[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 118 ] =
UG(ATD[320,152]).
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {14, 15}, {306, 307}, {300, 301}, {18, 19}, {116, 118}, {313,
315}, {312, 314}, {297, 299}, {257, 259}, {124, 126}, {1, 2}, {316, 319}, {228,
231}, {192, 195}, {188, 191}, {5, 6}, {33, 37}, {200, 204}, {115, 119}, {2, 7},
{297, 300}, {283, 286}, {267, 270}, {242, 247}, {202, 207}, {65, 68}, {51, 54},
{49, 52}, {17, 20}, {8, 13}, {42, 44}, {312, 318}, {282, 284}, {266, 268}, {258,
260}, {227, 229}, {1, 6}, {50, 53}, {10, 13}, {2, 5}, {38, 46}, {310, 318}, {80,
88}, {3, 10}, {310, 319}, {85, 92}, {32, 41}, {160, 169}, {161, 168}, {34, 40},
{98, 104}, {130, 136}, {3, 8}, {180, 191}, {150, 154}, {291, 303}, {229, 233},
{225, 237}, {199, 203}, {193, 205}, {162, 174}, {4, 9}, {262, 267}, {261, 264},
{209, 220}, {196, 201}, {55, 58}, {117, 120}, {83, 93}, {307, 317}, {84, 90},
{16, 31}, {259, 268}, {163, 172}, {4, 20}, {300, 316}, {299, 315}, {233, 249},
{226, 242}, {12, 28}, {11, 27}, {10, 26}, {2, 19}, {294, 311}, {231, 246}, {15,
30}, {9, 24}, {7, 22}, {139, 154}, {170, 187}, {72, 90}, {261, 279}, {6, 21},
{230, 245}, {14, 29}, {293, 305}, {298, 318}, {7, 18}, {73, 92}, {141, 155},
{134, 145}, {239, 248}, {9, 17}, {271, 279}, {101, 125}, {47, 55}, {35, 58},
{298, 307}, {196, 221}, {66, 91}, {134, 159}, {105, 115}, {107, 113}, {290,
313}, {195, 223}, {302, 306}, {299, 311}, {204, 208}, {175, 178}, {301, 304},
{294, 315}, {108, 114}, {292, 314}, {194, 220}, {6, 25}, {68, 91}, {8, 23},
{170, 181}, {141, 173}, {269, 301}, {258, 290}, {142, 175}, {210, 243}, {71,
100}, {135, 164}, {15, 43}, {278, 306}, {277, 305}, {276, 304}, {221, 249},
{207, 235}, {78, 106}, {77, 105}, {27, 63}, {26, 62}, {25, 61}, {24, 60}, {131,
167}, {147, 183}, {20, 49}, {259, 294}, {215, 242}, {74, 111}, {70, 99}, {25,
60}, {24, 61}, {23, 50}, {21, 48}, {280, 318}, {22, 49}, {287, 312}, {211, 244},
{208, 247}, {82, 117}, {76, 107}, {69, 98}, {153, 190}, {64, 104}, {285, 309},
{268, 292}, {129, 169}, {25, 48}, {287, 310}, {79, 102}, {76, 101}, {66, 107},
{10, 32}, {11, 33}, {138, 160}, {140, 166}, {154, 176}, {19, 56}, {280, 307},
{278, 317}, {270, 293}, {75, 96}, {74, 97}, {65, 106}, {24, 51}, {128, 171},
{23, 59}, {132, 168}, {20, 57}, {281, 308}, {219, 246}, {193, 236}, {12, 34},
{271, 289}, {208, 254}, {89, 119}, {21, 58}, {218, 245}, {67, 108}, {136, 167},
{197, 245}, {260, 308}, {217, 233}, {198, 246}, {30, 47}, {269, 316}, {31, 46},
{151, 166}, {80, 98}, {282, 296}, {210, 224}, {195, 241}, {81, 99}, {7, 52},
