[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 106 ] =
UG(ATD[320,131]).
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {192, 193}, {274, 275}, {1, 2}, {281, 282}, {233, 234}, {81, 85},
{2, 7}, {88, 94}, {307, 309}, {130, 132}, {1, 6}, {147, 148}, {86, 95}, {240,
250}, {3, 8}, {290, 297}, {259, 264}, {4, 9}, {16, 30}, {230, 232}, {5, 10},
{304, 319}, {55, 56}, {183, 184}, {269, 285}, {302, 318}, {3, 18}, {6, 20}, {15,
29}, {14, 28}, {11, 25}, {10, 24}, {7, 21}, {161, 179}, {2, 17}, {228, 247},
{237, 249}, {300, 312}, {296, 316}, {5, 16}, {12, 26}, {301, 315}, {299, 317},
{13, 27}, {4, 19}, {198, 209}, {96, 119}, {174, 182}, {303, 311}, {236, 244},
{169, 179}, {291, 313}, {100, 127}, {228, 255}, {104, 117}, {8, 22}, {9, 23},
{140, 146}, {293, 314}, {25, 57}, {260, 292}, {141, 173}, {13, 44}, {286, 319},
{155, 186}, {157, 188}, {75, 105}, {216, 250}, {214, 244}, {212, 246}, {142,
172}, {20, 55}, {28, 63}, {24, 59}, {17, 53}, {19, 54}, {27, 62}, {25, 60}, {93,
123}, {265, 303}, {8, 47}, {257, 294}, {26, 61}, {272, 312}, {7, 46}, {129,
171}, {273, 315}, {205, 231}, {6, 45}, {282, 305}, {15, 36}, {194, 238}, {257,
301}, {213, 249}, {199, 235}, {21, 56}, {23, 58}, {274, 316}, {22, 57}, {259,
300}, {81, 97}, {270, 318}, {196, 245}, {268, 317}, {263, 310}, {202, 251}, {18,
32}, {12, 63}, {261, 310}, {158, 170}, {256, 308}, {271, 314}, {66, 116}, {258,
309}, {260, 307}, {65, 121}, {201, 241}, {69, 125}, {9, 48}, {283, 290}, {11,
50}, {14, 52}, {94, 100}, {68, 126}, {10, 49}, {267, 304}, {16, 43}, {145, 173},
{143, 178}, {266, 311}, {203, 246}, {93, 99}, {12, 51}, {269, 306}, {262, 313},
{38, 103}, {164, 229}, {174, 239}, {176, 241}, {18, 80}, {36, 102}, {27, 89},
{15, 75}, {184, 252}, {168, 236}, {169, 237}, {170, 238}, {151, 210}, {180,
243}, {150, 222}, {163, 234}, {40, 99}, {154, 209}, {180, 248}, {187, 247},
{164, 233}, {166, 235}, {43, 101}, {49, 127}, {48, 126}, {39, 119}, {42, 122},
{41, 121}, {40, 120}, {21, 68}, {51, 98}, {46, 124}, {47, 125}, {140, 222}, {60,
111}, {136, 219}, {156, 207}, {32, 116}, {33, 117}, {35, 118}, {137, 220}, {45,
123}, {139, 221}, {150, 192}, {160, 248}, {128, 217}, {170, 243}, {152, 195},
{162, 249}, {29, 64}, {31, 66}, {135, 218}, {13, 82}, {30, 65}, {175, 240}, {50,
82}, {288, 320}, {51, 83}, {55, 85}, {32, 67}, {44, 79}, {40, 75}, {36, 71},
{139, 232}, {56, 92}, {128, 228}, {33, 68}, {43, 78}, {41, 76}, {35, 70}, {138,
239}, {159, 250}, {163, 197}, {34, 69}, {42, 77}, {298, 320}, {178, 217}, {28,
112}, {31, 115}, {30, 114}, {29, 113}, {141, 225}, {142, 226}, {144, 252}, {5,
