[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 86 ] =
UG(ATD[320,33]).
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {208, 210}, {104, 107}, {268, 271}, {188, 191}, {184, 187}, {1,
5}, {209, 213}, {203, 207}, {99, 102}, {155, 158}, {281, 286}, {1, 9}, {209,
217}, {66, 72}, {272, 282}, {70, 76}, {1, 13}, {52, 56}, {134, 139}, {275, 285},
{289, 303}, {140, 156}, {10, 27}, {261, 276}, {257, 272}, {34, 51}, {1, 21},
{41, 61}, {9, 29}, {5, 17}, {204, 218}, {229, 243}, {43, 60}, {9, 17}, {133,
157}, {6, 31}, {303, 310}, {34, 59}, {204, 214}, {5, 25}, {37, 57}, {15, 18},
{46, 51}, {35, 62}, {192, 222}, {104, 119}, {301, 306}, {5, 37}, {73, 105}, {69,
101}, {65, 97}, {29, 61}, {25, 57}, {21, 53}, {17, 49}, {13, 45}, {9, 41}, {267,
298}, {196, 230}, {277, 305}, {7, 34}, {276, 305}, {275, 310}, {31, 58}, {27,
62}, {203, 236}, {257, 294}, {19, 58}, {268, 293}, {202, 227}, {267, 289}, {258,
297}, {13, 33}, {154, 183}, {280, 309}, {192, 237}, {128, 174}, {212, 250}, {67,
108}, {275, 316}, {75, 100}, {150, 185}, {136, 184}, {281, 297}, {201, 249}, {2,
51}, {268, 317}, {21, 33}, {211, 228}, {135, 191}, {14, 55}, {284, 293}, {210,
235}, {22, 47}, {280, 290}, {203, 240}, {193, 253}, {3, 62}, {258, 319}, {210,
239}, {132, 186}, {157, 221}, {26, 91}, {183, 246}, {35, 98}, {30, 95}, {151,
214}, {44, 110}, {190, 252}, {158, 220}, {140, 207}, {160, 228}, {185, 253},
{18, 87}, {47, 106}, {39, 96}, {191, 248}, {173, 229}, {27, 82}, {155, 210},
{134, 204}, {149, 223}, {13, 65}, {164, 232}, {45, 97}, {29, 81}, {129, 205},
{26, 87}, {182, 251}, {151, 218}, {158, 208}, {171, 229}, {31, 78}, {17, 69},
{189, 233}, {181, 225}, {49, 101}, {41, 125}, {33, 117}, {25, 77}, {129, 213},
{133, 209}, {2, 87}, {55, 98}, {139, 222}, {42, 124}, {32, 119}, {177, 230},
{169, 254}, {156, 203}, {140, 219}, {129, 217}, {184, 224}, {63, 102}, {153,
192}, {151, 206}, {40, 114}, {44, 118}, {128, 218}, {21, 73}, {53, 105}, {37,
121}, {58, 103}, {38, 120}, {181, 234}, {189, 226}, {26, 120}, {44, 78}, {20,
119}, {36, 71}, {131, 224}, {150, 245}, {191, 219}, {155, 254}, {159, 250}, {46,
72}, {139, 237}, {39, 64}, {152, 240}, {15, 102}, {190, 215}, {186, 211}, {158,
247}, {38, 79}, {27, 114}, {130, 235}, {138, 227}, {29, 113}, {11, 102}, {130,
239}, {4, 106}, {182, 216}, {137, 249}, {18, 99}, {51, 66}, {38, 87}, {31, 110},
{132, 246}, {157, 238}, {185, 202}, {25, 109}, {41, 93}, {33, 85}, {140, 248},
{152, 236}, {128, 246}, {43, 92}, {32, 88}, {181, 205}, {133, 253}, {144, 232},
{19, 106}, {42, 83}, {40, 82}, {28, 96}, {37, 89}, {32, 92}, {148, 232}, {23,
104}, {56, 71}, {16, 144}, {96, 224}, {101, 229}, {55, 182}, {70, 196}, {64,
195}, {109, 238}, {89, 221}, {109, 233}, {117, 241}, {125, 249}, {10, 143}, {22,
147}, {95, 218}, {116, 241}, {74, 204}, {124, 250}, {49, 185}, {81, 217}, {69,