{221, 238}, {67, 112}, {26, 41}, {130, 177}, {28, 40}, {279, 291}, {277, 289},
{276, 288}, {22, 35}, {274, 295}, {149, 160}, {152, 173}, {16, 38}, {220, 234},
{82, 100}, {29, 43}, {153, 175}, {156, 170}, {157, 171}, {72, 127}, {207, 248},
{203, 252}, {87, 96}, {86, 97}, {133, 178}, {15, 55}, {94, 102}, {148, 172},
{66, 123}, {209, 232}, {71, 126}, {69, 124}, {128, 185}, {64, 122}, {146, 168},
{70, 125}, {275, 296}, {214, 237}, {153, 165}, {275, 303}, {274, 302}, {8, 53},
{285, 288}, {147, 174}, {27, 37}, {281, 295}, {198, 248}, {9, 54}, {286, 289},
{266, 309}, {216, 231}, {68, 123}, {132, 187}, {133, 186}, {143, 176}, {52,
116}, {54, 118}, {53, 117}, {149, 212}, {151, 214}, {135, 197}, {138, 200},
{139, 201}, {143, 204}, {150, 213}, {148, 208}, {156, 216}, {157, 217}, {158,
218}, {159, 219}, {129, 196}, {190, 251}, {131, 198}, {142, 203}, {179, 246},
{62, 120}, {63, 121}, {140, 202}, {167, 224}, {27, 83}, {189, 245}, {184, 240},
{44, 101}, {161, 232}, {182, 255}, {163, 233}, {183, 253}, {179, 248}, {57,
119}, {186, 244}, {136, 198}, {137, 199}, {152, 215}, {188, 237}, {29, 78}, {42,
121}, {58, 110}, {164, 240}, {165, 241}, {167, 243}, {49, 103}, {19, 68}, {55,
109}, {28, 64}, {31, 67}, {30, 66}, {29, 65}, {144, 205}, {146, 207}, {57, 103},
{44, 115}, {145, 206}, {44, 77}, {45, 79}, {63, 93}, {56, 90}, {162, 192}, {59,
88}, {32, 69}, {60, 89}, {34, 71}, {42, 76}, {148, 242}, {180, 210}, {184, 222},
{33, 70}, {61, 90}, {140, 235}, {26, 112}, {35, 72}, {38, 74}, {39, 75}, {31,
114}, {36, 73}, {191, 209}, {30, 113}, {129, 238}, {32, 80}, {39, 87}, {38, 86},
{34, 82}, {33, 81}, {36, 85}, {59, 74}, {143, 254}, {162, 211}, {188, 206}, {45,
94}, {142, 253}, {137, 252}, {151, 225}, {35, 84}, {311, 320}, {21, 109}, {23,
111}, {22, 110}, {155, 227}, {156, 228}, {157, 229}, {158, 230}, {159, 231},
{56, 65}, {177, 200}, {152, 226}, {164, 222}, {165, 223}, {144, 236}, {145,
237}, {183, 203}, {62, 67}, {317, 320}, {189, 192}, {146, 239}, {161, 220}, {28,
98}, {163, 221}, {190, 193}, {123, 250}, {102, 228}, {124, 251}, {62, 182}, {60,
181}, {105, 227}, {56, 179}, {57, 180}, {61, 179}, {116, 250}, {4, 139}, {127,
234}, {17, 138}, {105, 201}, {114, 211}, {113, 210}, {63, 155}, {125, 213},
{102, 202}, {111, 195}, {121, 212}, {43, 155}, {52, 134}, {103, 213}, {59, 137},
{53, 135}, {114, 192}, {14, 185}, {124, 193}, {127, 194}, {54, 136}, {106, 212},
{42, 149}, {110, 209}, {122, 197}, {4, 196}, {40, 234}, {119, 181}, {84, 151},
{117, 182}, {81, 149}, {83, 150}, {109, 168}, {88, 158}, {89, 159}, {126, 184},
{115, 180}, {16, 216}, {89, 145}, {88, 144}, {73, 128}, {91, 146}, {77, 132},