104}, {39, 74}, {37, 72}, {38, 73}, {56, 87}, {142, 254}, {149, 229}, {150,
230}, {1, 114}, {136, 251}, {168, 220}, {26, 111}, {157, 232}, {175, 218}, {24,
110}, {165, 211}, {148, 227}, {151, 224}, {167, 208}, {34, 90}, {189, 197}, {44,
84}, {17, 104}, {152, 225}, {155, 226}, {19, 105}, {23, 109}, {22, 108}, {174,
213}, {47, 82}, {181, 200}, {20, 106}, {37, 91}, {21, 107}, {165, 219}, {178,
204}, {141, 242}, {177, 206}, {63, 191}, {65, 193}, {64, 192}, {58, 187}, {99,
226}, {95, 222}, {60, 189}, {116, 245}, {118, 247}, {37, 167}, {97, 227}, {53,
183}, {112, 242}, {34, 161}, {61, 190}, {57, 186}, {117, 246}, {124, 255}, {49,
182}, {59, 188}, {52, 179}, {115, 244}, {74, 194}, {92, 212}, {78, 198}, {77,
197}, {76, 196}, {75, 195}, {94, 215}, {62, 180}, {86, 220}, {109, 231}, {42,
161}, {54, 184}, {55, 185}, {45, 162}, {48, 160}, {89, 201}, {110, 254}, {3,
144}, {50, 166}, {95, 202}, {4, 146}, {107, 253}, {127, 233}, {73, 222}, {80,
199}, {13, 149}, {77, 213}, {39, 189}, {46, 181}, {123, 231}, {12, 145}, {85,
200}, {27, 134}, {125, 224}, {3, 156}, {35, 131}, {70, 230}, {113, 209}, {114,
210}, {59, 154}, {63, 158}, {105, 200}, {126, 223}, {108, 206}, {109, 207}, {58,
153}, {33, 133}, {104, 204}, {16, 181}, {38, 131}, {107, 205}, {5, 162}, {127,
216}, {72, 224}, {74, 227}, {107, 194}, {124, 213}, {126, 215}, {29, 183}, {96,
203}, {120, 211}, {125, 214}, {53, 153}, {41, 132}, {15, 160}, {120, 215}, {123,
212}, {108, 221}, {52, 128}, {54, 130}, {53, 129}, {4, 177}, {106, 223}, {37,
147}, {62, 136}, {1, 182}, {57, 131}, {69, 255}, {61, 135}, {60, 134}, {122,
199}, {58, 132}, {59, 133}, {110, 208}, {119, 201}, {99, 220}, {61, 253}, {113,
177}, {96, 161}, {69, 135}, {103, 165}, {102, 164}, {36, 231}, {97, 162}, {92,
159}, {88, 155}, {2, 198}, {83, 151}, {82, 150}, {42, 238}, {31, 219}, {67,
134}, {91, 158}, {89, 156}, {80, 149}, {101, 163}, {45, 234}, {90, 157}, {72,
143}, {111, 167}, {64, 137}, {101, 172}, {71, 142}, {66, 139}, {112, 185}, {97,
171}, {65, 138}, {70, 141}, {84, 152}, {38, 235}, {87, 154}, {103, 170}, {70,
136}, {102, 168}, {67, 140}, {86, 153}, {79, 128}, {11, 219}, {34, 242}, {121,
168}, {19, 193}, {14, 218}, {81, 133}, {10, 223}, {71, 146}, {106, 191}, {122,
175}, {43, 253}, {87, 129}, {73, 144}, {78, 148}, {94, 132}, {74, 145}, {81,
138}, {76, 146}, {77, 147}, {79, 144}, {93, 130}, {9, 233}, {101, 133}, {18,
243}, {72, 173}, {14, 232}, {115, 149}, {8, 225}, {98, 139}, {88, 177}, {51,
217}, {118, 156}, {100, 137}, {114, 159}, {124, 145}, {96, 143}, {92, 172}, {44,
221}, {98, 147}, {84, 165}, {91, 169}, {35, 214}, {116, 131}, {6, 254}, {33,