205}, {65, 201}, {53, 189}, {6, 143}, {15, 134}, {23, 156}, {16, 156}, {121,
245}, {82, 223}, {91, 214}, {126, 243}, {72, 198}, {60, 179}, {115, 252}, {123,
244}, {127, 240}, {48, 160}, {96, 240}, {47, 190}, {79, 222}, {59, 170}, {63,
172}, {6, 147}, {122, 239}, {126, 235}, {66, 212}, {116, 226}, {111, 248}, {123,
236}, {45, 181}, {77, 213}, {73, 209}, {10, 147}, {63, 166}, {59, 162}, {103,
254}, {113, 234}, {113, 237}, {14, 147}, {62, 163}, {58, 167}, {111, 242}, {126,
227}, {24, 134}, {86, 200}, {123, 228}, {127, 224}, {52, 148}, {84, 244}, {56,
152}, {121, 217}, {6, 167}, {91, 250}, {24, 186}, {81, 245}, {97, 197}, {11,
174}, {86, 243}, {78, 235}, {47, 138}, {94, 251}, {122, 223}, {8, 174}, {38,
128}, {11, 172}, {100, 195}, {80, 248}, {84, 252}, {125, 213}, {10, 163}, {54,
159}, {50, 155}, {95, 246}, {114, 219}, {114, 216}, {124, 214}, {45, 129}, {61,
145}, {7, 170}, {94, 243}, {90, 247}, {78, 227}, {99, 206}, {108, 194}, {112,
222}, {92, 236}, {83, 226}, {110, 220}, {49, 133}, {77, 249}, {57, 141}, {7,
178}, {74, 255}, {55, 130}, {15, 186}, {92, 228}, {46, 151}, {110, 215}, {106,
208}, {120, 194}, {53, 137}, {93, 225}, {23, 170}, {82, 239}, {50, 143}, {12,
178}, {118, 200}, {66, 131}, {74, 139}, {70, 135}, {107, 170}, {118, 180}, {112,
179}, {14, 200}, {22, 208}, {115, 180}, {88, 144}, {54, 255}, {70, 143}, {59,
242}, {98, 171}, {88, 148}, {109, 161}, {125, 177}, {42, 231}, {68, 138}, {76,
130}, {124, 178}, {8, 199}, {12, 195}, {16, 195}, {75, 152}, {65, 149}, {73,
157}, {113, 165}, {117, 161}, {121, 173}, {107, 188}, {127, 168}, {24, 194},
{116, 175}, {69, 153}, {117, 169}, {34, 255}, {122, 167}, {126, 163}, {22, 200},
{111, 176}, {119, 168}, {123, 164}, {79, 174}, {83, 178}, {67, 160}, {85, 177},
{105, 141}, {2, 231}, {71, 172}, {77, 161}, {93, 177}, {100, 136}, {64, 175},
{84, 164}, {88, 168}, {52, 199}, {28, 232}, {89, 173}, {81, 165}, {100, 144},
{18, 231}, {50, 196}, {120, 142}, {57, 193}, {80, 168}, {61, 197}, {30, 231},
{91, 162}, {95, 166}, {99, 154}, {68, 190}, {76, 182}, {60, 199}, {86, 173},
{105, 146}, {8, 244}, {85, 169}, {2, 255}, {94, 163}, {90, 167}, {11, 244}, {24,
283}, {67, 320}, {28, 287}, {35, 298}, {54, 319}, {42, 288}, {3, 264}, {3, 270},
{46, 291}, {14, 259}, {54, 295}, {8, 283}, {40, 315}, {32, 308}, {7, 274}, {19,
262}, {12, 282}, {44, 314}, {48, 296}, {16, 266}, {20, 270}, {4, 287}, {56,
292}, {23, 266}, {12, 274}, {36, 314}, {39, 312}, {43, 308}, {39, 262}, {43,
264}, {28, 312}, {60, 283}, {4, 300}, {26, 307}, {30, 311}, {3, 296}, {63, 276},
{36, 271}, {35, 264}, {20, 315}, {48, 256}, {52, 260}, {40, 286}, {36, 287},
{50, 265}, {20, 296}, {4, 314}, {30, 288}, {19, 300}, {103, 294}, {111, 302},
{76, 270}, {80, 274}, {71, 260}, {115, 304}, {83, 279}, {85, 273}, {93, 280},
{86, 284}, {68, 271}, {90, 273}, {89, 277}, {72, 282}, {104, 315}, {79, 278},