{75, 129}, {79, 133}, {78, 132}, {95, 148}, {45, 225}, {78, 131}, {94, 147},
{87, 154}, {85, 152}, {43, 229}, {77, 131}, {76, 130}, {112, 190}, {113, 191},
{86, 153}, {5, 215}, {111, 189}, {110, 188}, {116, 166}, {48, 227}, {72, 156},
{73, 157}, {82, 135}, {112, 165}, {127, 170}, {109, 187}, {1, 217}, {87, 143},
{86, 142}, {85, 141}, {84, 140}, {83, 139}, {80, 137}, {18, 200}, {107, 177},
{81, 138}, {17, 204}, {123, 166}, {122, 164}, {79, 175}, {120, 158}, {12, 235},
{51, 212}, {120, 144}, {122, 147}, {5, 238}, {75, 160}, {14, 226}, {45, 194},
{118, 134}, {101, 150}, {118, 130}, {121, 141}, {64, 183}, {46, 214}, {48, 201},
{47, 213}, {91, 161}, {126, 133}, {94, 162}, {95, 163}, {69, 184}, {71, 186},
{125, 128}, {1, 254}, {70, 185}, {39, 292}, {36, 301}, {18, 256}, {37, 310},
{16, 261}, {3, 277}, {12, 282}, {37, 316}, {13, 275}, {39, 312}, {41, 264}, {46,
267}, {3, 293}, {47, 265}, {13, 291}, {50, 284}, {36, 276}, {41, 283}, {50,
262}, {51, 263}, {11, 317}, {40, 286}, {11, 311}, {96, 290}, {108, 303}, {95,
281}, {100, 303}, {92, 274}, {97, 305}, {99, 304}, {104, 305}, {99, 313}, {95,
260}, {96, 315}, {93, 314}, {106, 263}, {92, 306}, {103, 265}, {97, 273}, {93,
302}, {100, 272}, {104, 273}, {108, 272}, {176, 308}, {176, 319}, {171, 319},
{189, 298}, {173, 309}, {169, 309}, {171, 308}, {172, 266}, {174, 262}, {178,
283}, {172, 285}, {177, 256}, {174, 284}, {187, 271}, {182, 259}, {185, 256},
{178, 264}, {181, 271}, {186, 257}, {249, 314}, {199, 258}, {247, 304}, {224,
296}, {205, 260}, {206, 261}, {247, 313}, {214, 262}, {251, 299}, {219, 267},
{218, 266}, {217, 265}, {216, 264}, {215, 263}, {241, 288}, {194, 272}, {250,
296}, {243, 289}, {223, 269}, {222, 268}, {211, 257}, {253, 297}, {249, 302},
{251, 300}, {199, 287}, {202, 273}, {252, 295}, {244, 297}, {255, 288}, {226,
256}, {243, 279}, {253, 280}, {241, 278}, {169, 320}, {255, 278}, {238, 263},
{244, 280}, {173, 320}, {206, 291}, {224, 270}, {197, 298}, {240, 287}, {205,
290}, {225, 272}, {252, 269}, {239, 286}, {236, 285}, {234, 283}, {232, 282},
{240, 258}, {230, 274}, {250, 270}, {228, 273}, {235, 284}, {254, 265}, {222,
294}, {236, 276}, {223, 295}, {239, 277}, {232, 275}, {218, 292}, {255, 257},
{219, 293}, {230, 281} }>;
(II) A more general form is to represent the graph as the orbit of {14, 15}
under the group generated by the following permutations:
a: (2, 254)(3, 244)(4, 14)(5, 265)(6, 217)(7, 208)(8, 186)(9, 185)(10, 211)(11,
167)(12, 164)(13, 257)(15, 196)(16, 165)(17, 256)(18, 204)(19, 143)(20, 226)(21,
233)(22, 148)(23, 133)(24, 128)(25, 157)(26, 114)(27, 131)(28, 122)(29, 139)(30,