216}, {87, 174}, {73, 176}, {11, 241}, {31, 228}, {49, 205}, {83, 175}, {39,
218}, {90, 167}, {95, 160}, {24, 280}, {26, 283}, {48, 307}, {47, 299}, {32,
294}, {23, 287}, {22, 284}, {28, 279}, {7, 264}, {30, 268}, {54, 292}, {50,
295}, {46, 310}, {62, 292}, {17, 270}, {52, 263}, {20, 289}, {25, 288}, {41,
275}, {40, 277}, {100, 293}, {91, 285}, {120, 306}, {83, 280}, {84, 287}, {98,
303}, {88, 278}, {90, 276}, {112, 318}, {85, 282}, {86, 281}, {109, 319}, {106,
313}, {89, 269}, {110, 314}, {119, 291}, {108, 308}, {93, 262}, {79, 302}, {117,
279}, {118, 277}, {115, 278}, {64, 294}, {66, 296}, {71, 301}, {76, 295}, {80,
290}, {68, 304}, {122, 271}, {67, 314}, {103, 286}, {105, 272}, {121, 256}, {78,
308}, {102, 284}, {113, 266}, {111, 273}, {129, 256}, {173, 300}, {130, 257},
{178, 305}, {134, 258}, {135, 259}, {176, 309}, {172, 298}, {154, 274}, {184,
305}, {140, 262}, {159, 276}, {137, 260}, {180, 313}, {138, 261}, {148, 263},
{171, 312}, {153, 261}, {158, 258}, {166, 315}, {188, 289}, {157, 317}, {169,
264}, {185, 280}, {166, 260}, {171, 265}, {189, 286}, {190, 285}, {186, 287},
{187, 284}, {151, 316}, {191, 276}, {163, 264}, {143, 289}, {152, 310}, {191,
271}, {176, 257}, {187, 266}, {155, 297}, {188, 270}, {185, 268}, {190, 267},
{186, 269}, {179, 265}, {183, 268}, {182, 267}, {181, 266}, {250, 315}, {195,
256}, {246, 309}, {244, 311}, {210, 279}, {208, 279}, {209, 281}, {235, 291},
{210, 282}, {206, 261}, {255, 308}, {254, 307}, {224, 302}, {238, 288}, {225,
303}, {193, 270}, {247, 312}, {211, 284}, {251, 299}, {214, 263}, {245, 292},
{240, 289}, {201, 283}, {237, 319}, {226, 304}, {203, 280}, {249, 298}, {252,
296}, {195, 278}, {198, 272}, {230, 305}, {204, 276}, {239, 311}, {234, 306},
{202, 275}, {207, 278}, {199, 285}, {242, 296}, {203, 273}, {200, 275}, {252,
295}, {245, 302}, {206, 277}, {196, 281}, {251, 294}, {248, 293}, {204, 274},
{216, 262}, {248, 295}, {243, 273}, {164, 320}, {205, 297}, {227, 267}, {197,
297}, {239, 259}, {207, 288}, {194, 306}, {229, 277}, {211, 290}, {221, 300},
{212, 293}, {217, 299}, {240, 258}, {223, 301}, {208, 291}, {236, 287}, {202,
318}, {253, 265}, {237, 283}, {196, 317}, {229, 286}, {192, 316}, {236, 272},
{215, 298}, {190, 320}, {241, 271} }>;
(II) A more general form is to represent the graph as the orbit of {192, 193}
under the group generated by the following permutations:
a: (2, 182, 6, 114)(3, 219)(4, 218)(5, 56)(7, 49, 20, 30)(8, 165, 18, 136)(9,
175, 19, 135)(10, 55, 16, 21)(11, 144, 31, 156)(12, 15)(14, 177, 39, 146)(17,
174, 45, 159)(22, 103, 32, 70)(23, 122, 54, 69)(24, 85, 43, 68)(25, 73, 66,
