 256}, {72, 320}, {4, 269}, {9, 256}, {73,
320}, {4, 270}, {37, 303}, {5, 270}, {36, 303}, {54, 312}, {55, 312}, {49, 289},
{50, 290}, {18, 259}, {81, 320}, {17, 259}, {26, 264}, {27, 264}, {50, 289},
{49, 290}, {36, 304}, {17, 260}, {37, 304}, {18, 260}, {45, 308}, {46, 308},
{13, 273}, {58, 294}, {33, 317}, {27, 263}, {14, 274}, {26, 263}, {59, 294},
{46, 307}, {32, 317}, {1, 287}, {59, 293}, {45, 307}, {32, 318}, {13, 274}, {58,
293}, {33, 318}, {14, 273}, {1, 288}, {53, 276}, {24, 313}, {24, 314}, {54,
276}, {45, 271}, {44, 271}, {54, 275}, {53, 275}, {62, 280}, {63, 280}, {35,
267}, {63, 279}, {36, 268}, {10, 291}, {62, 279}, {9, 291}, {9, 292}, {23, 314},
{10, 292}, {23, 313}, {35, 268}, {36, 267}, {27, 299}, {28, 300}, {5, 305}, {41,
285}, {19, 295}, {6, 306}, {18, 295}, {40, 285}, {40, 286}, {5, 306}, {41, 286},
{28, 299}, {27, 300}, {6, 305}, {14, 310}, {58, 258}, {57, 257}, {15, 310}, {32,
281}, {15, 309}, {32, 282}, {18, 296}, {14, 309}, {58, 257}, {57, 258}, {19,
296}, {44, 272}, {45, 272}, {118, 310}, {119, 311}, {75, 266}, {119, 310}, {118,
311}, {75, 265}, {120, 314}, {120, 315}, {66, 262}, {118, 306}, {67, 262}, {118,
307}, {76, 265}, {67, 261}, {121, 319}, {120, 318}, {117, 307}, {76, 266}, {66,
261}, {121, 318}, {120, 319}, {117, 306}, {119, 315}, {119, 314}, {80, 287},
{114, 290}, {114, 291}, {113, 291}, {72, 283}, {113, 290}, {72, 284}, {115,
295}, {114, 294}, {114, 295}, {115, 294}, {115, 299}, {115, 298}, {116, 302},
{117, 303}, {71, 284}, {117, 302}, {116, 303}, {71, 283}, {116, 298}, {116,
299}, {77, 301}, {107, 267}, {76, 301}, {107, 266}, {76, 302}, {109, 271}, {108,
270}, {77, 302}, {109, 270}, {108, 271}, {108, 266}, {108, 267}, {106, 258},
{67, 298}, {106, 259}, {67, 297}, {112, 282}, {105, 259}, {105, 258}, {112,
283}, {81, 317}, {107, 263}, {106, 262}, {68, 297}, {107, 262}, {106, 263}, {68,
298}, {113, 287}, {112, 286}, {112, 287}, {113, 286}, {80, 288}, {111, 283},
{111, 282}, {73, 319}, {72, 319}, {110, 278}, {111, 279}, {110, 279}, {111,
278}, {64, 315}, {64, 316}, {110, 274}, {110, 275}, {109, 275}, {109, 274},
{149, 276}, {152, 281}, {150, 276}, {151, 277}, {150, 277}, {148, 272}, {153,
285}, {152, 284}, {149, 273}, {149, 272}, {152, 285}, {150, 273}, {151, 284},
{150, 280}, {151, 281}, {151, 280}, {144, 256}, {145, 257}, {145, 256}, {146,
257}, {145, 260}, {146, 260}, {147, 261}, {146, 261}, {148, 268}, {149, 269},
{148, 269}, {160, 313}, {146, 264}, {147, 265}, {147, 264}, {160, 316}, {148,
265}, {160, 317}, {147, 268}, {159, 316}, {158, 312}, {159, 313}, {159, 312},
{157, 308}, {158, 308}, {159, 309}, {158, 309}, {156, 304}, {157, 305}, {157,
304}, {158, 305}, {156, 300}, {157, 301}, {156, 301}, {154, 296}, {155, 297},
{155, 296}, {156, 297}, {155, 300}, {152, 288}, {153, 289}, {153, 288}, {154,
289}, {153, 292}, {154, 292}, {155, 293}, {154, 293}, {160, 320} }>;