129)(31, 112)(32, 162)(33, 136)(34, 135)(35, 95)(36, 89)(37, 198)(38, 153)(39,
91)(40, 197)(41, 192)(43, 201)(44, 121)(45, 88)(46, 190)(47, 238)(48, 229)(49,
242)(50, 126)(51, 125)(52, 247)(53, 71)(54, 70)(55, 221)(56, 176)(57, 152)(58,
163)(59, 79)(60, 73)(61, 171)(62, 108)(63, 77)(65, 154)(66, 75)(68, 87)(69,
174)(72, 281)(74, 175)(76, 149)(78, 83)(80, 94)(81, 130)(84, 260)(85, 119)(90,
308)(92, 181)(93, 132)(96, 123)(97, 142)(98, 147)(99, 118)(100, 117)(101,
212)(102, 137)(103, 215)(104, 183)(105, 155)(106, 150)(107, 160)(109, 249)(110,
172)(111, 178)(113, 169)(115, 141)(116, 313)(120, 272)(124, 262)(127, 230)(134,
304)(138, 177)(140, 258)(144, 225)(145, 276)(146, 312)(151, 205)(156, 295)(158,
194)(159, 301)(161, 292)(166, 290)(168, 314)(170, 274)(173, 180)(179, 319)(182,
303)(184, 284)(187, 302)(188, 285)(189, 283)(191, 309)(193, 214)(195, 264)(199,
202)(203, 273)(206, 288)(207, 287)(209, 266)(210, 320)(213, 263)(216, 223)(218,
220)(219, 300)(222, 282)(224, 311)(228, 252)(231, 269)(232, 268)(234, 245)(235,
240)(236, 237)(239, 318)(241, 261)(243, 317)(246, 316)(248, 310)(250, 315)(251,
267)(253, 305)(255, 291)(259, 275)(270, 299)(271, 306)(277, 280)(278, 279)(286,
298)(289, 307)(293, 297)(294, 296) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 7, 22, 35, 84, 151, 225, 45, 94, 162, 211, 244, 280, 307, 317, 11, 27,
63, 121, 42, 44, 77, 131, 167, 243, 289, 277, 3, 10, 32, 80, 88, 144, 205, 260,
95, 148, 208, 254)(4, 15, 24, 66, 89, 161, 231, 282, 16, 34, 86, 135, 165, 222,
269, 292, 36, 75, 128, 196, 14, 9, 30, 60, 91, 159, 232, 216, 12, 38, 82, 153,
164, 223, 268, 301, 39, 73, 129, 185)(5, 18, 49, 58, 90, 166, 237, 194, 102,
174, 114, 186, 253, 298, 278, 311, 37, 93, 141, 149, 101, 105, 78, 136, 210,
271, 239, 293, 13, 41, 98, 59, 120, 193, 258, 281, 172, 247, 143, 217)(6, 19,
52, 110, 72, 140, 214, 272, 79, 147, 192, 257, 297, 318, 306, 320, 33, 83, 155,
212, 76, 115, 132, 198, 224, 279, 286, 305, 8, 26, 69, 137, 158, 236, 290, 308,
163, 242, 204, 265)(17, 47, 25, 68, 134, 209, 156, 235, 46, 100, 175, 122, 195,
259, 300, 312, 92, 169, 70, 139, 43, 51, 107, 119, 168, 246, 296, 261, 40, 97,
53, 112, 184, 252, 218, 276, 96, 171, 221, 226)(20, 55, 61, 123, 145, 220, 228,
284, 31, 71, 142, 197, 241, 294, 316, 314, 85, 160, 125, 201, 29, 54, 113, 181,
146, 219, 275, 264, 28, 74, 117, 190, 240, 295, 266, 304, 87, 157, 238, 256)(21,
56, 116, 188, 127, 202, 262, 108, 133, 183, 189, 255, 299, 310, 302, 173, 81,
150, 227, 106, 130, 180, 187, 248, 270, 291, 283, 104, 23, 62, 124, 199, 230,