118)(26, 160, 51, 75)(27, 82, 44, 149)(28, 113, 74, 71)(29, 145, 36, 63)(33, 59,
81, 101)(34, 58, 42, 130)(35, 57, 38, 116)(37, 220)(40, 111, 95, 98)(41, 179,
94, 96)(46, 205, 106, 268)(47, 84, 80, 62)(48, 83, 105, 61)(50, 79, 115, 89)(52,
88, 119, 76)(53, 213, 123, 276)(60, 222, 139, 277)(64, 173, 102, 158)(65, 264,
127, 289)(67, 230, 108, 286)(72, 168, 91, 137)(77, 93, 90, 153)(78, 304, 110,
282)(86, 147, 99, 167)(87, 162, 92, 104)(97, 172, 117, 154)(100, 143, 121,
169)(107, 223, 185, 181)(109, 271, 184, 255)(112, 266, 194, 301)(120, 273, 202,
303)(124, 231, 191, 183)(125, 287, 199, 292)(126, 280, 200, 253)(128, 278, 201,
295)(129, 249, 212, 204)(132, 161)(134, 150, 221, 229)(138, 163, 216, 188)(140,
232, 206, 189)(141, 284, 170, 294)(142, 279, 209, 227)(148, 226, 208, 281)(151,
272, 190, 307)(152, 290, 180, 299)(155, 291, 196, 263)(157, 261, 197, 262)(164,
258, 192, 300)(166, 302, 244, 269)(171, 298, 246, 274)(176, 296, 247, 288)(178,
256, 237, 293)(186, 235, 245, 214)(187, 238, 257, 242)(193, 259, 233, 240)(195,
283, 248, 217)(198, 267, 254, 210)(203, 275, 265, 215)(207, 241, 252, 228)(211,
243, 251, 225)(224, 236, 285, 260)(234, 250, 270, 239)(297, 313, 317, 310)(305,
308, 319, 314)(306, 315, 318, 311)(309, 316, 312, 320) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 198, 272, 236, 287, 186, 269, 285, 91, 37, 72, 224, 302, 245, 292,
260, 307, 254, 6)(3, 18, 243, 273, 203, 280, 185, 268, 183, 29, 15, 36, 231,
205, 107, 253, 265, 303, 225, 8)(4, 99, 233, 304, 163, 227, 259, 263, 221, 35,
13, 38, 134, 291, 240, 279, 188, 282, 193, 86)(5, 87, 181, 256, 187, 278, 211,
288, 283, 42, 12, 34, 217, 296, 251, 295, 257, 293, 223, 92)(7, 78, 312, 244,
84, 57, 89, 199, 158, 167, 143, 151, 318, 196, 54, 137, 48, 142, 45, 182)(9,
226, 234, 267, 264, 148, 300, 214, 44, 131, 27, 235, 258, 208, 289, 210, 270,
281, 19, 220)(10, 56, 16, 129, 266, 195, 284, 207, 290, 238, 26, 161, 51, 242,
299, 252, 294, 248, 301, 212)(11, 241, 271, 191, 276, 204, 274, 275, 41, 132,
94, 215, 298, 249, 213, 124, 255, 228, 31, 219)(14, 232, 230, 150, 222, 140,
262, 216, 33, 133, 81, 138, 261, 206, 277, 229, 286, 189, 39, 218)(17, 209, 105,
168, 23, 155, 306, 190, 169, 147, 173, 125, 79, 116, 62, 166, 309, 110, 20,
114)(21, 43, 171, 311, 152, 22, 156, 80, 170, 111, 96, 83, 112, 317, 184, 64,
160, 71, 123, 49)(24, 55, 30, 53, 113, 75, 102, 109, 297, 194, 61, 179, 98, 141,
47, 144, 32, 180, 315, 246)(25, 201, 122, 63, 90, 178, 316, 202, 76, 130, 100,
126, 172, 162, 174, 46, 308, 247, 115, 165)(28, 157, 305, 192, 95, 146, 93, 127,
68, 101, 97, 239, 310, 108, 118, 149, 103, 60, 119, 175)(40, 164, 319, 197, 74,