(II) A more general form is to represent the graph as the orbit of {128, 185}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80)(81,
90, 99, 108, 117, 126, 135, 144, 153, 82, 91, 100, 109, 118, 127, 136, 145, 154,
83, 92, 101, 110, 119, 128, 137, 146, 155, 84, 93, 102, 111, 120, 129, 138, 147,
156, 85, 94, 103, 112, 121, 130, 139, 148, 157, 86, 95, 104, 113, 122, 131, 140,
149, 158, 87, 96, 105, 114, 123, 132, 141, 150, 159, 88, 97, 106, 115, 124, 133,
142, 151, 160, 89, 98, 107, 116, 125, 134, 143, 152)(161, 197, 233, 269, 305,
183, 219, 255, 291, 165, 201, 237, 273, 309, 187, 223, 259, 295, 169, 205, 241,
277, 313, 191, 227, 263, 299, 173, 209, 245, 281, 317, 195, 231, 267, 303, 177,
213, 249, 285, 163, 199, 235, 271, 307, 181, 217, 253, 289, 167, 203, 239, 275,
311, 185, 221, 257, 293, 171, 207, 243, 279, 315, 189, 225, 261, 297, 175, 211,
247, 283, 319, 193, 229, 265, 301, 179, 215, 251, 287)(162, 198, 234, 270, 306,
184, 220, 256, 292, 166, 202, 238, 274, 310, 188, 224, 260, 296, 170, 206, 242,
278, 314, 192, 228, 264, 300, 174, 210, 246, 282, 318, 196, 232, 268, 304, 178,
214, 250, 286, 164, 200, 236, 272, 308, 182, 218, 254, 290, 168, 204, 240, 276,
312, 186, 222, 258, 294, 172, 208, 244, 280, 316, 190, 226, 262, 298, 176, 212,
248, 284, 320, 194, 230, 266, 302, 180, 216, 252, 288) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 81)(2, 82)(3, 83)(4, 84)(5, 85)(6, 86)(7, 87)(8, 88)(9, 89)(10, 90)(11,
91)(12, 92)(13, 93)(14, 94)(15, 95)(16, 96)(17, 97)(18, 98)(19, 99)(20, 100)(21,
101)(22, 102)(23, 103)(24, 104)(25, 105)(26, 106)(27, 107)(28, 108)(29, 109)(30,
110)(31, 111)(32, 112)(33, 113)(34, 114)(35, 115)(36, 116)(37, 117)(38, 118)(39,
119)(40, 120)(41, 121)(42, 122)(43, 123)(44, 124)(45, 125)(46, 126)(47, 127)(48,
128)(49, 129)(50, 130)(51, 131)(52, 132)(53, 133)(54, 134)(55, 135)(56, 136)(57,
137)(58, 138)(59, 139)(60, 140)(61, 141)(62, 142)(63, 143)(64, 144)(65, 145)(66,
146)(67, 147)(68, 148)(69, 149)(70, 150)(71, 151)(72, 152)(73, 153)(74, 154)(75,
155)(76, 156)(77, 157)(78, 158)(79, 159)(80, 160)(161, 163)(165, 199)(166,
198)(167, 197)(168, 200)(169, 235)(170, 234)(171, 233)(172, 236)(173, 271)(174,
270)(175, 269)(176, 272)(177, 307)(178, 306)(179, 305)(180, 308)(182, 184)(185,
217)(186, 220)(187, 219)(188, 218)(189, 253)(190, 256)(191, 255)(192, 254)(193,
289)(194, 292)(195, 291)(196, 290)(201, 203)(205, 239)(206, 238)(207, 237)(208,
240)(209, 275)(210, 274)(211, 273)(212, 276)(213, 311)(214, 310)(215, 309)(216,
312)(222, 224)(225, 257)(226, 260)(227, 259)(228, 258)(229, 293)(230, 296)(231,
295)(232, 294)(241, 243)(245, 279)(246, 278)(247, 277)(248, 280)(249, 315)(250,
314)(251, 313)(252, 316)(262, 264)(265, 297)(266, 300)(267, 299)(268, 298)(281,
283)(285, 319)(286, 318)(287, 317)(288, 320)(302, 304)
c: (2, 80)(3, 79)(4, 78)(5, 77)(6, 76)(7, 75)(8, 74)(9, 73)(10, 72)(11, 71)(12,
70)(13, 69)(14, 68)(15, 67)(16, 66)(17, 65)(18, 64)(19, 63)(20, 62)(21, 61)(22,