{64, 282}, {68, 293}, {98, 259}, {103, 262}, {112, 275}, {116, 279}, {84, 304},
{112, 278}, {75, 300}, {108, 267}, {115, 276}, {67, 298}, {107, 258}, {118,
284}, {122, 273}, {74, 295}, {127, 274}, {75, 292}, {48, 320}, {94, 303}, {90,
301}, {108, 283}, {97, 281}, {101, 285}, {80, 302}, {132, 260}, {171, 298},
{142, 269}, {176, 309}, {187, 318}, {180, 305}, {179, 310}, {183, 304}, {137,
257}, {141, 261}, {131, 266}, {135, 270}, {176, 315}, {149, 280}, {180, 314},
{169, 294}, {162, 307}, {166, 311}, {131, 279}, {153, 269}, {148, 256}, {150,
259}, {188, 297}, {145, 263}, {161, 313}, {216, 320}, {165, 316}, {145, 269},
{149, 265}, {159, 258}, {187, 294}, {175, 306}, {188, 290}, {138, 277}, {166,
261}, {172, 271}, {136, 300}, {137, 301}, {135, 290}, {162, 263}, {141, 299},
{154, 317}, {142, 295}, {175, 262}, {146, 313}, {187, 272}, {176, 286}, {184,
279}, {154, 299}, {159, 302}, {142, 316}, {146, 288}, {132, 304}, {136, 318},
{171, 285}, {160, 278}, {145, 295}, {153, 289}, {165, 285}, {146, 299}, {150,
303}, {164, 287}, {251, 320}, {183, 268}, {179, 264}, {189, 257}, {201, 265},
{205, 269}, {226, 291}, {197, 263}, {241, 306}, {193, 261}, {211, 278}, {247,
306}, {199, 256}, {242, 309}, {241, 313}, {202, 259}, {247, 318}, {233, 291},
{192, 267}, {251, 310}, {207, 256}, {238, 317}, {225, 309}, {245, 289}, {234,
319}, {198, 272}, {211, 260}, {252, 292}, {234, 307}, {238, 311}, {196, 286},
{212, 266}, {237, 307}, {233, 311}, {225, 319}, {202, 277}, {221, 317}, {253,
284}, {220, 318}, {193, 293}, {220, 312}, {201, 301}, {206, 299}, {198, 288},
{207, 296}, {197, 297}, {221, 305}, {216, 308}, {206, 291}, {215, 312}, {219,
308}, {215, 292}, {242, 263}, {230, 273}, {254, 265}, {212, 302}, {223, 290},
{194, 316}, {198, 313}, {230, 281} }>;
(II) A more general form is to represent the graph as the orbit of {208, 210}
under the group generated by the following permutations:
a: (1, 2)(5, 51)(6, 52)(7, 49)(8, 50)(9, 255)(10, 256)(11, 254)(12, 253)(13,
87)(14, 88)(15, 85)(16, 86)(17, 34)(18, 33)(19, 36)(20, 35)(21, 231)(22,
232)(23, 229)(24, 230)(25, 46)(26, 45)(27, 48)(28, 47)(29, 54)(30, 53)(31,
56)(32, 55)(37, 66)(38, 65)(39, 68)(40, 67)(41, 74)(42, 73)(43, 76)(44, 75)(57,
72)(58, 71)(59, 69)(60, 70)(61, 295)(62, 296)(63, 294)(64, 293)(77, 151)(78,
152)(79, 149)(80, 150)(81, 159)(82, 160)(83, 157)(84, 158)(89, 131)(90, 132)(91,
129)(92, 130)(93, 139)(94, 140)(95, 137)(96, 138)(97, 120)(98, 119)(99,
117)(100, 118)(101, 170)(102, 169)(103, 172)(104, 171)(105, 288)(106, 287)(107,
285)(108, 286)(109, 291)(110, 292)(111, 289)(112, 290)(113, 319)(114, 320)(115,
318)(116, 317)(121, 212)(122, 211)(123, 210)(124, 209)(125, 204)(126, 203)(127,
202)(128, 201)(133, 178)(134, 177)(135, 179)(136, 180)(141, 198)(142, 197)(143,
199)(144, 200)(147, 148)(153, 242)(154, 241)(155, 244)(156, 243)(161, 206)(162,