285, 313, 176, 233, 215, 200, 103)(48, 65, 118, 191, 170, 207, 267, 303, 178,
64, 111, 182, 251, 287, 274, 309, 99, 154, 229, 263, 177, 57, 109, 179, 250,
206, 234, 273, 50, 67, 126, 203, 245, 288, 315, 319, 249, 152, 138, 213)
c: (2, 6)(4, 14)(7, 21)(8, 10)(9, 29)(12, 16)(15, 20)(17, 43)(18, 48)(19,
25)(22, 58)(23, 32)(24, 65)(26, 53)(27, 33)(28, 38)(30, 57)(31, 34)(36, 39)(40,
46)(41, 50)(44, 76)(47, 103)(49, 55)(51, 106)(52, 109)(54, 78)(56, 61)(59,
80)(60, 68)(62, 117)(63, 81)(64, 86)(66, 119)(67, 82)(69, 111)(70, 83)(71,
114)(72, 84)(73, 87)(74, 98)(75, 85)(77, 130)(79, 94)(89, 91)(92, 96)(93,
99)(97, 104)(100, 108)(105, 177)(107, 115)(112, 135)(113, 180)(116, 187)(118,
132)(121, 149)(122, 153)(123, 181)(124, 189)(125, 150)(126, 192)(127, 151)(128,
154)(129, 152)(131, 136)(133, 162)(134, 168)(138, 155)(139, 185)(140, 156)(141,
160)(142, 183)(143, 157)(144, 158)(145, 161)(146, 159)(147, 175)(148, 163)(164,
165)(166, 170)(169, 173)(171, 176)(174, 178)(184, 195)(186, 211)(188, 209)(190,
197)(193, 245)(194, 225)(196, 226)(199, 252)(200, 227)(201, 256)(202, 228)(204,
229)(205, 230)(206, 232)(207, 231)(208, 233)(214, 234)(215, 238)(216, 235)(217,
254)(218, 236)(219, 239)(220, 237)(221, 242)(222, 241)(223, 240)(224, 243)(246,
248)(247, 249)(250, 271)(251, 298)(255, 259)(258, 295)(260, 281)(261, 282)(262,
283)(264, 284)(266, 285)(267, 286)(268, 288)(269, 287)(270, 289)(274, 290)(275,
291)(276, 292)(277, 293)(278, 294)(279, 296)(280, 297)(299, 307)(300, 318)(301,
312)(302, 313)(304, 314)(306, 315)(310, 316)(311, 317)
C4[ 320, 118 ]
320
-1 254 2 6 217
-2 1 5 7 19
-3 277 293 8 10
-4 139 9 20 196
-5 2 6 215 238
-6 1 25 5 21
-7 22 2 18 52
-8 23 13 3 53
-9 24 4 17 54
-10 13 3 26 32
-11 33 311 27 317
-12 34 235 28 282
-13 275 291 8 10
-14 15 226 29 185
-15 55 14 30 43
-16 38 216 261 31
-17 138 204 9 20
-18 200 256 7 19
-19 56 2 68 18
-20 57 4 49 17
-21 58 48 6 109
-22 110 35 49 7
-23 111 59 50 8
-24 60 61 51 9
-25 48 60 6 61
-26 112 62 41 10
-27 11 37 83 63
-28 12 40 64 98
-29 78 14 43 65
-30 66 47 113 15
-31 67 46 114 16
-32 69 80 41 10
-33 11 37 70 81
-34 12 71 82 40
-35 22 58 72 84
-36 276 301 73 85
-37 33 310 27 316
-38 46 16 74 86
-39 312 292 75 87
-40 286 34 234 28
-41 264 26 283 32
-42 44 121 149 76
-43 155 15 29 229
-44 77 101 115 42
-45 79 225 94 194
-46 267 38 214 31
-47 55 265 213 30
-48 25 201 227 21
-49 22 103 52 20
-50 23 53 262 284
-51 24 212 54 263
-52 134 49 116 7
-53 135 50 117 8
-54 136 51 118 9
-55 47 58 15 109
-56 90 179 19 65
-57 103 180 20 119
-58 55 110 35 21
-59 88 23 137 74
-60 89 24 25 181
-61 24 90 25 179
-62 67 26 182 120