135, 52, 139, 70, 82, 73, 67, 313, 250, 117, 59, 85, 65, 153, 177)(50, 176, 314,
106, 159, 104, 154, 200, 121, 58, 88, 120, 320, 237, 77, 145, 69, 128, 66,
136)
c: (2, 6)(7, 20)(8, 18)(9, 19)(10, 16)(11, 31)(14, 39)(17, 45)(21, 55)(22,
32)(23, 54)(24, 43)(25, 66)(26, 51)(27, 44)(28, 74)(29, 36)(30, 49)(33, 81)(34,
42)(35, 38)(40, 95)(41, 94)(46, 106)(47, 80)(48, 105)(50, 115)(52, 119)(53,
123)(57, 116)(58, 130)(59, 101)(60, 139)(61, 83)(62, 84)(63, 145)(64, 102)(65,
127)(67, 108)(68, 85)(69, 122)(70, 103)(71, 113)(72, 91)(73, 118)(75, 160)(76,
88)(77, 90)(78, 110)(79, 89)(82, 149)(86, 99)(87, 92)(93, 153)(96, 179)(97,
117)(98, 111)(100, 121)(104, 162)(107, 185)(109, 184)(112, 194)(114, 182)(120,
202)(124, 191)(125, 199)(126, 200)(128, 201)(129, 212)(134, 221)(135, 175)(136,
165)(137, 168)(138, 216)(140, 206)(141, 170)(142, 209)(143, 169)(144, 156)(146,
177)(147, 167)(148, 208)(150, 229)(151, 190)(152, 180)(154, 172)(155, 196)(157,
197)(158, 173)(159, 174)(163, 188)(164, 192)(166, 244)(171, 246)(176, 247)(178,
237)(181, 223)(183, 231)(186, 245)(187, 257)(189, 232)(193, 233)(195, 248)(198,
254)(203, 265)(204, 249)(205, 268)(207, 252)(210, 267)(211, 251)(213, 276)(214,
235)(215, 275)(217, 283)(222, 277)(224, 285)(225, 243)(226, 281)(227, 279)(228,
241)(230, 286)(234, 270)(236, 260)(238, 242)(239, 250)(240, 259)(253, 280)(255,
271)(256, 293)(258, 300)(261, 262)(263, 291)(264, 289)(266, 301)(269, 302)(272,
307)(273, 303)(274, 298)(278, 295)(282, 304)(284, 294)(287, 292)(288, 296)(290,
299)(297, 317)(305, 319)(306, 318)(308, 314)(309, 312)(310, 313)(311, 315)(316,
320)
C4[ 320, 106 ]
320
-1 2 114 6 182
-2 198 1 17 7
-3 144 156 18 8
-4 177 146 19 9
-5 16 104 162 10
-6 1 45 254 20
-7 264 2 46 21
-8 22 3 47 225
-9 23 233 4 48
-10 24 223 5 49
-11 25 50 219 241
-12 145 26 51 63
-13 44 27 82 149
-14 232 28 52 218
-15 36 160 29 75
-16 5 181 30 43
-17 2 104 270 53
-18 243 3 80 32
-19 4 105 193 54
-20 55 289 6 106
-21 56 68 7 107
-22 57 8 108 284
-23 287 58 9 109
-24 110 59 280 10
-25 11 57 288 60
-26 12 111 61 283
-27 89 13 134 62
-28 112 14 279 63
-29 113 15 183 64
-30 114 268 16 65
-31 66 115 228 219
-32 67 116 18 294
-33 133 68 117 216
-34 242 90 69 161
-35 70 214 118 131
-36 231 102 15 71
-37 167 91 147 72
-38 103 235 73 131
-39 189 74 119 218
-40 99 277 75 120
-41 121 132 275 76
-42 77 122 161 238
-43 253 78 101 16
-44 221 13 79 84
-45 123 234 6 162
-46 310 124 181 7
-47 299 125 82 8
-48 126 160 9 307
-49 127 182 205 10
-50 11 166 82 295
-51 12 83 217 98
-52 14 179 128 263
-53 17 183 129 153
-54 292 19 184 130
-55 56 85 20 185
-56 55 92 21 87
-57 22 25 131 186