205)(163, 207)(164, 208)(165, 258)(166, 257)(167, 260)(168, 259)(173, 266)(174,
265)(175, 268)(176, 267)(181, 307)(182, 308)(183, 306)(184, 305)(185, 274)(186,
273)(187, 276)(188, 275)(189, 311)(190, 312)(191, 310)(192, 309)(193, 282)(194,
281)(195, 284)(196, 283)(213, 214)(217, 250)(218, 249)(219, 251)(220, 252)(221,
279)(222, 280)(223, 278)(224, 277)(225, 237)(226, 238)(227, 240)(228, 239)(235,
236)(245, 302)(246, 301)(247, 304)(248, 303)(261, 272)(262, 271)(263, 269)(264,
270)(297, 316)(298, 315)(299, 313)(300, 314) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 5, 17, 9)(2, 6, 18, 10)(3, 7, 19, 11)(4, 8, 20, 12)(13, 25, 49, 29)(14,
26, 50, 30)(15, 27, 51, 31)(16, 28, 52, 32)(21, 37, 69, 41)(22, 38, 70, 42)(23,
39, 71, 43)(24, 40, 72, 44)(33, 57, 101, 61)(34, 58, 102, 62)(35, 59, 103,
63)(36, 60, 104, 64)(45, 77, 133, 81)(46, 78, 134, 82)(47, 79, 135, 83)(48, 80,
136, 84)(53, 89, 153, 93)(54, 90, 154, 94)(55, 91, 155, 95)(56, 92, 156, 96)(65,
109, 185, 113)(66, 110, 186, 114)(67, 111, 187, 115)(68, 112, 188, 116)(73, 121,
205, 125)(74, 122, 206, 126)(75, 123, 207, 127)(76, 124, 208, 128)(85, 141, 229,
145)(86, 142, 230, 146)(87, 143, 231, 147)(88, 144, 232, 148)(97, 161, 253,
165)(98, 162, 254, 166)(99, 163, 255, 167)(100, 164, 256, 168)(105, 173, 269,
177)(106, 174, 270, 178)(107, 175, 271, 179)(108, 176, 272, 180)(117, 193, 285,
197)(118, 194, 286, 198)(119, 195, 287, 199)(120, 196, 288, 200)(129, 213, 209,
217)(130, 214, 210, 218)(131, 215, 211, 219)(132, 216, 212, 220)(137, 221, 289,
225)(138, 222, 290, 226)(139, 223, 291, 227)(140, 224, 292, 228)(149, 233, 202,
237)(150, 234, 201, 238)(151, 235, 204, 239)(152, 236, 203, 240)(157, 245, 181,
249)(158, 246, 182, 250)(159, 247, 183, 251)(160, 248, 184, 252)(169, 261, 171,
263)(170, 262, 172, 264)(189, 277, 192, 280)(190, 278, 191, 279)(241, 293, 275,
297)(242, 294, 276, 298)(243, 295, 273, 299)(244, 296, 274, 300)(257, 305, 267,
309)(258, 306, 268, 310)(259, 307, 265, 311)(260, 308, 266, 312)(281, 313, 284,
316)(282, 314, 283, 315)(301, 317, 303, 319)(302, 318, 304, 320)
c: (3, 4)(5, 13)(6, 14)(7, 15)(8, 16)(9, 21)(10, 22)(11, 23)(12, 24)(17, 33)(18,
34)(19, 35)(20, 36)(25, 45)(26, 46)(27, 47)(28, 48)(29, 53)(30, 54)(31, 55)(32,
56)(37, 65)(38, 66)(39, 67)(40, 68)(41, 73)(42, 74)(43, 75)(44, 76)(49, 85)(50,
86)(51, 87)(52, 88)(57, 97)(58, 98)(59, 99)(60, 100)(61, 105)(62, 106)(63,
107)(64, 108)(69, 117)(70, 118)(71, 119)(72, 120)(77, 129)(78, 130)(79, 131)(80,
132)(81, 137)(82, 138)(83, 139)(84, 140)(89, 149)(90, 150)(91, 151)(92, 152)(93,
157)(94, 158)(95, 159)(96, 160)(101, 169)(102, 170)(103, 171)(104, 172)(109,
181)(110, 182)(111, 183)(112, 184)(113, 189)(114, 190)(115, 191)(116, 192)(121,
201)(122, 202)(123, 203)(124, 204)(125, 209)(126, 210)(127, 211)(128, 212)(133,