-63 121 155 27 93
-64 122 104 28 183
-65 56 68 29 106
-66 123 91 30 107
-67 112 62 31 108
-68 123 91 19 65
-69 124 184 32 98
-70 33 99 125 185
-71 34 100 126 186
-72 35 90 156 127
-73 36 157 92 128
-74 111 59 38 97
-75 39 160 96 129
-76 101 107 42 130
-77 44 132 105 131
-78 132 29 106 131
-79 45 133 102 175
-80 88 137 32 98
-81 33 99 138 149
-82 34 100 135 117
-83 27 93 139 150
-84 35 90 140 151
-85 36 92 141 152
-86 38 97 142 153
-87 143 154 39 96
-88 144 80 59 158
-89 145 60 159 119
-90 56 61 72 84
-91 66 68 146 161
-92 73 85 306 274
-93 302 83 314 63
-94 45 102 147 162
-95 148 281 260 163
-96 290 315 75 87
-97 74 305 86 273
-98 69 80 104 28
-99 70 81 313 304
-100 71 82 303 272
-101 44 125 150 76
-102 79 202 94 228
-103 265 57 213 49
-104 305 64 273 98
-105 77 201 115 227
-106 78 212 65 263
-107 66 177 113 76
-108 67 114 303 272
-109 55 187 168 21
-110 22 209 188 58
-111 23 189 74 195
-112 165 67 190 26
-113 210 191 30 107
-114 211 192 31 108
-115 44 180 105 119
-116 166 52 118 250
-117 82 182 53 120
-118 134 116 130 54
-119 89 57 115 181
-120 144 158 62 117
-121 212 63 42 141
-122 147 64 164 197
-123 66 166 68 250
-124 69 126 193 251
-125 101 70 213 128
-126 133 124 71 184
-127 234 170 72 194
-128 125 171 73 185
-129 169 238 75 196
-130 177 136 118 76
-131 77 198 78 167
-132 77 187 78 168
-133 79 178 126 186
-134 145 159 52 118
-135 82 53 164 197
-136 198 167 130 54
-137 199 80 59 252
-138 200 81 17 160
-139 154 201 4 83
-140 166 202 235 84
-141 121 155 85 173
-142 253 203 86 175
-143 176 254 204 87
-144 88 236 205 120
-145 89 134 237 206
-146 91 168 239 207
-147 122 94 183 174
-148 242 95 172 208
-149 212 81 160 42
-150 154 101 213 83
-151 166 214 225 84
-152 215 226 85 173
-153 165 190 86 175
-154 176 139 150 87
-155 227 63 141 43
-156 170 72 216 228
-157 171 73 217 229
-158 88 218 120 230
-159 231 89 134 219
-160 169 138 149 75
-161 220 232 91 168
-162 211 192 94 174
-163 221 233 95 172
-164 122 222 135 240
-165 112 223 153 241
-166 123 116 140 151
-167 243 136 224 131
-168 132 146 161 109
-169 309 320 160 129
-170 187 156 181 127
-171 308 319 157 128
-172 266 148 163 285
-173 309 320 141 152
-174 147 162 262 284
-175 79 178 142 153
-176 154 308 143 319
-177 200 256 107 130
-178 264 133 283 175
-179 56 246 61 248
-180 210 57 191 115
-181 60 170 271 119
-182 255 259 62 117
-183 253 147 203 64
-184 222 69 126 240
-185 14 256 70 128
-186 133 244 257 71
-187 132 170 271 109
-188 110 191 237 206
-189 111 298 245 192
-190 112 193 251 153
-191 209 188 113 180
-192 189 114 162 195
-193 124 190 236 205
-194 220 45 127 272
-195 111 223 192 241