60)(23, 59)(24, 58)(25, 57)(26, 56)(27, 55)(28, 54)(29, 53)(30, 52)(31, 51)(32,
50)(33, 49)(34, 48)(35, 47)(36, 46)(37, 45)(38, 44)(39, 43)(40, 42)(81, 113)(82,
112)(83, 111)(84, 110)(85, 109)(86, 108)(87, 107)(88, 106)(89, 105)(90, 104)(91,
103)(92, 102)(93, 101)(94, 100)(95, 99)(96, 98)(114, 160)(115, 159)(116,
158)(117, 157)(118, 156)(119, 155)(120, 154)(121, 153)(122, 152)(123, 151)(124,
150)(125, 149)(126, 148)(127, 147)(128, 146)(129, 145)(130, 144)(131, 143)(132,
142)(133, 141)(134, 140)(135, 139)(136, 138)(161, 288)(162, 287)(163, 286)(164,
285)(165, 284)(166, 283)(167, 282)(168, 281)(169, 280)(170, 279)(171, 278)(172,
277)(173, 276)(174, 275)(175, 274)(176, 273)(177, 272)(178, 271)(179, 270)(180,
269)(181, 268)(182, 267)(183, 266)(184, 265)(185, 264)(186, 263)(187, 262)(188,
261)(189, 260)(190, 259)(191, 258)(192, 257)(193, 256)(194, 255)(195, 254)(196,
253)(197, 252)(198, 251)(199, 250)(200, 249)(201, 248)(202, 247)(203, 246)(204,
245)(205, 244)(206, 243)(207, 242)(208, 241)(209, 240)(210, 239)(211, 238)(212,
237)(213, 236)(214, 235)(215, 234)(216, 233)(217, 232)(218, 231)(219, 230)(220,
229)(221, 228)(222, 227)(223, 226)(224, 225)(289, 318)(290, 317)(291, 320)(292,
319)(293, 314)(294, 313)(295, 316)(296, 315)(297, 310)(298, 309)(299, 312)(300,
311)(301, 306)(302, 305)(303, 308)(304, 307)
d: (81, 121)(82, 122)(83, 123)(84, 124)(85, 125)(86, 126)(87, 127)(88, 128)(89,
129)(90, 130)(91, 131)(92, 132)(93, 133)(94, 134)(95, 135)(96, 136)(97, 137)(98,
138)(99, 139)(100, 140)(101, 141)(102, 142)(103, 143)(104, 144)(105, 145)(106,
146)(107, 147)(108, 148)(109, 149)(110, 150)(111, 151)(112, 152)(113, 153)(114,
154)(115, 155)(116, 156)(117, 157)(118, 158)(119, 159)(120, 160)(161, 162)(163,
164)(165, 166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179,
180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)(193, 194)(195,
196)(197, 198)(199, 200)(201, 202)(203, 204)(205, 206)(207, 208)(209, 210)(211,
212)(213, 214)(215, 216)(217, 218)(219, 220)(221, 222)(223, 224)(225, 226)(227,
228)(229, 230)(231, 232)(233, 234)(235, 236)(237, 238)(239, 240)(241, 242)(243,
244)(245, 246)(247, 248)(249, 250)(251, 252)(253, 254)(255, 256)(257, 258)(259,
260)(261, 262)(263, 264)(265, 266)(267, 268)(269, 270)(271, 272)(273, 274)(275,
276)(277, 278)(279, 280)(281, 282)(283, 284)(285, 286)(287, 288)(289, 290)(291,
292)(293, 294)(295, 296)(297, 298)(299, 300)(301, 302)(303, 304)(305, 306)(307,
308)(309, 310)(311, 312)(313, 314)(315, 316)(317, 318)(319, 320)
C4[ 320, 78 ]
320
-1 287 288 161 162
-2 198 161 162 197
-3 198 233 234 197
-4 233 234 269 270
-5 269 270 305 306
-6 183 184 305 306
-7 220 183 184 219
-8 220 255 256 219
-9 255 256 291 292
-10 165 166 291 292
-11 165 166 201 202
-12 201 202 237 238
-13 237 238 273 274
-14 309 310 273 274
-15 187 188 309 310
-16 187 188 223 224
-17 223 224 259 260
-18 259 260 295 296
-19 169 170 295 296
-20 169 170 205 206