-58 132 187 23 153
-59 154 133 188 24
-60 111 134 189 25
-61 253 135 190 26
-62 136 180 27 292
-63 12 158 191 28
-64 137 192 29 294
-65 121 138 193 30
-66 116 139 31 296
-67 134 314 140 32
-68 33 126 304 21
-69 34 255 135 125
-70 35 136 141 230
-71 36 146 301 142
-72 143 37 224 173
-73 176 144 222 38
-74 145 39 194 227
-75 15 105 40 195
-76 146 41 196 295
-77 147 213 42 197
-78 198 308 148 43
-79 44 144 302 128
-80 199 290 149 18
-81 133 138 85 97
-82 13 47 50 150
-83 280 51 151 175
-84 44 165 287 152
-85 55 200 81 282
-86 220 281 95 153
-87 154 56 129 174
-88 155 177 278 94
-89 156 201 27 269
-90 34 276 167 157
-91 37 158 169 285
-92 56 212 159 172
-93 99 123 130 262
-94 88 132 100 215
-95 222 202 160 86
-96 143 203 161 119
-97 81 171 227 162
-98 147 303 51 139
-99 220 93 226 40
-100 137 94 127 293
-101 133 172 163 43
-102 36 168 284 164
-103 165 286 38 170
-104 5 17 204 117
-105 200 19 272 75
-106 223 191 313 20
-107 253 194 205 21
-108 22 308 221 206
-109 231 319 23 207
-110 254 24 314 208
-111 167 26 60 273
-112 242 28 185 318
-113 209 177 266 29
-114 1 210 159 30
-115 244 278 149 31
-116 66 245 32 131
-117 33 246 279 104
-118 35 156 277 247
-119 201 291 39 96
-120 211 215 40 306
-121 168 256 41 65
-122 199 271 42 175
-123 231 45 212 93
-124 46 145 255 213
-125 47 69 224 214
-126 68 223 48 215
-127 100 233 49 216
-128 79 52 217 228
-129 256 171 53 87
-130 132 257 93 54
-131 35 57 38 116
-132 58 94 41 130
-133 33 101 59 81
-134 67 27 60 258
-135 69 61 259 218
-136 70 62 251 219
-137 220 100 260 64
-138 81 239 261 65
-139 66 221 232 98
-140 67 222 146 262
-141 242 70 225 173
-142 254 71 226 172
-143 178 289 72 96
-144 79 3 73 252
-145 12 124 74 173
-146 4 71 140 76
-147 77 37 148 98
-148 78 147 227 263
-149 13 80 115 229
-150 222 82 192 230
-151 210 224 83 316
-152 310 225 84 195
-153 58 261 53 86
-154 209 59 87 274
-155 88 297 226 186
-156 89 3 118 207
-157 188 232 90 317
-158 91 170 258 63
-159 276 92 114 250
-160 15 48 248 95
-161 34 179 96 42
-162 45 5 249 97
-163 264 101 234 197
-164 320 233 102 229
-165 211 103 84 219
-166 235 50 260 315
-167 111 90 37 208
-168 121 220 102 236
-169 264 91 179 237
-170 243 103 158 238
-171 265 312 129 97
-172 298 101 92 142
-173 145 300 72 141
-174 213 182 239 87
-175 122 83 218 240
-176 309 257 73 241
-177 88 113 4 206
-178 143 204 217 305
-179 265 169 161 52
-180 243 313 248 62
-181 46 200 266 16
-182 1 267 49 174
-183 268 29 184 53
-184 183 305 54 252
-185 55 112 268 280
-186 155 287 57 269
-187 266 58 247 284
-188 157 289 59 270
-189 286 60 39 197
-190 320 267 61 285
-191 276 106 271 63
-192 193 150 316 64