-196 221 201 4 129
-197 122 298 135 245
-198 136 246 248 131
-199 287 137 203 258
-200 177 138 204 18
-201 48 105 139 196
-202 102 140 207 273
-203 199 183 142 252
-204 143 200 17 208
-205 144 290 193 260
-206 188 145 291 261
-207 146 202 235 248
-208 254 148 247 204
-209 110 220 232 191
-210 243 113 180 224
-211 244 114 257 162
-212 121 149 51 106
-213 47 103 125 150
-214 46 237 151 262
-215 242 5 152 263
-216 231 264 156 16
-217 1 265 233 157
-218 266 245 158 292
-219 267 246 159 293
-220 209 234 161 194
-221 238 249 163 196
-222 268 184 294 164
-223 165 269 195 295
-224 210 167 270 296
-225 45 237 151 272
-226 242 14 256 152
-227 155 48 105 229
-228 231 156 102 273
-229 233 157 227 43
-230 245 158 281 274
-231 246 159 216 228
-232 209 275 161 282
-233 249 217 163 229
-234 220 127 40 283
-235 12 140 207 284
-236 144 276 193 285
-237 188 145 214 225
-238 221 5 129 263
-239 286 277 146 248
-240 287 258 184 164
-241 165 288 278 195
-242 148 247 215 226
-243 210 167 289 279
-244 297 211 280 186
-245 189 218 197 230
-246 198 231 179 219
-247 242 313 304 208
-248 198 179 239 207
-249 221 233 302 314
-250 123 116 270 296
-251 299 124 190 300
-252 137 203 269 295
-253 297 280 183 142
-254 143 1 265 208
-255 288 278 257 182
-256 177 226 18 185
-257 211 255 259 186
-258 199 290 260 240
-259 257 268 182 294
-260 308 258 95 205
-261 264 279 16 206
-262 267 214 50 174
-263 215 51 106 238
-264 178 216 41 261
-265 254 47 103 217
-266 309 268 172 218
-267 46 270 262 219
-268 222 266 259 292
-269 223 301 316 252
-270 267 224 293 250
-271 187 289 279 181
-272 100 225 194 108
-273 202 104 228 97
-274 92 302 295 230
-275 232 13 303 296
-276 288 36 236 304
-277 3 289 239 305
-278 255 306 317 241
-279 243 291 271 261
-280 253 244 307 318
-281 308 95 295 230
-282 12 232 284 296
-283 286 178 234 41
-284 235 50 282 174
-285 309 288 236 172
-286 289 40 239 283
-287 199 310 312 240
-288 276 255 241 285
-289 286 243 277 271
-290 258 313 205 96
-291 13 279 303 206
-292 268 39 314 218
-293 3 270 305 219
-294 222 311 259 315
-295 223 281 252 274
-296 275 224 282 250
-297 253 244 299 300
-298 189 197 307 318
-299 297 311 315 251
-300 297 301 316 251
-301 36 300 269 304
-302 93 249 306 274
-303 275 100 291 108
-304 99 276 301 247
-305 277 104 293 97
-306 278 92 302 307
-307 298 280 306 317
-308 176 171 281 260
-309 266 169 173 285
-310 319 287 37 318
-311 11 320 299 294
-312 287 39 314 318
-313 99 290 247 315
-314 312 93 292 249
-315 299 313 96 294
-316 319 300 37 269
-317 11 320 278 307
-318 298 310 312 280
-319 176 310 171 316
-320 311 169 173 317
0