-21 242 205 206 241
-22 242 277 278 241
-23 277 278 313 314
-24 191 192 313 314
-25 191 192 227 228
-26 264 227 228 263
-27 264 299 300 263
-28 299 300 173 174
-29 209 210 173 174
-30 209 210 245 246
-31 245 246 281 282
-32 281 282 317 318
-33 195 196 317 318
-34 231 232 195 196
-35 231 232 267 268
-36 267 268 303 304
-37 177 178 303 304
-38 177 178 213 214
-39 213 214 249 250
-40 286 249 250 285
-41 286 163 164 285
-42 199 200 163 164
-43 199 200 235 236
-44 235 236 271 272
-45 308 271 272 307
-46 308 181 182 307
-47 181 182 217 218
-48 253 254 217 218
-49 253 254 289 290
-50 167 168 289 290
-51 167 168 203 204
-52 203 204 239 240
-53 275 276 239 240
-54 275 276 311 312
-55 311 312 185 186
-56 221 222 185 186
-57 221 222 257 258
-58 257 258 293 294
-59 171 172 293 294
-60 171 172 207 208
-61 243 244 207 208
-62 243 244 279 280
-63 279 280 315 316
-64 189 190 315 316
-65 189 190 225 226
-66 225 226 261 262
-67 297 298 261 262
-68 176 297 298 175
-69 176 211 212 175
-70 211 212 247 248
-71 247 248 283 284
-72 319 320 283 284
-73 319 320 193 194
-74 193 194 229 230
-75 265 266 229 230
-76 265 266 301 302
-77 179 180 301 302
-78 179 180 215 216
-79 215 216 251 252
-80 287 288 251 252
-81 320 162 163 317
-82 166 167 162 163
-83 166 167 170 171
-84 170 171 174 175
-85 178 179 174 175
-86 178 179 182 183
-87 187 182 183 186
-88 187 190 191 186
-89 190 191 194 195
-90 198 199 194 195
-91 198 199 202 203
-92 202 203 206 207
-93 210 211 206 207
-94 210 211 214 215
-95 214 215 218 219
-96 222 223 218 219
-97 222 223 226 227
-98 231 226 227 230
-99 231 234 235 230
-100 234 235 238 239
-101 242 243 238 239
-102 242 243 246 247
-103 246 247 250 251
-104 254 255 250 251
-105 254 255 258 259
-106 258 259 262 263
-107 266 267 262 263
-108 266 267 270 271
-109 275 270 271 274
-110 275 278 279 274
-111 278 279 282 283
-112 286 287 282 283
-113 286 287 290 291
-114 290 291 294 295
-115 298 299 294 295
-116 298 299 302 303
-117 302 303 306 307
-118 310 311 306 307
-119 310 311 314 315
-120 319 314 315 318
-121 319 161 164 318
-122 165 168 161 164
-123 165 168 169 172
-124 176 169 172 173
-125 176 177 180 173
-126 177 180 181 184
-127 188 181 184 185
-128 188 189 192 185
-129 189 192 193 196
-130 200 193 196 197
-131 200 201 204 197
-132 201 204 205 208
-133 209 212 205 208
-134 209 212 213 216
-135 220 213 216 217
-136 220 221 224 217
-137 221 224 225 228
-138 232 225 228 229
-139 232 233 236 229
-140 233 236 237 240
-141 244 237 240 241
-142 244 245 248 241
-143 245 248 249 252
-144 253 256 249 252
-145 253 256 257 260
-146 264 257 260 261
-147 264 265 268 261
-148 265 268 269 272
-149 276 269 272 273
-150 276 277 280 273
-151 277 280 281 284
-152 288 281 284 285
-153 288 289 292 285
-154 289 292 293 296
-155 297 300 293 296
-156 297 300 301 304
-157 308 301 304 305
-158 308 309 312 305
-159 309 312 313 316
-160 320 313 316 317
-161 121 1 122 2
-162 1 2 81 82