-193 192 270 19 65
-194 238 74 107 306
-195 256 278 75 152
-196 245 281 317 76
-197 77 297 189 163
-198 209 78 2 272
-199 122 80 235 285
-200 275 181 105 85
-201 89 283 119 241
-202 275 95 251 318
-203 246 280 96 273
-204 276 178 104 274
-205 231 297 49 107
-206 177 277 261 108
-207 156 288 278 109
-208 110 167 279 291
-209 154 198 113 281
-210 114 279 282 151
-211 165 290 284 120
-212 123 92 246 293
-213 77 124 249 174
-214 35 244 125 263
-215 298 126 94 120
-216 33 127 250 262
-217 178 299 51 128
-218 14 135 39 175
-219 11 165 136 31
-220 99 168 137 86
-221 44 300 139 108
-222 73 95 150 140
-223 301 126 106 10
-224 125 302 72 151
-225 303 8 141 152
-226 99 155 304 142
-227 267 148 74 97
-228 255 247 128 31
-229 286 277 149 164
-230 232 70 150 305
-231 123 36 205 109
-232 14 157 139 230
-233 234 127 9 164
-234 45 233 163 306
-235 166 199 38 291
-236 287 244 168 272
-237 319 169 249 283
-238 288 170 194 42
-239 311 138 259 174
-240 289 258 250 175
-241 11 176 201 271
-242 34 112 141 296
-243 180 170 18 273
-244 311 115 214 236
-245 302 116 292 196
-246 309 212 203 117
-247 187 312 118 228
-248 180 160 293 295
-249 298 213 237 162
-250 159 216 315 240
-251 299 136 202 294
-252 144 184 295 296
-253 265 61 107 43
-254 110 6 142 307
-255 308 69 124 228
-256 121 308 129 195
-257 176 301 294 130
-258 309 134 158 240
-259 264 135 300 239
-260 166 137 292 307
-261 310 138 206 153
-262 93 313 216 140
-263 310 148 214 52
-264 169 259 7 163
-265 253 179 171 303
-266 187 113 311 181
-267 190 182 227 304
-268 183 30 185 317
-269 89 306 186 285
-270 188 17 193 318
-271 122 191 314 241
-272 198 312 236 105
-273 111 243 203 315
-274 154 275 204 316
-275 200 202 41 274
-276 90 191 159 204
-277 40 118 206 229
-278 88 115 195 207
-279 210 28 117 208
-280 24 203 83 185
-281 209 282 86 196
-282 210 281 85 305
-283 201 26 290 237
-284 22 187 211 102
-285 199 91 190 269
-286 319 189 103 229
-287 23 236 84 186
-288 320 25 238 207
-289 143 188 20 240
-290 297 211 80 283
-291 235 313 119 208
-292 245 62 260 54
-293 100 212 248 314
-294 257 64 251 32
-295 50 248 76 252
-296 66 242 316 252
-297 155 290 205 197
-298 320 215 172 249
-299 47 217 251 317
-300 221 312 259 173
-301 223 257 71 315
-302 79 245 224 318
-303 265 311 225 98
-304 319 68 267 226
-305 178 282 184 230
-306 234 269 194 120
-307 254 309 48 260
-308 78 255 256 108
-309 176 246 258 307
-310 46 261 152 263
-311 244 266 303 239
-312 300 247 171 272
-313 180 291 106 262
-314 110 67 271 293
-315 166 301 250 273
-316 192 151 274 296
-317 299 157 268 196
-318 112 202 302 270
-319 286 237 304 109
-320 298 288 190 164
0