177)(134, 178)(135, 180)(136, 179)(141, 197)(142, 198)(143, 200)(144, 199)(145,
146)(153, 241)(154, 242)(155, 243)(156, 244)(161, 205)(162, 206)(163, 208)(164,
207)(165, 257)(166, 258)(167, 259)(168, 260)(173, 265)(174, 266)(175, 267)(176,
268)(185, 273)(186, 274)(187, 275)(188, 276)(193, 281)(194, 282)(195, 283)(196,
284)(215, 216)(217, 249)(218, 250)(219, 252)(220, 251)(221, 280)(222, 279)(223,
277)(224, 278)(225, 238)(226, 237)(227, 239)(228, 240)(229, 254)(230, 253)(231,
255)(232, 256)(233, 234)(245, 301)(246, 302)(247, 303)(248, 304)(261, 297)(262,
298)(263, 299)(264, 300)(269, 313)(270, 314)(271, 315)(272, 316)(285, 294)(286,
293)(287, 296)(288, 295)(289, 306)(290, 305)(291, 307)(292, 308)(309, 317)(310,
318)(311, 319)(312, 320)
d: (1, 3)(2, 4)(5, 264)(6, 263)(7, 262)(8, 261)(9, 62)(10, 61)(11, 63)(12,
64)(13, 270)(14, 269)(15, 271)(16, 272)(17, 35)(18, 36)(19, 34)(20, 33)(21,
296)(22, 295)(23, 294)(24, 293)(25, 43)(26, 44)(27, 41)(28, 42)(29, 163)(30,
164)(31, 162)(32, 161)(37, 179)(38, 180)(39, 178)(40, 177)(45, 76)(46, 75)(47,
74)(48, 73)(49, 298)(50, 297)(51, 300)(52, 299)(53, 207)(54, 208)(55, 205)(56,
206)(57, 60)(58, 59)(65, 135)(66, 136)(67, 133)(68, 134)(69, 98)(70, 97)(71,
99)(72, 100)(77, 308)(78, 307)(79, 305)(80, 306)(81, 94)(82, 93)(83, 96)(84,
95)(85, 315)(86, 316)(87, 314)(88, 313)(89, 112)(90, 111)(91, 110)(92, 109)(101,
171)(102, 172)(103, 170)(104, 169)(105, 256)(106, 255)(107, 254)(108, 253)(113,
126)(114, 125)(115, 128)(116, 127)(117, 119)(118, 120)(121, 310)(122, 309)(123,
311)(124, 312)(129, 182)(130, 181)(131, 184)(132, 183)(137, 140)(138, 139)(141,
199)(142, 200)(143, 197)(144, 198)(145, 147)(146, 148)(149, 290)(150, 289)(151,
292)(152, 291)(153, 259)(154, 260)(155, 258)(156, 257)(157, 160)(158, 159)(165,
243)(166, 244)(167, 242)(168, 241)(173, 275)(174, 276)(175, 274)(176, 273)(185,
267)(186, 268)(187, 266)(188, 265)(189, 203)(190, 204)(191, 201)(192, 202)(193,
283)(194, 284)(195, 282)(196, 281)(209, 320)(210, 319)(211, 317)(212, 318)(213,
216)(214, 215)(217, 251)(218, 252)(219, 249)(220, 250)(221, 278)(222, 277)(223,
280)(224, 279)(225, 239)(226, 240)(227, 237)(228, 238)(229, 285)(230, 286)(231,
287)(232, 288)(233, 236)(234, 235)(245, 303)(246, 304)(247, 302)(248, 301)
C4[ 320, 86 ]
320
-1 13 5 9 21
-2 231 255 51 87
-3 264 270 62 296
-4 287 300 314 106
-5 1 25 37 17
-6 143 167 147 31
-7 34 178 170 274
-8 199 244 283 174
-9 1 17 29 41
-10 143 147 27 163
-11 244 102 172 174
-12 178 282 195 274
-13 33 1 45 65
-14 55 200 147 259
-15 134 102 18 186
-16 144 156 266 195
-17 69 5 49 9
-18 99 231 15 87
-19 58 300 106 262
-20 270 315 119 296
-21 33 1 73 53
-22 200 47 147 208
-23 156 266 104 170
-24 134 194 283 186
-25 77 57 5 109
-26 91 87 120 307
-27 114 82 62 10
-28 232 287 312 96
-29 113 81 61 9
-30 231 288 311 95
-31 110 78 58 6
-32 88 308 92 119