-163 81 82 41 42
-164 121 122 41 42
-165 11 122 123 10
-166 11 82 83 10
-167 82 50 83 51
-168 122 123 50 51
-169 123 124 19 20
-170 83 84 19 20
-171 59 60 83 84
-172 123 124 59 60
-173 124 125 28 29
-174 28 29 84 85
-175 68 69 84 85
-176 68 69 124 125
-177 37 125 38 126
-178 37 38 85 86
-179 77 78 85 86
-180 77 78 125 126
-181 46 47 126 127
-182 46 47 86 87
-183 6 7 86 87
-184 126 6 127 7
-185 55 56 127 128
-186 55 88 56 87
-187 88 15 16 87
-188 15 16 127 128
-189 128 129 64 65
-190 88 89 64 65
-191 88 89 24 25
-192 24 25 128 129
-193 73 74 129 130
-194 89 90 73 74
-195 33 34 89 90
-196 33 34 129 130
-197 2 3 130 131
-198 2 90 3 91
-199 90 91 42 43
-200 42 130 43 131
-201 11 132 12 131
-202 11 12 91 92
-203 91 92 51 52
-204 132 51 52 131
-205 132 133 20 21
-206 92 93 20 21
-207 92 60 93 61
-208 132 133 60 61
-209 133 134 29 30
-210 93 94 29 30
-211 69 70 93 94
-212 133 134 69 70
-213 134 135 38 39
-214 38 39 94 95
-215 78 79 94 95
-216 78 79 134 135
-217 47 135 48 136
-218 47 48 95 96
-219 7 95 8 96
-220 135 136 7 8
-221 56 57 136 137
-222 56 57 96 97
-223 16 17 96 97
-224 136 16 137 17
-225 66 137 138 65
-226 66 97 65 98
-227 25 26 97 98
-228 25 26 137 138
-229 138 139 74 75
-230 99 74 75 98
-231 99 34 35 98
-232 34 35 138 139
-233 3 4 139 140
-234 99 100 3 4
-235 44 99 100 43
-236 44 139 140 43
-237 12 13 140 141
-238 12 100 13 101
-239 100 101 52 53
-240 52 140 53 141
-241 22 141 21 142
-242 22 101 102 21
-243 101 102 61 62
-244 61 62 141 142
-245 143 30 31 142
-246 102 103 30 31
-247 102 70 103 71
-248 143 70 71 142
-249 143 144 39 40
-250 103 104 39 40
-251 79 80 103 104
-252 143 144 79 80
-253 144 145 48 49
-254 48 49 104 105
-255 104 105 8 9
-256 144 145 8 9
-257 57 145 58 146
-258 57 58 105 106
-259 17 105 18 106
-260 145 146 17 18
-261 66 67 146 147
-262 66 67 106 107
-263 26 27 106 107
-264 146 26 147 27
-265 147 148 75 76
-266 107 75 108 76
-267 35 36 107 108
-268 35 36 147 148
-269 4 5 148 149
-270 4 5 108 109
-271 44 45 108 109
-272 44 45 148 149
-273 13 14 149 150
-274 110 13 14 109
-275 110 53 54 109
-276 149 150 53 54
-277 22 23 150 151
-278 22 110 23 111
-279 110 111 62 63
-280 62 150 63 151
-281 151 31 152 32
-282 111 112 31 32
-283 111 112 71 72
-284 71 72 151 152
-285 40 41 152 153
-286 112 113 40 41
-287 1 112 80 113
-288 1 80 152 153
-289 154 49 50 153
-290 113 114 49 50
-291 113 114 9 10
-292 154 9 10 153
-293 154 155 58 59
-294 58 59 114 115
-295 114 115 18 19
-296 154 155 18 19
-297 67 155 68 156
-298 67 68 115 116
-299 27 115 28 116
-300 155 156 27 28
-301 77 156 157 76
-302 77 116 117 76
-303 36 37 116 117
-304 156 36 157 37
-305 157 158 5 6
-306 5 6 117 118
-307 45 46 117 118
-308 45 46 157 158
-309 14 15 158 159
-310 14 15 118 119
-311 55 118 119 54
-312 55 158 159 54
-313 23 24 159 160
-314 23 24 119 120
-315 63 64 119 120
-316 159 160 63 64
-317 33 81 160 32
-318 33 121 32 120
-319 121 72 73 120
-320 81 72 160 73
0