-33 13 117 85 21
-34 255 59 7 51
-35 264 298 62 98
-36 287 71 314 271
-37 121 89 57 5
-38 79 128 87 120
-39 312 96 64 262
-40 286 114 82 315
-41 125 93 61 9
-42 231 288 124 83
-43 264 308 92 60
-44 110 78 314 118
-45 13 181 129 97
-46 291 72 51 151
-47 22 190 138 106
-48 320 256 160 296
-49 133 101 17 185
-50 143 155 265 196
-51 66 34 2 46
-52 56 199 148 260
-53 189 137 105 21
-54 319 255 159 295
-55 14 182 130 98
-56 71 292 52 152
-57 25 37 193 141
-58 167 103 19 31
-59 242 34 170 162
-60 199 179 283 43
-61 145 29 41 197
-62 35 3 27 163
-63 166 276 102 172
-64 39 282 195 175
-65 13 201 149 97
-66 212 72 51 131
-67 298 320 160 108
-68 190 138 271 293
-69 101 17 205 153
-70 143 135 196 76
-71 56 36 172 260
-72 66 198 46 282
-73 209 157 105 21
-74 255 204 139 295
-75 100 300 292 152
-76 70 182 270 130
-77 25 213 161 249
-78 44 235 227 31
-79 222 278 38 174
-80 168 302 248 274
-81 165 245 29 217
-82 223 27 40 239
-83 178 279 226 42
-84 244 304 164 252
-85 33 177 169 273
-86 243 200 173 284
-87 2 26 38 18
-88 144 168 148 32
-89 221 277 37 173
-90 167 301 247 273
-91 26 214 162 250
-92 236 228 32 43
-93 177 225 280 41
-94 243 303 163 251
-95 166 246 30 218
-96 224 28 39 240
-97 45 281 65 197
-98 55 35 171 259
-99 154 102 18 206
-100 144 136 195 75
-101 69 49 229 285
-102 11 99 15 63
-103 254 58 294 262
-104 23 315 107 119
-105 146 73 53 141
-106 47 4 19 208
-107 188 104 170 258
-108 67 267 194 283
-109 233 25 161 238
-110 44 220 215 31
-111 176 242 302 248
-112 275 222 179 278
-113 165 234 237 29
-114 27 40 216 219
-115 276 180 304 252
-116 279 226 175 241
-117 33 169 161 241
-118 44 200 180 284
-119 168 104 20 32
-120 26 38 194 142
-121 245 37 173 217
-122 167 223 239 273
-123 244 236 228 164
-124 178 214 250 42
-125 177 213 249 41
-126 243 235 227 163
-127 168 224 240 274
-128 246 38 174 218
-129 45 213 205 217
-130 55 235 239 76
-131 66 266 224 279
-132 246 260 304 186
-133 209 253 157 49
-134 24 15 204 139
-135 70 191 290 270
-136 100 300 184 318
-137 257 301 249 53
-138 68 277 47 227
-139 134 222 237 74
-140 156 248 207 219
-141 57 299 105 261
-142 269 316 295 120
-143 70 6 50 10
-144 88 100 232 16
-145 269 61 295 263
-146 288 299 313 105
-147 22 14 6 10
-148 88 232 256 52
-149 265 223 280 65
-150 245 259 303 185
-151 46 214 206 218
-152 56 236 75 240
-153 69 289 192 269
-154 99 299 183 317
-155 210 254 158 50
-156 23 16 203 140
-157 133 221 73 238
-158 220 155 247 208
-159 258 302 250 54
-160 67 278 48 228
-161 77 313 117 109
-162 91 59 263 307
-163 126 94 62 10
-164 232 287 123 84
-165 113 81 316 285
-166 311 95 63 261
-167 122 90 58 6
-168 88 80 127 119
-169 254 117 85 294
-170 23 59 7 107
-171 298 229 98 285
-172 11 71 271 63
-173 121 89 86 229
-174 11 79 128 8
-175 116 64 262 306
-176 286 111 309 315
-177 125 93 85 230
-178 12 124 83 7
-179 264 112 310 60
-180 115 314 118 305
-181 45 234 225 205
-182 55 216 251 76
-183 154 246 268 304
-184 187 136 224 279
-185 253 202 49 150
-186 132 24 211 15
-187 184 272 294 318
-188 297 191 290 107
-189 233 257 226 53
-190 68 47 215 252
-191 188 135 248 219
-192 222 267 237 153
-193 253 57 293 261
-194 24 316 108 120
-195 12 100 16 64
-196 286 70 50 230
-197 297 61 97 263
-198 288 313 72 272
-199 256 60 8 52
-200 22 14 118 86
-201 265 301 249 65
-202 277 259 227 185
-203 156 236 207 240
-204 134 214 74 218
-205 69 181 269 129
-206 99 299 291 151
-207 256 203 140 296
-208 22 210 158 106
-209 133 213 73 217
-210 155 235 239 208
-211 278 260 228 186
-212 66 266 302 250
-213 77 209 125 129
-214 91 124 204 151
-215 110 190 312 292
-216 308 320 114 182
-217 121 209 81 129
-218 204 95 128 151
-219 308 114 191 140
-220 110 158 312 318
-221 89 157 305 317
-222 79 112 192 139
-223 122 290 82 149
-224 127 96 184 131
-225 319 309 93 181
-226 189 291 83 116
-227 78 202 126 138
-228 123 211 92 160
-229 243 101 171 173
-230 177 281 196 273
-231 2 18 30 42
-232 144 148 28 164
-233 189 311 291 109
-234 319 113 181 307
-235 78 210 126 130
-236 123 92 203 152
-237 113 192 139 307
-238 157 311 317 109
-239 122 210 82 130
-240 203 127 96 152
-241 313 116 117 306
-242 111 309 59 263
-243 126 94 86 229
-244 11 123 84 8
-245 121 289 81 150
-246 132 95 128 183
-247 90 158 306 318
-248 111 80 191 140
-249 77 201 125 137
-250 91 124 212 159
-251 320 310 94 182
-252 190 115 292 84
-253 133 193 185 284
-254 155 265 103 169
-255 34 2 74 54
-256 199 48 148 207
-257 189 137 272 294
-258 297 319 159 107
-259 14 202 150 98
-260 132 211 71 52
-261 166 276 193 141
-262 103 39 19 175
-263 242 145 162 197
-264 35 3 179 43
-265 254 201 50 149
-266 23 212 16 131
-267 298 289 192 108
-268 183 271 293 317
-269 145 205 142 153
-270 3 135 20 76
-271 68 36 268 172
-272 187 198 257 282
-273 122 90 85 230
-274 12 80 127 7
-275 112 310 316 285
-276 115 63 261 305
-277 89 202 138 305
-278 79 112 211 160
-279 83 116 184 131
-280 309 290 93 149
-281 286 297 97 230
-282 12 72 272 64
-283 24 60 8 108
-284 253 293 118 86
-285 165 275 101 171
-286 176 281 40 196
-287 36 4 28 164
-288 198 146 30 42
-289 245 267 303 153
-290 188 135 223 280
-291 46 233 226 206
-292 56 215 75 252
-293 68 268 193 284
-294 187 103 169 257
-295 145 74 54 142
-296 3 48 20 207
-297 188 258 281 197
-298 67 35 267 171
-299 154 146 206 141
-300 4 136 19 75
-301 90 201 137 306
-302 111 80 212 159
-303 310 289 94 150
-304 132 115 84 183
-305 221 276 277 180
-306 301 247 175 241
-307 234 26 237 162
-308 216 32 43 219
-309 176 242 225 280
-310 275 179 303 251
-311 166 233 238 30
-312 220 28 39 215
-313 198 146 161 241
-314 44 36 4 180
-315 176 104 40 20
-316 165 275 194 142
-317 154 221 268 238
-318 187 220 136 247
-319 234 225 258 54
-320 67 48 216 251
0